• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A contrastive learning approach for individual re-identification in a wild fish population

Olsen, Ørjan Langøy; Sørdalen, Tonje Knutsen; Goodwin, Morten; Malde, Ketil; Knausgård, Kristian Muri; Halvorsen, Kim Aleksander Tallaksen
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
Manuscript.pdf (3.329Mb)
Permanent lenke
https://hdl.handle.net/11250/3106072
Utgivelsesdato
2023
Metadata
Vis full innførsel
Samlinger
  • Articles [3336]
  • Publikasjoner fra CRIStin [3503]
Originalversjon
Proceedings of the Northern Lights Deep Learning Workshop. 2023, 4 .   10.7557/18.6824
Sammendrag
In both terrestrial and marine ecology, physical tagging is a frequently used method to study population dynamics and behavior. However, such tagging techniques are increasingly being replaced by individual re-identification using image analysis. This paper introduces a contrastive learning-based model for identifying individuals. The model uses the first parts of the Inception v3 network, supported by a projection head, and we use contrastive learning to find similar or dissimilar image pairs from a collection of uniform photographs. We apply this technique for corkwing wrasse, Symphodus melops, an ecologically and commercially important fish species. Photos are taken during repeated catches of the same individuals from a wild population, where the intervals between individual sightings might range from a few days to several years. Our model achieves a one-shot accuracy of 0.35, a 5-shot accuracy of 0.56, and a 100-shot accuracy of 0.88, on our dataset.
Tidsskrift
Proceedings of the Northern Lights Deep Learning Workshop

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit