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Abstract

In both terrestrial and marine ecology, physical tag-
ging is a frequently used method to study popula-
tion dynamics and behavior. However, such tag-
ging techniques are increasingly being replaced by
individual re-identification using image analysis.

This paper introduces a contrastive learning-
based model for identifying individuals. The model
uses the first parts of the Inception v3 network,
supported by a projection head, and we use con-
trastive learning to find similar or dissimilar image
pairs from a collection of uniform photographs. We
apply this technique for corkwing wrasse, Sympho-
dus melops, an ecologically and commercially im-
portant fish species. Photos are taken during re-
peated catches of the same individuals from a wild
population, where the intervals between individual
sightings might range from a few days to several
years.

Our model achieves a one-shot accuracy of 0.35,
a b-shot accuracy of 0.56, and a 100-shot accuracy
of 0.88, on our dataset.

1 Introduction

Physical tagging, using external or internal mark-
ings for individual identification, is a widely used
method for monitoring terrestrial and aquatic an-
imal populations. Information from resightings
or recapture of the same individuals can be used
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to estimate population size, survival and move-
ment patterns. However, most tagging methods
are costly, intrusive, and labor-intensive. To our
beneift, many animals have natural markings or
morphological features that are unique to individu-
als that could be used for photo-identification and
replace the need for physical tags [22] [19]. How-
ever, for ecologists, working with fish may mean
keeping track of hundreds or potentially thousands
of individuals in a population, which makes manual
photo-identification challenging, if not impossible.
For this reason, fully- or semi-automatic tools for
re-identification of individuals would be immensely
useful for ecologists.

Re-identification (re-ID) is different from normal
classification in that it is a few-shot learning prob-
lem. Few-shot problems are characterised by hav-
ing few samples per class, but there may be a large
or indefinite number of classes. One way to solve
such problems is a technique called metric learn-
ing, where data is transformed into embeddings
of a lower dimension, that clusters points from
the same class together. Classification can then
be performed on the embeddings. Metric learning
approaches have been proved to work well for re-
identification of animal species [I§]. A crucial ad-
vantage with metric learning approaches is that the
network does not need to be retrained to be able to
add new classes.

Contrastive learning is a technique that can be
used to solve few-shot problems. Constrastive
learning compares data and identifies whether they
are similar or dissimilar. A siamese network [1] is
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the most basic form and takes two inputs through
the same network with the same shared weights
and gets an embedding for both. During training,
it tries to predict whether they are of the same class
or not. A major advantage here is that it does not
need to know which class an input belongs to, nor
how many classes there are. Triplet networks [10]
are an improvement to the siamese network with
three inputs.

The goal of this work was to test the applica-
bility of image based re-ID analysis for a commer-
cially and ecologically important fish species, the
corkwing wrasse (Symphodus melops). The image
dataset consists of standardized photos of captures
and recaptures of individuals in a wild population,
where the time between individual sightings spans
from days to several years. The first step is to de-
tect a fish in an image with an object detector,
followed by a re-identification method. With high
enough precision, computer vision re-ID has the
potential to replace physical tagging for individ-
ual identification and may be applied in monitoring
of survival rates, growth, movement, and popula-
tion size, key knowledge for sustainable manage-
ment and conservation [18] [4].

2 Related works

Advancements in machine learning have produced
powerful techniques for extracting ecologically im-
portant information from image and video data.
For instance, machine learning have successfully
been utilized to detect fish wounds [5], count and
categorize organisms in digital photos and real-time
video [I4], [12], identify species, [6], and discover,
and count creatures from digital images, [4], and
even quantify their behaviour [3].

Some work on the topic of re-identification of fish
has been conducted, but work on wild teleost fish
are lacking. Bruslund Haurum et al. [2] achieved
an mAP of 99% on Zebrafish using metric learn-
ing with 15 samples per class of 6 classes. Mei-
dell and Sjgblom [I6] reports a true positive rate
of 96% on 225 thousand images of salmon divided
between 715 individuals. Li et al. [I3] achieved
an accuracy of 92% using 3412 images of 10 indi-
viduals using their novel FFRNet network. These
studies have in common that they were carried out
in captivity and are not using temporally indepen-

dent observations. In other words, the individuals
did not change morphology through growth, matu-
ration, senescence, or similar biological processes.
Moskvyak et al. [I7] used a metric learning ap-
proach on a dataset of 1730 images of 120 manta
ray individuals and achieved an accuracy@1 of 62%
and an accuracy@10 of 97%.

3 Method

3.1 Data collection

The study species, S. melops, is a commercially and
ecologically important species in coastal ecosystems
in the Northeastern Atlantic [7]. This species have
two distinct male morphs, colourful large males
that build nest and care for the eggs, and smaller
sneaker males, with a more brown coloration resem-
bling the female morphology (brown and gray) [21].
The dataset was collected in Austevoll, western
Norway, 2018-2021, by catching corkwing wrasse
by fyke nets left in the sea overnight and mark-
ing all captured individuals with uniquely coded
passive integrated transponder (PIT) tags (11 mm
tags, RFID Solutions). The tags were implanted in
the abdominal cavity of the fish, see full sampling
description in [8] and [9].

This method enabled us to collect independent
observations of each individual across time and for
the dataset to encompass changes in the fish’s mor-
phology. At each capture, a few images were taken
of the fish on both sides and the images were tagged
with an id based on the RFID. The images are cap-
tured with the dorsal side of the fish facing up. Af-
ter some filtration, a dataset that could be used for
the task was compiled. The final dataset consists
of 2113 images from 513 unique individuals. As
an added statistic, the mean between the first and
last capture-date of all the individuals is 230 days.
Samples from the dataset can be seen in Figure [T}

3.2 Individual re-identification

The re-identification system consists of a pipeline
of different components, as illustrated in Figure
The components fall into two categories, a prepro-
cessing part and a re-identification part. As part
of a preprocessing step in the pipeline, the system
takes an image as input and feeds it to a object de-



Figure 1: Samples from the unprocessed dataset.

tection network to get an image crop, only contain-
ing the fish in the frame. Then a different network,
the direction component, classifies whether the fish
is facing right or left and passes this as metadata.
For the re-identification part, the preprocessed data
is fed to a contrastive learning network that learns
to group embeddings for the same individual to-
gether and different apart. Classification can then
be performed on the embeddings. By storing the
embeddings of all previously observed individuals,
re-identification can be achieved by nearest neigh-
bor methods.

The object detector uses YOLOv5 [II] with an
image size of 416x416, a batch size of 32 and is
trained for 50 epochs. During training, the net-
work was provided with manually annoted bound-
ing boxes enclosing the fish.

The direction network is an Inception v3 [20]
model with all its weights frozen. A global aver-
age pooling layer, a ReLU activated layer with 32
neurons, and a sigmoid activated output have been
appended to the network. The dataset used for the
training is the images cropped to only contain the
head. The dataset is manually annotated with the
direction.

The embedding network consists of a CNN model
with a projection head. Its constituent parts were

Preprocessing

( R

Object
detector

Direction
classifier

e 7

Classification [~— Embedding

. J

Re-identification

Figure 2: The network pipeline takes an image of a
fish as input and outputs the id of the individual.

found experimentally. The CNN model is an Incep-
tion v3 model pre-trained on ImageNet, with the
layers after the fourth concatenation layer (layer
46, or 132 if counting activation layers) removed.
Appended at the end is a 2D global average pooling
layer and a 128-dimensional linear projection that
is normalized to the unit hypersphere. The net-
work diagram is shown in Figure|3] The input size
of the network is 224, and the images are resized
accordingly before being fed into it. The network
utilizes letter-boxing to maintain aspect-ratio. For
the training of the embedding network, the dataset
is split into a training and test set with a test set
fraction of 0.3.

The training of the embedding network uses
gradual unfreezing. The first 100 epochs have the
layers before layer 29 frozen and a learning rate of
0.001, and the next 100 epochs have the layers be-
fore layer 18 frozen and a learning rate of 0.0001
for a total of 200 epochs. Layer 29 and layer 18
were selected because they are concatenation bot-
tlenecks in the network architecture (green nodes in
Figure |3). The loss function is online hard triplet
mining with a margin of 1.0. Hard triplet mining is
a technique where loss is only backpropagated for
triplets where the negative is closer to the anchor
than the positive. Thus, the use of online min-
ing circumvents the need for three identical net-
works with shared weights. The training samples
are randomly applied with image augmentations.
A number between -20 and 20 is added to the hue
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Figure 3: The embedding network utilizes the first part of Inception v3 [20] with a custom projection
head. The dashed line marks where the Inception part ends and the custom part starts. The grey part

is repeated three times.

and saturation. The image is rotated by a fraction
between 0 and 0.1 in either direction, and a scale
transformation between 0 and 0.1 is applied. The
batch size used is 32.

Classification, and by extension re-identification,
is done using a nearest neighbor approach. And in
this case it is useful to define the training set as the
support set and the test set as the query set. Near-
est neighbor classification is non-parametric and
does not need to be trained through optimization.
The training step is simply to feed the support im-
ages through the embedding network and store the
associated embeddings for the inference step. To
classify an image, a query image is fed through the
embedding network and then simply select the class
of the nearest point of the query embedding to the
support set embeddings. Source code for our im-
plementation is available at GitHuHT]

3.3 Method for experiments

The Symphodus melops have a distinct high-
contrast pattern in the head region (particularly on
the operculum). For this reason, it would be useful
to explore whether the network performs better on
head crops than on crops of the whole body. The
experiment is performed by training and evaluating

Thttps://github.com/orilan93/SiameseFish

the embedding network on images that are cropped
to either part.

The system can also treat each side of the fish
as different classes, and thus valuable information
can be gained by doing inference on both, and then
combining the results in an ensemble classifier. For
this experiment, the dataset is split up into a left-
sided section and a right-sided section such that
there is a pairwise correspondance between the im-
ages. Two models are trained, where one is only
for left-sided images and the other is only for right-
sided images. The embeddings in the support set is
sorted by the distance to the query image for each
side. The predicted class is then the class which ap-
pears first when both sorted collections are taken
into account.

An experiment to evaluate how well the system is
able to distinguish between a re-sighted individual
and an individual that has never been seen before
was also conducted. A query embedding is consid-
ered a new individual if its distance is greater than
a certain distance away from any support embed-
ding. The query set was split into a test set and
a validation set. A grid search was used to find
a good distance threshold by maximizing the F1
score when evaluating the test set. The validation
dataset for this experiment contains 317 samples.
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4 Results

The metrics we use are accuracy@1, accuracy@5,
and mAP@5. Accuracy@1 shows the correctness
of the highest ranked category, i.e., the percentages
of the highest predicted class are equal to the true
class. Accuracy@b shows the correctness of the five
highest ranked categories, i.e., how many of the five
highest classes contain the true class. mAP@5 sim-
ilarly shows the precision of the five highest ranked
categories, i.e., how many of the true categories are
among the five highest ranked categories.

4.1 Re-identification

The re-identifcation system was evaluated against
both the head and body crop datasets. Table [I]
presents results from accuracy@1 and accuracy@5
and shows that the model performs best on the
head crops. Figure[d]shows how the model performs
as the number of accumulated attempts increase.
This approach is essential in practice because, in-
stead of having an unsorted catalog of images to go
through, a professional biologist can go through a
sorted catalog and expect to find the correct indi-
vidual after inspecting the & most promising images
sorted based on the distance measure. The larger
k the higher accuracy, and as the number of at-
tempts are approaching the number of images in
the support set, the accuracy is approaching 100%.

Table 1: Results for re-identification on head and
body crops.

Type Accuracy@l  Accuracy@5 mAP@5
Head 0.3534 0.5647 0.4227
Body 0.2043 0.3892 0.2690

Table [2 shows four random image samples from
the dataset, together with the image the trained
model predicts is the same individual and the
ground truth. The classification rank and the dis-
tance in the embedding space are also shown.

To gain insight into what the model focuses on
when making its inferences, we present some test
set samples and the accompanying SHAP plot [15]
in Figure bl The colored area shows that the model
is indeed picking up on the pattern of the fish.
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Figure 4: The number of accumulated attempts (k)
needed to attain a certain accuracy (accuracy@k).

4.2 Ensemble classifier

This experiment shows the results of training a new
model for each side of the fish and then combin-
ing their respective classifications. Table [3] shows
that this strategy can significantly increase perfor-
mance. Note that the direction component, that is
required for the ensemble classifier, yielded an ac-
curacy@1 of 99.38% on the validation set using the
head cropped dataset.

4.3 New observations

As our previous experiments have shown, re-
identification works relatively well. We aim at us-
ing this model for distinguishing new individuals
from earlier observed individuals. To identify new
individuals with the model, an embedding distance
threshold needs to be decided. Note that this re-
lates to the distance metric in Table 2] Using grid
search, we found a threshold of 0.820 to yield the
best performance score on the validation set. The
system predicted 95 individuals as new sightings
and got a 62.78% accuracy@1 at this task.

5 Discussion and conclusion
Our experiments, summarized in Table 4l indicate

that the system performs better on the head crops
of the fish than on the whole body. This is likely



Table 2: The retrieval rank and euclidean distance between the embedding of a query image and a

correct image.

Query Predicted Ground truth  Rank Distance
1 0.65
217 1.27
1 0.61
1012 1.46

Table 3: Ensemble classifier results.
Accuracy@l Accuracy@5 mAP@Q5

0.3568 0.5463 0.4243
0.4097 0.5595 0.4623
0.5286 0.7533 0.6140

Type
Left
Right
As pair

Table 4: Summary of results.
Result  Metric

0.3534
0.9951
0.9937
0.5286
0.6278

Experiment

Re-identification
Object detector
Direction classifier
Ensemble classifier
New observations

Accuracy@1
mAPQ0.5

Accuracy@1
Accuracy@1
Accuracy@1

because the pattern on the head is most distinct
and thus an important feature, and this will ap-
pear at a higher resolution for the algorithm when
resizing for the network input size. However, the
drawback here is that the network is exposed to less
information available in the data.

By utilizing the existing system in a new way by
training separate models for each side of the fish,
one can make an ensemble classifier. This method
was tested and gained a considerable improvement
from 35% to 53% accuracy. This shows how im-
portant it is to use all the information available to
make good predictions.

The accuracy of this system is not high enough
for a fully automated system with humans out-of-
the-loop, which is required to replace the need for
physical tags in ecological studies. However, we
believe that continued collection of data can pro-
duce a dataset that is more temporally balanced
to enable the model to account for the growth and
ageing of the individuals.

Automatization can produce great benefits and
is increasingly being adopted by many industries,
and the field of ecology should be no different. A
successful Re-1D algorithm with high precision can
provide a new method with improved fish welfare,
while also being cheaper (only a camera needed)
and potentially more accurate (no tag loss). In
the future, we envision that re-ID can be applied
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Figure 5: SHAP plot showing which areas in the
images that are most influential for the decisions of
the model.

directly on live streams from under-water video
cameras, removing the need for capture and han-
dling fish altogether. This would be a revolution-
ary method that can drastically change how we can
collect key information for sustainable conservation
and management of fish and other animals.
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