Vis enkel innførsel

dc.contributor.authorDannevig, Alf
dc.contributor.authorHansen, Sigfred
dc.date.accessioned2009-01-16T11:41:53Z
dc.date.issued1952
dc.identifier.urihttp://hdl.handle.net/11250/114712
dc.description.abstractDuring the last 10 years we have been experimenting in the laboratory at the Flødevigen Sea-Fish Hatchery with the rearing of several species of salt-water fishes. The intention has been to bring about better methods for experimental purposes and to get some information as to what factors may be of importance for the survival of the eggs and larvae in nature. In this paper we are dealing with herring, cod, and plaice, especially the results from the two last seasons. In order to attain success when rearing fish-larvae, especially those species having an air-bladder, it is important to control the gas content of the sea-water. It is essential that when larvae are reared in small aquaria at a pressure of but one atmosphere the gas content of the seawater must be kept relatively low. It is assumed that the gas pressure and not the content of gas is the chief factor. Larvae living in the sea at a water pressure of e.g. 10 metres will probably sustain a gas content in the sea-water which will be detrimental near the surface. In this connection it is worth mentioning that the young cod-larvae react at once to changes in water pressure. When the water pressure is about 5 metres the larvae in a closed aquarium will keep to the surface. When the water pressure is shut off the larvae will straightaway sink apathetic to the bottom, but swim up again when the water pressure once more is put on. Experiments indicate that cod-larvae with a big air-bladder may recover when they are transferred to an aquarium covered with silk net and lowered to a depth of 5 to 10 metres. The eggs of the pelagic spring spawners are not affected by reasonable variations in the gas content. If the gas content is not reduced in the aquaria the larvae will get gas-bubbles in the intestines. This does not occur till the yolk-sack is resorbed - and the intestines and gills are functioning. It is assumed that the gas is liberated when the sea-water passes the gills. Small gasbubbles are formed inside and swallowed. In the case of herring the gas-bubbles are fatal. In the plaice the gas-bubbles will pass through the anus - and are not likely to harm the young. In the case of the cod we have not observed the gas to be within the intestines. In early stages - about a week after the resorbtion of the yolk-sack - the gas occurs free in the cavity. The intestines may be ruptured-or the gas may originate from the early air-bladder. In older stages the air-bladder will expand, the young will turn belly upwards and die, or the air-bladder may be ruptured. In older stages of the plaice - up to a length of some centimetres at least - fine gasbubbles rnay accumulate in the veins, and the fish will succumb. In the laboratory the gas content may be reduced by filtering the sea-water slowly through fine sand. Great quantities of gas will accumulate in the sand. The composition of this gas O²/N² is somewhat the same as in the atmosphere, the content of oxygen being slightly higher. Some of the gas in the sea-water in the laboratory may originate from the atmosphere - by leakage in the pump bearings. Studies of the gas of the air-bladder of cod (by Miss Eva Henly) indicate that oxygen is the operative factor. The results of the rearing experiments have improved to a very high degree after the gas problem was taken into consideration. The larvae of herring, cod, and plaice (and other flat-fishes) will thrive for weeks in the small aquaria used, containing but 35 litres. The flat-fishes are ordinarily reared without any mortality to the bottom stage in numbers from 1 to 3 thousands in the same aquarium. In this way the critical period - the moment when feeding begins - has been overcome. Experiments have shown that the cod-larvae may live in filtered water - without food - for several days after the yolk-sack is resorbed, and still thrive when fed. If we want to rear the fish further we encounter other problems. Will the feeding with the nauplii of Artemia be sufficient in the long run? Do they contain enough vitamins? Experiments have been made to feed the nauplii with flagellate cultures for some days before giving them to the young fish. Those experiments are to be continued. Experiments to furnish the young herring, about 2 months of age, with freshly caught plankton were negative. The herring did not take the copepods or Daphnia, and the plankton introduced seemed to kill the Artemia. We are now using fine chopped Mytilus edulis - even for the herring. The volume must be augmented - larger aquaria, more water, and larger filters. Experiments to rear cod and plaice in our large rearing boxes for lobster using but slightly filtered water were entirely negative. The results were the same when transferring several species of flatfishes after they had passed the stage of transformation. At present we have a good sample of herring 6 months of age, plaice ½ & 1½ year, and soles 5 years of age - all brought up from eggs in the laboratory. The last season we had some mortality of the young when 2-3 months of age. The symptoms in the plaice indicated an attack of Vibrio anguillarum. In the herring the symptoms indicated Lentospora cerebralis. The cod died before we were aware of the cause of the mortality and could take steps to reduce it. The attack on the plaice was stopped by adding some dissolved salt to the sea-water used. The herring reared in a larger aquarium in the laboratory survived, but in an ordinary aquarium (35 l) they succumbed. The infection this year came probably from our water reservoir. This was partly emptied in early winter, the algae and animals living along the walls died - and we were not able to have it cleaned out because of high snow and frost. Several experiments indicate that the young cod especially is very sensitive to products of metabolism. In one instance the water was drawn from a container where few cod of 1-2 years of age were living. The fry died. But when the older fish were removed, and the container cleaned a new batch thrived. It is impossible to say wether the mortality in the first experiment is to be ascribed to the chemical effect of the products of metabolism or to bacteria. Our experiences from last season give a warning that bacteria and products of metabolism may be a problem of higher order. Our earlier investigations in the inner Oslo-fjord, highly contaminated by sewage, have shown that the survival of the eggs and larvae of the spring spawners here is very poor. And in some places, where contaminated water occurs, even the grown up cod may suffer a great mortality, evidently caused by Vibrio anguillarum. The problem of rearing for experimental purposes has been our main object. Experiments on a large-scale rearing have to be postponed till we have aquired a relatively full knowledge as to the factors of main importance. Besides this work we have made some observations on the behaviour of the eggs. Many of the observations have to be confirmed by special experiments. In order to bring those points under consideration we will, however, mention some of them. The hatching and rearing has ordinarily been undertaken at an ordinary temperature of the sea-water during the season. In some experiments the water has been cooled or heated artificially. As we have no thermostats available for that purposes it has not been possible to keep the temperature quite constant. At a temperature of approximately 2° C the cod-eggs hatch normally. herring-eggs will also hatch at that temperature, but the larvae will have difficulties in escaping the eggs, and a heavy mortality occurs. Temperature-variations between 2° and 10° give high mortality to cod-eggs. In some rearing experiments the mortality among the young may be somewhat higher when the temperature is raising. The question of the relative gas content here comes into the problem. Fungus may be detrimental to the eggs. If they are heavily attacked, the eggs will sink. This occurs especially in foggy weather, and when the water has a relatively low salinity. The attack may be reduced by transferring the eggs for half an hour to sea-water to which has been added some salt. In some cases the cod-eggs have been infected by a flagellate living close inside the shell. Both these pests have been observed in nature - the last mentioned even in the middle of Skagerak. Cod-eggs hatched in circulating - but not renewed - water (constant salinity), gave a poor result. Bacteria may here be involved - or the products of metabolism. The influence of light has been studied more fully. The experiences from the hatching boxes indicate that the hatching of the cod-eggs gives the best results near the window. It is, however, difficult to say anything conclusive of the influence of the light in this case. In the boxes with less light there will also be a higher growth of fungus. Experiments with plaice-eggs indicate that normal daylight near a window - but shadowed for direct sun - gave poor results. And in experiments in the open air the eggs have died. On the other hand the plaice-eggs will hatch well in total darkness. It appears, however, that the plaice-eggs hatched in total darkness will give a higher percentage of larvae with abnormal pigmentation. The dorsal side is quite white, only the fins are pigmentated. When those plaice in the bottom stage, or later, are transferred to our salt-water pond under normal daylight and normal food for several months, no alteration takes place. Experiments also indicate that the plaice-eggs react with light. They may sink in the middle of the day and come to the surface again during the night.en
dc.format.extent3790081 bytes
dc.format.mimetypeapplication/pdf
dc.language.isonoben
dc.publisher[Fiskeridirektoratets havforskningsinstitutt]en
dc.relation.ispartofseriesFiskeridirektoratets skrifter, Serie Havundersøkelseren
dc.relation.ispartofseriesvol 10 no 1en
dc.titleFaktorer av betydning for fiskeeggenes og fiskeyngelens oppveksten
dc.typeResearch reporten
dc.source.pagenumbers. 1-36en


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel