Knockout of Targeted Plasmid-Borne β-Lactamase Genes in an Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strain: Impact on Resistance and Proteomic Profile
Jaén-Luchoro, Daniel; Karlsson, Roger; Busquets, Antonio; Iglesias, Beatriz Piñeiro; Karami, Nahid; Marathe, Nachiket; Moore, Edward RB
Peer reviewed, Journal article
Published version
Date
2023Metadata
Show full item recordCollections
- Articles [3043]
- Publikasjoner fra CRIStin [3126]
Abstract
Resistance to β-lactams is known to be multifactorial, although the underlying mechanisms are not well established. The aim of our study was to develop a system for assessing the phenotypic and proteomic responses of bacteria to antibiotic stress as a result of the loss of selected antimicrobial resistance genes. We applied homologous recombination to knock out plasmid-borne β-lactamase genes (blaOXA-1, blaTEM-1, and blaCTX-M15) in Escherichia coli CCUG 73778, generating knockout clone variants lacking the respective deleted β-lactamases. Quantitative proteomic analyses were performed on the knockout variants and the wild-type strain, using bottom-up liquid chromatography tandem mass spectrometry (LC-MS/MS), after exposure to different concentrations of cefadroxil. Loss of the blaCTX-M-15 gene had the greatest impact on the resulting protein expression dynamics, while losses of blaOXA-1 and blaTEM-1 affected fewer proteins’ expression levels. Proteins involved in antibiotic resistance, cell membrane integrity, stress, and gene expression and unknown function proteins exhibited differential expression. The present study provides a framework for studying protein expression in response to antibiotic exposure and identifying the genomic, proteomic, and phenotypic impacts of resistance gene loss.