Vis enkel innførsel

dc.contributor.authorDrábiková, Lucia
dc.contributor.authorFjelldal, Per Gunnar
dc.contributor.authorDe Clercq, Adelbert
dc.contributor.authorYousaf, Muhammad Naveed
dc.contributor.authorMorken, Thea
dc.contributor.authorMcGurk, Charles
dc.contributor.authorWitten, P. Eckhard
dc.date.accessioned2022-09-28T12:38:11Z
dc.date.available2022-09-28T12:38:11Z
dc.date.created2022-09-09T09:46:35Z
dc.date.issued2022
dc.identifier.citationAquaculture. 2022, 559 .en_US
dc.identifier.issn0044-8486
dc.identifier.urihttps://hdl.handle.net/11250/3022280
dc.description.abstractVertebral deformities can impair health, welfare, and product quality in farmed Atlantic salmon. Deformities detected early in the production cycle raise questions about their further development: which types of deformities will progress and which types of deformities will worsen over time? To study this, Atlantic salmon parr (start experimental feeding weight 13.5 g) were fed diets with low (6.8 g/kg), regular (10.0 g/kg), or high (13.0 g/kg) total dietary P for 11 weeks to provoke deformities. This was followed by long-term monitoring of deformity development up to harvest size (4.5 kg) through repeated radiology of individually tagged animals. Further insights were obtained by histological analyses, mineral analyses, and testing for mechanical properties of vertebral centra. Four categories of deformity development were defined: (1) recovery, (2) containment, (3) progression, and (4) late-onset. Deformities detected early, in freshwater, which affected the vertebral centra but not the intervertebral joints, could fully recover in seawater. These involved low-mineralised vertebrae, single vertically shifted vertebrae, hyper-dense vertebrae (HDV), and two or three adjacent vertebrae with compression-related deformities. HDV were provoked by low dietary P but disappeared in seawater. Fusions were either contained (two to three vertebrae) (stable vertebral fusions) or progressed (more than three vertebrae) (progressive vertebral fusions). Vertical shifts, fusions, and compressions could also have a late-onset in seawater but did not develop into severe deformities in harvest size animals. In conclusion, low-mineralised vertebrae and HDV are abundant in animals with LP diet history but can recover in seawater. The frequency of all other types of deformities was not significantly different among animals of different diet history groups. Under the current experimental conditions, a period of high or low dietary P in freshwater had no significant effect on the prevalence of early- or late-onset deformities at harvest.en_US
dc.language.isoengen_US
dc.titleWhat will happen to my smolt at harvest? Individually tagged Atlantic salmon help to understand possible progression and regression of vertebral deformitiesen_US
dc.title.alternativeWhat will happen to my smolt at harvest? Individually tagged Atlantic salmon help to understand possible progression and regression of vertebral deformitiesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber17en_US
dc.source.volume559en_US
dc.source.journalAquacultureen_US
dc.identifier.doi10.1016/j.aquaculture.2022.738430
dc.identifier.cristin2050156
dc.relation.projectEC/H2020/766347en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel