Show simple item record

dc.contributor.authorHandegard, Nils Olav
dc.contributor.authorAndersen, Lars Nonboe
dc.contributor.authorBrautaset, Olav
dc.contributor.authorChoi, Changkyu
dc.contributor.authorEliassen, Inge Kristian
dc.contributor.authorHeggelund, Yngve
dc.contributor.authorHestnes, Arne Johan
dc.contributor.authorMalde, Ketil
dc.contributor.authorOsland, Håkon
dc.contributor.authorOrdonez, Alba
dc.contributor.authorPatel, Ruben
dc.contributor.authorPedersen, Geir
dc.contributor.authorUmar, Ibrahim
dc.contributor.authorEngeland, Tom Van
dc.contributor.authorVatnehol, Sindre
dc.date.accessioned2021-06-18T12:45:02Z
dc.date.available2021-06-18T12:45:02Z
dc.date.created2021-06-15T10:57:21Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/11250/2760192
dc.description.abstractThis report documents a workshop organised by the COGMAR and CRIMAC projects. The objective of the workshop was twofold. The first objective was to give an overview of ongoing work using machine learning for Acoustic Target Classification (ATC). Machine learning methods, and in particular deep learning models, are currently being used across a range of different fields, including ATC. The objective was to give an overview of the status of the work. The second objective was to familiarise participants with machine learning background to fisheries acoustics and to discuss a way forward towards a standard framework for sharing data and code. This includes data standards, standard processing steps and algorithms for efficient access to data for machine learning frameworks. The results from the discussion contributes to the process in ICES for developing a community standard for fisheries acoustics data.
dc.language.isoengen_US
dc.publisherHavforskningsinstitutteten_US
dc.relation.ispartofRapport fra havforskningen
dc.relation.ispartofseriesRapport fra havforskningen;2021 - 25
dc.relation.urihttps://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-en-2021-25
dc.titleFisheries acoustics and Acoustic Target Classification - Report from the COGMAR/CRIMAC workshop on machine learning methods in fisheries acousticsen_US
dc.title.alternativeFiskeriakustikk og akustisk målklassifisering - Rapport frå COGMAR/CRIMAC arbeidsmøte om maskinlæring og fiskeriakustikken_US
dc.typeResearch reporten_US
dc.description.versionpublishedVersion
dc.source.pagenumber25en_US
dc.source.issue2021 - 25en_US
dc.identifier.cristin1915855
cristin.ispublishedtrue
cristin.fulltextoriginal


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record