Vis enkel innførsel

dc.contributor.authorFinn, Roderick Nigel
dc.contributor.authorChauvigné, François
dc.contributor.authorHlidberg, Jón Baldur
dc.contributor.authorCutler, Christopher P.
dc.contributor.authorCerdà, Joan
dc.date.accessioned2015-01-29T14:50:58Z
dc.date.available2015-01-29T14:50:58Z
dc.date.issued2014-11-26
dc.identifier.citationFinn RN, Chauvigne´ F, Hlidberg JB, Cutler CP, Cerda` J (2014) The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation. PLoS ONE 9(11):e113686. doi:10.1371/journal.pone.0113686nb_NO
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11250/275061
dc.description.abstractA major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation.nb_NO
dc.language.isoengnb_NO
dc.publisherPublic Library of Sciencenb_NO
dc.rightsNavngivelse 3.0 Norge*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/no/*
dc.titleThe Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.pagenumber38 p.nb_NO
dc.source.volume9nb_NO
dc.source.journalPLoS ONEnb_NO
dc.source.issue11nb_NO
dc.identifier.doi10.1371/journal.pone.0113686
dc.relation.projectNorwegian Research Council: #178837/40 and 224816/E40nb_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 3.0 Norge
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 3.0 Norge