• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contrasting effects of rising temperatures on trophic interactions in marine ecosystems

Durant, Joel Marcel; Molinero, Juan Carlos; Ottersen, Geir; Reygondeau, Gabriel; Stige, Leif Christian; Langangen, Øystein
Journal article, Peer reviewed
Published version
Thumbnail
View/Open
s41598-019-51607-w.pdf (1.710Mb)
URI
http://hdl.handle.net/11250/2637399
Date
2019
Metadata
Show full item record
Collections
  • Articles [3343]
  • Publikasjoner fra CRIStin [3536]
Original version
10.1038/s41598-019-51607-w
Abstract
In high-latitude marine environments, primary producers and their consumers show seasonal peaks of abundance in response to annual light cycle, water column stability and nutrient availability. Predatory species have adapted to this pattern by synchronising life-history events such as reproduction with prey availability. However, changing temperatures may pose unprecedented challenges by decoupling the predator-prey interactions. Here we build a predator-prey model accounting for the full life-cycle of fish and zooplankton including their phenology. The model assumes that fish production is bottom-up controlled by zooplankton prey abundance and match or mismatch between predator and prey phenology, and is parameterised based on empirical findings of how climate influences phenology and prey abundance. With this model, we project possible climate-warming effects on match-mismatch dynamics in Arcto-boreal and temperate biomes. We find a strong dependence on synchrony with zooplankton prey in the Arcto-boreal fish population, pointing towards a possible pronounced population decline with warming because of frequent desynchronization with its zooplankton prey. In contrast, the temperate fish population appears better able to track changes in prey timing and hence avoid strong population decline. These results underline that climate change may enhance the risks of predator-prey seasonal asynchrony and fish population declines at higher latitudes.
 
Contrasting effects of rising temperatures on trophic interactions in marine ecosystems
 
Journal
Scientific Reports

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit