A new model for simulating growth in fish
Journal article, Peer reviewed

View/ Open
Date
2014-01-16Metadata
Show full item recordCollections
- Articles [2893]
Original version
Hamre et al. (2014), A new model for simulating growth in fish. PeerJ 2:e244; DOI 10.7717/peerj.244 10.7717/peerj.244Abstract
A real dynamic population model calculates change in population sizes indepen-
dent of time. The Beverton & Holt (B&H) model commonly used in fish assessment
includes the von Bertalanffy growth function which has age or accumulated time
as an independent variable. As a result the B&H model has to assume constant fish
growth. However, growth in fish is highly variable depending on food availability
and environmental conditions.We propose a new growth model where the length
increment of fish living under constant conditions and unlimited food supply, de-
creases linearly with increasing fish length until it reaches zero at a maximal fish
length. The model is independent of time and includes a term which accounts for
the environmental variation. In the present study, the model was validated in ze-
brafish held at constant conditions. There was a good fit of the model to data on ob-
served growth in Norwegian spring spawning herring, capelin from the Barents Sea,
North Sea herring and in farmed coastal cod. Growth data fromWalleye Pollock
from the Eastern Bering Sea and blue whiting from the Norwegian Sea also fitted
reasonably well to the model, whereas data from cod from the North Sea showed a
good fit to the model only above a length of 70 cm. Cod from the Barents Sea did
not grow according to the model. The last results can be explained by environmental
factors and variable food availability in the time under study. The model implicates
that the efficiency of energy conversion from food decreases as the individual animal
approaches its maximal length and is postulated to represent a natural law of fish
growth.