• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Havforskningsinstituttet
  • Published externally
  • Articles
  • View Item
  •   Home
  • Havforskningsinstituttet
  • Published externally
  • Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vertical distribution, behavior, chemical composition and metabolism of Stauroteuthis syrtensis (Octopoda: Cirrata) in the northwest Atlantic

Jacoby, Charles A.; Youngbluth, Marsh J.; Frost, Jessica R.; Flood, Per R.; Uiblein, Franz; Båmstedt, Ulf; Francesc, Pagès; Shale, David
Journal article, Peer reviewed
Thumbnail
View/Open
Vertical distribution, behavior, chemical composition and metabolism of Stauroteuthis syrtensis (Octopoda - Cirrata) in the northwest Atlantic.pdf (334.0Kb)
URI
http://hdl.handle.net/11250/108852
Date
2009-02-03
Metadata
Show full item record
Collections
  • Articles [3336]
Original version
http://dx.doi.org/10.3354/ab00117
Abstract
The cirrate octopod Stauroteuthis syrtensis is a mesopelagic species commonly collected in the North Atlantic. Individuals were observed at depths >600 m and typically within 100 m of the bottom in three ~900 m deep canyons indenting the southern edge of Georges Bank. When first sighted, most octopods were floating passively with their webbed arms gathered into a small ball. When disturbed, they expanded their webs to form a ‘balloon’ shape, swam slowly by sculling their fins, pulsed their webs like medusae and, in some cases, streamlined their arms and webs and moved away smoothly by rapidly sculling their fins. The bodies of 9 octopods comprised 92 to 95% water, with tissue containing 9 to 22% carbon (C) and 2 to 4% nitrogen (N). These values were similar to those reported for medusae and ctenophores. Oxygen (O2) consumption rates of 4.6 to 25.8 µmol O2 g–1 C h–1 were within ranges reported for medusae, ctenophores, and deep-water cephalopods. The stomachs of S. syrtensis, dissected immediately after capture, contained only the calanoid copepod Calanus finmarchicus. Calculations indicated that S. syrtensis need 1.3 to 30.1 ind. d–1 of C. finmarchicus to meet their measured metabolic demand. Excretion rates (0.3 to 12.4 µg NH4+ g–1 C h–1 and 0.06 to 4.83 µg PO43– g–1 C h–1) were at least an order of magnitude lower than rates reported for other octopods or gelatinous zooplankters. O:N ratios (11 to 366) suggested that S. syrtensis catabolized lipids, which may be supplied by C. finmarchicus. Vertical distribution, relatively torpid behavior and low metabolic rates characterized S. syrtensis as a benthopelagic and relatively passive predator on copepods.
Publisher
Inter-Research
Journal
Aquatic Biology

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit