• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trivial gain of downscaling in future projections of higher trophic levels in the Nordic and Barents Seas

Nilsen, Ina; Fransner, Sara Filippa Krusmynta; Olsen, Are; Tjiputra, Jerry; Hordoir, Robinson; Hansen, Cecilie
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
Fisheries+Oceanography_2023_Nilsen.pdf (5.446Mb)
URI
https://hdl.handle.net/11250/3069480
Date
2023
Metadata
Show full item record
Collections
  • Articles [2918]
  • Publikasjoner fra CRIStin [2897]
Original version
Fisheries Oceanography. 2023, .   10.1111/fog.12641
Abstract
Downscaling physical forcing from global climate models is both time consuming and labor demanding and can delay or limit the physical forcing available for regional marine ecosystem modelers. Earlier studies have shown that downscaled physics is necessary for capturing the dynamics of primary production and lower trophic levels; however, it is not clear how higher trophic levels respond to the coarse resolution physics of global models. Here, we apply the Nordic and Barents Seas Atlantis ecosystem model (NoBa) to study the consequences of using physical forcing from global climate models versus using that from regional models. The study is therefore (i) a comparison between a regional model and its driving global model to investigate the extent to which a global climate model can be used for regional ecosystem predictions and (ii) a study of the impact of future climate change in the Nordic and Barents Seas. We found that few higher trophic level species were affected by using forcing from a global versus a regional model, and there was a general agreement in future biomass trends and distribution patterns. However, the slight difference in temperature between the models dramatically impacted Northeast Arctic cod (Gadus morhua), which highlights how species projection uncertainty could arise from poor physical representation of the physical forcing, in addition to uncertainty in the ecosystem model parameterization.
Journal
Fisheries Oceanography

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit