Vis enkel innførsel

dc.contributor.authorErenbjerg, Sissal Vágsheyg
dc.contributor.authorAlbretsen, Jon
dc.contributor.authorSimonsen, Knud
dc.contributor.authorOlsen, Erna Lava
dc.contributor.authorKaas, Eigil
dc.contributor.authorHansen, Bogi
dc.date.accessioned2021-12-10T08:50:52Z
dc.date.available2021-12-10T08:50:52Z
dc.date.created2021-12-02T14:58:10Z
dc.date.issued2021
dc.identifier.citationOcean Science. 2021, 17 (6), 1639-1655.en_US
dc.identifier.issn1812-0784
dc.identifier.urihttps://hdl.handle.net/11250/2833701
dc.description.abstractThe strait studied in this paper, “Sundalagið Norður”, is the northern part of a narrow body of seawater separating the two largest islands in the Faroe Islands (Faroes). It has shallow sills in both ends and considerably deeper waters in between. South of the southern end of the strait there is an amphidromic region for the semidiurnal tides so that the tidal range is much lower south of the strait than north of it. The resulting tidal forcing generates periodically varying inflow of seawater across the northern sill, but only a part of that manages to cross the narrow and shallow southern sill. Combined with a large input of freshwater, this gives the strait a fjord-like character. To investigate how this fjord-like character affects the circulation within the strait and its exchanges with outside waters, a pilot project was initiated to simulate the dynamics of the strait with a high-resolution ocean model for a month. The model simulations show clearly the dominance of tidal forcing over freshwater (estuarine) and wind on timescales up to a day. On longer timescales, the simulations indicate systematic variations in the net flows (averaged over a diurnal tidal period) through both the upper and deeper layers. These long-period variations of net flow in the model simulations are forced by sea level differences between both ends of the strait generated by the dominant fortnightly and monthly tidal constituents (Mf, MSf, Mm, MSm). Harmonic analysis of sea level records from two tide gauges located off each end of the strait demonstrates that this behaviour is not a model artefact and it has pronounced effects on the strait. Not only does it induce long-period (mainly fortnightly) variations in the net flow through the strait, but it also generates variations in the estuarine characteristics. According to the model simulations, periods with net southward flow, typically lasting a week, have a strait-like character with net southward flow almost everywhere. Periods with net northward flow, in contrast, have a more fjord-like character with stronger salinity stratification and a southward counter-flow in the deep layer. This also induces a large difference in renewal rate of the deep water between the two periods, which is important to consider for human utilization of the strait, especially the local aquaculture plant. The combination of topographic, freshwater, and tidal characteristics creating these long-period variations is rather unusual, and it is not known whether similar systems exist elsewhere, but the long-period variations tend to be masked by the stronger semidiurnal and diurnal variations and may easily be overlooked.en_US
dc.language.isoengen_US
dc.titleA tidally driven fjord-like strait close to an amphidromic regionen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber1639-1655en_US
dc.source.volume17en_US
dc.source.journalOcean Scienceen_US
dc.source.issue6en_US
dc.identifier.doi10.5194/os-17-1639-2021
dc.identifier.cristin1963580
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel