• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
  •   Home
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Drift indices confirm that rapid larval displacement is essential for recruitment success in high-latitude oceans

Tiedemann, Maik; Slotte, Aril; Nash, Richard David Marriott; Stenevik, Erling Kåre; Kjesbu, Olav Sigurd
Peer reviewed, Journal article
Published version
Thumbnail
View/Open
fmars-08-679900.pdf (5.738Mb)
URI
https://hdl.handle.net/11250/2757522
Date
2021
Metadata
Show full item record
Collections
  • Articles [3336]
  • Publikasjoner fra CRIStin [3498]
Original version
Frontiers in Marine Science. 2021, 8 (679900), 1-13.   10.3389/fmars.2021.679900
Abstract
Larval drift is a key process for successful fish recruitment. We used Norwegian spring-spawning herring (Clupea harengus) as model species to investigate the relationship between larval drift and recruitment. Larval drift indices were derived from simulations based on survey observations between 1993 and 2016. We show that forward simulated larval drift indices have an important positive relation to recruitment success. The relationship demonstrates elevated recruitment when larvae relocate rapidly northwards toward the Barents Sea. Negative or low larval drift indices coincide with only weak recruitment emphasizing limited survival in years with enhanced larval retention. Hence, with this work we combine drift model outcomes refined with survey data indicating that more extensive larval drift is an important component in population dynamics for high-latitude small pelagic fishes. However, larval displacement alone represents only one among many controlling factors but may offer possible predictions of the probability of higher or lower recruitment in the short term. The applicability of the drift indices is adaptable in all world oceans and all marine organisms that occupy planktonic life stages exposed to dynamic ocean currents. The study demonstrates how larval drift indices help to identify larval transport or retention to be crucial for population replenishment.
Journal
Frontiers in Marine Science

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit