Vis enkel innførsel

dc.contributor.authorCrespo, Diego
dc.contributor.authorBogerd, Jan
dc.contributor.authorSambroni, Elisabeth
dc.contributor.authorLeGac, Florence
dc.contributor.authorAndersson, Eva
dc.contributor.authorEdvardsen, Rolf
dc.contributor.authorBergman, Elisabeth Jonsson
dc.contributor.authorBjörnsson, Björn Thrandur
dc.contributor.authorTaranger, Geir Lasse
dc.contributor.authorSchulz, Rüdiger W.
dc.date.accessioned2020-01-22T10:18:16Z
dc.date.available2020-01-22T10:18:16Z
dc.date.created2019-09-24T18:15:15Z
dc.date.issued2019
dc.identifier.citationBMC Genomics. 2019, 20 (1), 1-17.nb_NO
dc.identifier.issn1471-2164
dc.identifier.urihttp://hdl.handle.net/11250/2637440
dc.description.abstractBackground When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. Results Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfβ, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. Conclusions Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable.nb_NO
dc.language.isoengnb_NO
dc.titleThe initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy statusnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1-17nb_NO
dc.source.volume20nb_NO
dc.source.journalBMC Genomicsnb_NO
dc.source.issue1nb_NO
dc.identifier.doi10.1186/s12864-019-5869-9
dc.identifier.cristin1728548
cristin.unitcode7431,24,0,0
cristin.unitnameReproduksjon og utvikl.biologi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel