Vis enkel innførsel

dc.contributor.authorMeier, K.
dc.contributor.authorHansen, M.M.
dc.contributor.authorBekkevold, Dorte
dc.contributor.authorSkaala, Øystein
dc.contributor.authorMensberg, K-L.D.
dc.date.accessioned2011-12-22T13:44:11Z
dc.date.issued2011-01-12
dc.identifier.issn0018-067X
dc.identifier.issn1365-2540
dc.identifier.urihttp://hdl.handle.net/11250/117204
dc.description.abstractLocal adaptation is considered a paradigm in studies of salmonid fish populations. Yet, little is known about the geographical scale of local adaptation. Is adaptive divergence primarily evident at the scale of regions or individual populations? Also, many salmonid populations are subject to spawning intrusion by farmed conspecifics that experience selection regimes fundamentally different from wild populations. This prompts the question if adaptive differences between wild populations and hatchery strains are more pronounced than between different wild populations? We addressed these issues by analyzing variation at 74 microsatellite loci (including anonymous and expressed sequence tag- and quantitative trait locus-linked markers) in 15 anadromous wild brown trout (Salmo trutta L.) populations, representing five geographical regions, along with two lake populations and two hatchery strains used for stocking some of the populations. FST-based outlier tests revealed more outlier loci between different geographical regions separated by 522±228 km (mean±s.d.) than between populations within regions separated by 117±79 km (mean±s.d.). A significant association between geographical distance and number of outliers between regions was evident. There was no evidence for more outliers in comparisons involving hatchery trout, but the loci under putative selection generally were not the same as those found to be outliers between wild populations. Our study supports the notion of local adaption being increasingly important at the scale of regions as compared with individual populations, and suggests that loci involved in adaptation to captive environments are not necessarily the same as those involved in adaptive divergence among wild populations.no_NO
dc.language.isoengno_NO
dc.publisherNature Publishing Groupno_NO
dc.subjectgeneticsno_NO
dc.subjectgenetikkno_NO
dc.subjectsalmonidsno_NO
dc.subjectlaksefiskerno_NO
dc.subjectpopulation dynamicsno_NO
dc.subjectpopulasjonsdynamikkno_NO
dc.titleAn assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA locino_NO
dc.typeJournal articleno_NO
dc.typePeer reviewedno_NO
dc.subject.nsiVDP::Mathematics and natural science: 400::Basic biosciences: 470::Genetics and genomics: 474no_NO
dc.subject.nsiVDP::Agriculture and fishery disciplines: 900::Fisheries science: 920::Resource biology: 921no_NO
dc.description.embargo10000-01-01
dc.source.pagenumber488-499no_NO
dc.source.volume106no_NO
dc.source.journalHeredityno_NO
dc.identifier.doihttp://dx.doi.org/10.1038/hdy.2010.164


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel