• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantification of trophic interactions in the Norwegian Sea pelagic food-web over multiple decades

Planque, Benjamin; Favreau, Aurelien; Husson, Berengere; Mousing, Erik Askov; Hansen, Cecilie; Broms, Cecilie; Lindstrøm, Ulf Ove; Sivel, Elliot Manuarii
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
fsac111.pdf (1.010Mb)
Permanent lenke
https://hdl.handle.net/11250/3056322
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Articles [3343]
  • Publikasjoner fra CRIStin [3536]
Originalversjon
ICES Journal of Marine Science. 2022, 79 (6), 1815-1830.   10.1093/icesjms/fsac111
Sammendrag
While ecosystem-based fisheries management calls for explicit accounting for interactions between exploited populations and their environment, moving from single species to ecosystem-level assessment is a significant challenge. For many ecologically significant groups, data may be lacking, collected at inappropriate scales or be highly uncertain. In this study, we aim to reconstruct trophic interactions in the Norwegian Sea pelagic food-web during the last three decades. For this purpose, we develop a food-web assessment model constrained by existing observations and knowledge. The model is based on inverse modelling and is designed to handle input observations and knowledge that are uncertain. We analyse if the reconstructed food-web dynamics are supportive of top-down or bottom-up controls on zooplankton and small pelagic fish and of competition for resources between the three small pelagic species. Despite high uncertainties in the reconstructed dynamics, the model results highlight that interannual variations in the biomass of copepods, krill, amphipods, herring, and blue whiting can primarily be explained by changes in their consumption rather than by predation and fishing. For mackerel, variations in biomass cannot be unambiguously attributed to either consumption or predation and fishing. The model results provide no support for top-down control on planktonic prey biomass and little support for the hypothesised competition for resources between the three small pelagic species, despite partially overlapping diets. This suggests that the lack of explicit accounting for trophic interactions between the three pelagic species likely have had little impact on the robustness of past stock assessments and management in the Norwegian Sea.
Tidsskrift
ICES Journal of Marine Science

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit