• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder

Bacri, Timothee Raphael Ferdinand; Berentsen, Geir Drage; Bulla, Jan; Hølleland, Sondre Nedreås
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
Biometrical+J+-+2022+-+Bacri+-+A+gentle+tutorial+on+accelerated+parameter+and+confidence+interval+estimation+for+hidden.pdf (2.885Mb)
Permanent lenke
https://hdl.handle.net/11250/3019045
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Articles [3343]
  • Publikasjoner fra CRIStin [3537]
Originalversjon
10.1002/bimj.202100256
Sammendrag
A very common way to estimate the parameters of a hidden Markov model (HMM) is the relatively straightforward computation of maximum likelihood (ML) estimates. For this task, most users rely on user-friendly implementation of the estimation routines via an interpreted programming language such as the statistical software environment R. Such an approach can easily require time-consuming computations, in particular for longer sequences of observations. In addition, selecting a suitable approach for deriving confidence intervals for the estimated parameters is not entirely obvious, and often the computationally intensive bootstrap methods have to be applied. In this tutorial, we illustrate how to speed up the computation of ML estimates significantly via the R package TMB. Moreover, this approach permits simple retrieval of standard errors at the same time. We illustrate the performance of our routines using different data sets: first, two smaller samples from a mobile application for tinnitus patients and a well-known data set of fetal lamb movements with 87 and 240 data points, respectively. Second, we rely on larger data sets of simulated data of sizes 2000 and 5000 for further analysis. This tutorial is accompanied by a collection of scripts, which are all available in the Supporting Information. These scripts allow any user with moderate programming experience to benefit quickly from the computational advantages of TMB.
 
A gentle tutorial on accelerated parameter and confidence interval estimation for hidden Markov models using Template Model Builder
 
Tidsskrift
Biometrical Journal

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit