• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
  •   Hjem
  • Havforskningsinstituttet
  • Publikasjoner fra CRIStin
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A century of fish growth in relation to climate change, population dynamics and exploitation

Denechaud, Come; Smolinski, Szymon; Geffen, Audrey J.; Godiksen, Jane Aanestad; Campana, Steven E.
Peer reviewed, Journal article
Published version
Thumbnail
Åpne
gcb.15298.pdf (1.862Mb)
Permanent lenke
https://hdl.handle.net/11250/2686809
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Articles [3343]
  • Publikasjoner fra CRIStin [3536]
Originalversjon
Global Change Biology. 2020, 26 (10), 5661-5678.   10.1111/gcb.15298
Sammendrag
Marine ecosystems, particularly in high‐latitude regions such as the Arctic, have been significantly affected by human activities and contributions to climate change. Evaluating how fish populations responded to past changes in their environment is helpful for evaluating their future patterns, but is often hindered by the lack of long‐term biological data available. Using otolith increments of Northeast Arctic cod (Gadus morhua) as a proxy for individual growth, we developed a century‐scale biochronology (1924–2014) based on the measurements of 3,894 fish, which revealed significant variations in cod growth over the last 91 years. We combined mixed‐effect modeling and path analysis to relate these growth variations to selected climate, population and fishing‐related factors. Cod growth was negatively related to cod population size and positively related to capelin population size, one of the most important prey items. This suggests that density‐dependent effects are the main source of growth variability due to competition for resources and cannibalism. Growth was also positively correlated with warming sea temperatures but negatively correlated with the Atlantic Multidecadal Oscillation, suggesting contrasting effects of climate warming at different spatial scales. Fishing pressure had a significant but weak negative direct impact on growth. Additionally, path analysis revealed that the selected growth factors were interrelated. Capelin biomass was positively related to sea temperature and negatively influenced by herring biomass, while cod biomass was mainly driven by fishing mortality. Together, these results give a better understanding of how multiple interacting factors have shaped cod growth throughout a century, both directly and indirectly.
Tidsskrift
Global Change Biology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit