Vis enkel innførsel

dc.contributor.authorCastellani, Marco
dc.contributor.authorHeino, Mikko Petteri
dc.contributor.authorGilbey, John
dc.contributor.authorAraki, Hitoshi
dc.contributor.authorSvåsand, Terje
dc.contributor.authorGlover, Kevin
dc.date.accessioned2018-08-29T13:49:36Z
dc.date.available2018-08-29T13:49:36Z
dc.date.created2018-06-15T15:03:56Z
dc.date.issued2018
dc.identifier.citationEvolutionary Applications. 2018, 11 (6), 1010-1025.nb_NO
dc.identifier.issn1752-4571
dc.identifier.urihttp://hdl.handle.net/11250/2559910
dc.description.abstractGenetic interaction between domesticated escapees and wild conspecifics represents a persistent challenge to an environmentally sustainable Atlantic salmon aquaculture industry. We used a recently developed eco‐genetic model (IBSEM) to investigate potential changes in a wild salmon population subject to spawning intrusion from domesticated escapees. At low intrusion levels (5%–10% escapees), phenotypic and demographic characteristics of the recipient wild population only displayed weak changes over 50 years and only at high intrusion levels (30%–50% escapees) were clear changes visible in this period. Our modeling also revealed that genetic changes in phenotypic and demographic characteristics were greater in situations where strayers originating from a neighboring wild population were domestication‐admixed and changed in parallel with the focal wild population, as opposed to nonadmixed. While recovery in the phenotypic and demographic characteristics was observed in many instances after domesticated salmon intrusion was halted, in the most extreme intrusion scenario, the population went extinct. Based upon results from these simulations, together with existing knowledge, we suggest that a combination of reduced spawning success of domesticated escapees, natural selection purging maladapted phenotypes/genotypes from the wild population, and phenotypic plasticity, buffer the rate and magnitude of change in phenotypic and demographic characteristics of wild populations subject to spawning intrusion of domesticated escapees. The results of our simulations also suggest that under specific conditions, natural straying among wild populations may buffer genetic changes in phenotypic and demographic characteristics resulting from introgression of domesticated escapees and that variation in straying in time and space may contribute to observed differences in domestication‐driven introgression among native populations.nb_NO
dc.language.isoengnb_NO
dc.titleModeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapeesnb_NO
dc.title.alternativeModeling fitness changes in wild Atlantic salmon populations faced by spawning intrusion of domesticated escapeesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber1010-1025nb_NO
dc.source.volume11nb_NO
dc.source.journalEvolutionary Applicationsnb_NO
dc.source.issue6nb_NO
dc.identifier.doi10.1111/eva.12615
dc.identifier.cristin1591567
dc.relation.projectNorges forskningsråd: 200510nb_NO
cristin.unitcode7431,23,0,0
cristin.unitnamePopulasjonsgenetikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel