Vis enkel innførsel

dc.contributor.authorHackett, Bruce
dc.contributor.authorJohannessen, Johnny A.
dc.contributor.authorSvendsen, Einar
dc.date.accessioned2012-10-29T19:42:36Z
dc.date.available2012-10-29T19:42:36Z
dc.date.issued2002
dc.identifier.citationThis report is not to be cited without prior reference to the authorsno_NO
dc.identifier.urihttp://hdl.handle.net/11250/106357
dc.description.abstractIntroduction: The Norwegian marine coastal environment is characterized by the interaction of complex and coupled physical and biochemical upper-ocean and atmospheric boundary layer processes at spatial and temporal scales ranging from meters to hundreds of kilometers and seconds to seasons. In addition, the coastal zone is strongly affected by terrestrial influences such as freshwater runoff and waste effluents, the major sources of which are found in the Baltic Sea and the southern North Sea (Johannessen et al., 1993). The Norwegian Coastal Current (NCC) is the most prominent feature of the coastal zone. It acts as the highway for transporting nearly all the pelagic chemical and biochemical material entering the North Sea, and spreads it from the Skagerrak to the Barents Sea. As such, it strongly influences the near-coast water quality, which is of major importance for the rapidly increasing fish farming industry. Blooms of harmful algae, such as the Chrysocromulina polylepis toxic bloom in 1988 (Dundas et al., 1989; Johannessen et al., 1988), have clearly demonstrated that this major industry is highly vulnerable. In the future, it is likely that there will be increasing demand for quality flags which document that marine food comes from a “clean” environment. Over the past two decades, the means to observe and model the Norwegian coastal zone, including the Norwegian Coastal Current, have gradually improved through a) developments of in situ and remote sensing observational technologies; b) advances in numerical simulation and high performance computing; and c) new methods for assimilation of heterogenic, time-dependent atmospheric, oceanic and chemical data. Despite these developments there are still major deficiencies in our ability to understand and describe the variability of the NCC and its influence on the marine environment and ecology, locally as well as downstream. These deficiencies arise from lack of regular observations as well as from gaps in our knowledge of the many processes involved. Closely allied with these is the need to fully integrate an adequate hierarchical set of properly validated models capable of assimilating the heterogenic data and simulating the state and evolution of the system with its large range of underlying components.no_NO
dc.language.isoengno_NO
dc.publisherICESno_NO
dc.relation.ispartofseriesICES CM Documents;2002/W:3
dc.subjectmonitoringno_NO
dc.subjectovervåkningno_NO
dc.subjectcoastal zonesno_NO
dc.subjectkystsonerno_NO
dc.subjectmarine environmentno_NO
dc.subjecthavmiljøno_NO
dc.titleMonitoring the Norwegian Coastal Zone Environment (MONCOZE)no_NO
dc.typeWorking paperno_NO
dc.subject.nsiVDP::Mathematics and natural science: 400::Zoology and botany: 480::Marine biology: 497no_NO
dc.subject.nsiVDP::Mathematics and natural science: 400::Geosciences: 450::Oceanography: 452no_NO
dc.subject.nsiVDP::Social science: 200::Library and information science: 320::Knowledge retrieval and organization: 323no_NO
dc.source.pagenumber7 s.no_NO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel