Natural mortality estimations for beaked redfish (Sebastes mentella) - a long-lived ovoviviparous species of the Northeast Arctic
Hannes Höffle ${ }^{\text {a,1 }, *,}$, Benjamin Planque ${ }^{\text {b }}$
${ }^{a}$ Havforskningsinstituttet (Institute of Marine Research), Deepwater and cartilaginous fish, P.O. Box 6606 Stakkevollan, 9296 Troms \emptyset
${ }^{b}$ Havforskningsinstituttet (Institute of Marine Research), Ecosystem processes, P.O. Box 6606 Stakkevollan, 9296 Troms \emptyset

Abstract

Beaked redfish (Sebastes mentella) is one of the few commercially important fish species producing living offspring. Like many other deep-water fishes, it is slow growing, late maturing and long-lived, getting as old as 65 years or even 75 years in some populations. The stock in the Norwegian and Barents Seas is analytically assessed since 2012, assuming a natural mortality (M) of $0.05 \mathrm{yr}^{-1}$ across all ages, based on Hoenig's longevity related estimator. Since then, several reviews and new studies have been published, affording a re-evaluation of the natural mortality in the assessment model. We estimated natural mortality of beaked redfish using 48 different estimators in two categories, either estimating M across the population or dependent on age, length or weight. The obtained estimates were highly variable, ranging from 0.01 to $0.32 \mathrm{yr}^{-}$ ${ }^{1}$ for estimates across the population, and 0.05 to $0.62 \mathrm{yr}^{-1}$ for age or size dependent median-M. These wide ranges demonstrate the sensitivity of SSB to the input parameters as well as the pitfalls of using estimators developed for distant taxa. Of the 48 estimates, 20 were considered as potential candidates for updating the stock assessment model, yet not all of these were realistic.

[^0]The frequency distribution of the estimators showed a peak around a value of $0.07 \mathrm{yr}^{-1}$, lowering the estimated spawning stock biomass in the last year by about 300 kt but keeping it above the precautionary reference point for the stock. Estimators across the life-history of beaked redfish indicate a potential underestimation of natural mortality for early and overestimation for late age classes. Age and size related estimators are promising for the older ages but tend to extreme estimates for the early ages, which deserves further investigation.

Keywords: Single stock assessment, Norwegian Sea, Barents Sea, life history correlates, ecological theory

1 Introduction

Fish stock assessment models are tools designed to describe the dynamics of exploited populations that suffer mortality from natural causes (M) and from fishing (F). The two sources of mortality sum up to total mortality (Z) with the simple equation $Z=M+F$. Consequently, an accurate estimate of M is required to correctly estimate F and by extension Z, to give reliable advice to fisheries. The current stock assessment for beaked redfish (Sebastes mentella) in the Norwegian and Barents Seas uses a statistical catch-at-age (SCA) model which requires natural mortality-at-age as input information. In the current stock assessment M is assumed to be 0.05 yr^{-1} across all years and ages (WKREDFISH, ICES 2018a). The value is derived from a longevity of 75 years related to M following Hoenig's approach (Hoenig 1983). Given the longevity of beaked redfish (Campana et al. 1990), it is desirable to implement an estimate of M that accounts for its decline that can be observed for older and bigger fish (Caddy 1991). Stock assessment models for species managed within the framework of ICES (International Council for the Exploration of the Sea) are revised in a benchmark workshop that should achieve a consensus for the way a stock is assessed in the next several years. For beaked redfish in ICES areas 1 and 2, corresponding to the Norwegian and Barents Seas, the last benchmark workshop was in 2018 (ICES 2018a) with the next revision planned for 2024.

Estimating M for wild populations is a challenging task and it is often boiling down to widely accepted values such as 0.2 (Brodziak et al. 2011; Pope et al. 2021; Cope and Hamel 2022). Getting more accurate estimates of M can take several approaches, the majority of which demands a lot of data and extensive prior knowledge of the considered stock's biology, neither of which is available for many fisheries, particularly along the coasts of the global South (Kenchington 2014). A statistical approach is to estimate Z from catch curves for several periods with different, but within the period stable, F and then extrapolate to zero fisheries mortality (Ricker 1975). This can also be done in the absence of extensive age data by using lenght-based estimates of Z as suggested by Beverton (1956). Direct measurements of M can be achieved with tag-recapture experiments (Quinn and Deriso 1999), but for reliable estimates the cost of the required tagging program can be prohibitive (Kenchington 2014). A rare case, because it requires precise catch and survey data, is to estimate fisheries as the ratio of catch to fishable biomass and then derive M from the estimates of F and Z (Xucai et al. 1996). Also requiring a data-rich
background are estimates of M from multispecies virtual population analysis (VPA) or in singlespecies assessment models (Magnusson 1995; Maunder and Wong 2011).

However, for the majority of fish stocks there is not enough data to use these more sophisticated methods and ever since Beverton (1963) there are attempts to estimate M based on theoretical or empirical correlates between natural mortality and life history traits such as life expectancy, age at maturity or animal growth rates. These efforts have led to a diverse range of methods which Cubillos, Alarcón, and Brante (1999) summarized under the term 'empirical methods,' although Kenchington (2014) later noted that these methods also include some that are solely based in theoretical considerations.

Kenchington's recent review (2014) provides a broad overview of M estimators based on age, life history correlates and ecological theory. Additional estimators, or revisions of earlier ones, have also been proposed by Hamel (2015), Hamel and Cope (2022), Then et al. (2015) and Mangel (2017). Torrejón-Magallanes et al. (2021) introduced a development of Caddy’s gnomonic approach $(1991,1996)$ and gnomonicM an associated R-package (TorrejónMagallanes 2021). This method divides the lifespan of a species into intervals that become the longer, the more time has elapsed since birth, maintaining a constant proportion between an interval's duration and the elapsed time.

The objective of this short communication is to explore a range of natural mortality estimators for the population of S. mentella in the Norwegian and Barents Seas and to provide revised estimates of M for the different age groups that compose the population, which can serve as input for the assessment of this fish stock. For this purpose, we compile a number of estimators of M, either for the whole population or by age, length or weight. We use data collected by the Institute of Marine Research in Norway as the source of life history parameters that can be used to derive mortality estimates.

2 Materials and Methods

2.1 Life history parameters

Many empirical estimators of M are derived from other life history parameters. Some of these parameters refer to the adult component of the population while others are given for adults and juveniles. We extracted growth, fecundity and other life history parameters for the relevant population components from a number of sources (Aanes 2012; Planque and Nedreaas 2010; Nedreaas 1990; St-Pierre and De Lafontaine 1995; Saborido-Rey et al. 2015). Which life history parameters are used, depends on the assumptions made for the considered estimators (Figure 1). The parameters set up for estimators that assume $t_{0}=0$ are following Aanes (2012), estimators covering adult and juvenile fish use the parameters by Nedreaas (1990) and those that cover the adult population are parameterized following the report from the DeepFishMan project (Planque and Nedreaas 2010). In that latter case, an age range that covers the bulk of the adult population (age-11 to age-40) was used.

2.2 Natural mortality estimators

Following Kenchington (2014) natural mortality estimators can be categorized into i) age-based estimators, most of them for M (e.g. Sekharan 1974; Charnov and Berrigan 1990) but some also for Z such as Hoenig's estimator (Hoenig 1983), ii) life history based ones (e.g. Pauly 1980; Gislason et al. 2010; Mangel 2017) and iii) those based on ecological theory (e.g. Jensen 1996; Charnov et al. 2013). This is only one possible categorization, as several estimators contain age as well as growth parameters (e.g. Alverson and Carney 1975; Chen and Watanabe 1989) and those derived from ecological theory are often similar to those based on life history or regression (e.g. Then et al. 2015; Roff 1984). Another common categorization is following input parameters, which in case of this study would have resulted in a confusing number of categories. Many estimators are further developments or updates of earlier ones and could be interpreted as families of estimators. In total we applied 48 estimators (45 estimators +3 variants of the gnomonic approach), drawn from Kenchington's review (2014), Hamel (2015), Hamel and Cope (2022), Then et al. (2015), and Mangel (2017). Three of these estimators (Hoenig 1983; Bayliff 1967; Kenchington 2014) estimate Z and the rest provides estimates of natural mortality (M). Of the estimators 17 each fall into the age-based and life history based groups and 14 are based on
ecological theory. The estimators use a large number of parameters which are described in Table 1, whilst detailed descriptions of each estimator and their equations, and an explanation of why they were excluded or retained, can be found in the supplementary material.

2.3 Comparison of estimates

Estimates of natural mortality rates were qualitatively assessed for their applicability to beaked redfish. The criteria were, testability of their assumptions, suitability of the underlying data sets and whether they were superseded by a later re-evalution. In relation to the assessment of the beaked redfish in ICES areas 1 and 2, i.e. the Norwegian and Barents Seas (ICES 2021) we compared the estimates with the currently used value of $M=0.05 \mathrm{yr}^{-1}$ and also tested the sensitivity of the assessment model to the different estimates, using either point values or vectors of values across ages, for those estimators that vary with age or size. Evaluations during the benchmark workshop showed that the log-likehood estimations of the model parameters are robust against natural mortality values of $0.00<M<0.75$, whilst spawning stock biomass was sensitive to different rates of M (WKREDFISH, ICES 2018a). Therefore, only SSB was used to test how the mortality estimators considered as applicable affected the assessment. The model settings, input data and assessment period were used as in the benchmark assessment except for the use of fixed weights-at-age across years, which was a modification added at the arctic fisheries working group (AFWG) in the same year (ICES 2018a, 2018b). A modification made for this study was to recode the model to accept a vector of M-values across ages. The recoded model was tested with a vector of 18×0.05 for ages $2-19+$, getting the same results as with the unmodified model using a single value. A brief description of the assessment model is given in the supplemental material, whilst a detailed description can be found in the annex of the benchmark workshop report (ICES 2018a).

3 Results

3.1 Natural mortality estimates

The estimates obtained with the 48 candidate estimators ranged from a very low value of 0.014 yr^{-1} for Alverson and Carney's estimator to a value of $0.617 \mathrm{yr}^{-1}$ for Jennings and Dulvy's
estimator (Table 2). Although the latter value is a median value across the range of considered weights ($378 \mathrm{~g}-1063 \mathrm{~g}$, corresponding to the ages $11\left(t_{m}\right)$ to $75\left(T_{\max }\right)$ it does not get lower than 0.58 even for the largest fish.

3.1.1 Age-based estimators

Of the 17 age-based estimators 7 were considered applicable to beaked redfish, ranging from $0.019 \mathrm{yr}^{-1}$ for Zhang and Megrey's estimator to $0.2 \mathrm{yr}^{-1}$ for Charnov and Berrigan's estimator. Alverson and Carney's estimator was even lower, but as Zhang and Megrey's estimator is a revision of this estimator, we considered it preferable. Several of the eight 'not applicable' estimators were excluded because they were established using data from small, short-lived, pelagic fish, this applies to Bayliff's, Sekharan's and Tanaka's estimators. The other ones were excluded because their assumptions could not be tested (Kenchington's estimator), information on required parameters was too uncertain (Chen and Watanabe's estimator and Roff's first estimator) or because the authors themselves did not recommend the use of the estimator in assessment (Jensen's first estimator). Then's first estimator was regarded as not applicable as it is superseded by an updated version of Hamel's first estimator, and Then's third estimator should be used with caution as it is biased towards small, short-lived fish with high mortality rates.

3.1.2 Life history correlates

Life history correlates gave estimates for mortality rates between $0.034 \mathrm{yr}^{-1}$ and $0.322 \mathrm{yr}^{-1}$, corresponding to Alagarajas and Jensen's third estimator, respectively. Of these estimators six were excluded, all of them because they were based on very different taxa or in case of Djabali's estimator on a different climate zone, i.e. the Mediterranean zone. Cubillo's estimator was not completely excluded but must be used cautiously since $T_{95 \%}$ is difficult to define. Likewise, Then's fifth estimator should be used cautiously as it is biased by greater weights assigned to short-lived species. Notable is the prevalence of the von Bertalanffy coefficient K in this group that occurs in all but those estimates that solely use the gonadosomatic index (GSI).

3.1.3 Estimates based on ecological theory

The estimates based on ecological theory were the overall highest estimates, with 9 out of 11 crossing the $0.1 \mathrm{yr}^{-1}$ threshold. However, this may be skewed by the high number of weight-
dependent estimators in this group which give extremely high estimates for early ages with low body-mass. A notable exception from this pattern was Charnov's estimator which yielded mortality rates between $0.070 \mathrm{yr}^{-1}$ and $0.046 \mathrm{yr}^{-1}$ for the bulk of the adult population between 11 and 40 years of age. Only three of the estimators were excluded. Firstly, Then's fourth estimator because it is superseded by an update of Hamel's second estimator. Secondly, Peterson \& Wroblewski's estimator because the size spectra it considers includes everything from zooplankton to whales. Finally, Groeneveld's estimator because of high uncertainty in the estimate. However, the proportion of estimators that need to be used with caution, seven out of eleven, is higher than for the other groups.

3.2 Comparison of estimates

The frequency distribution of the point estimate mortality rates shows a peak at $0.065 \mathrm{yr}^{-1}$ for all estimators and at $0.066 \mathrm{yr}^{-1}$ for the applicable estimators, slightly higher than the 0.05 currently used in stock assessment, and a noticeable secondary peak around $0.2 \mathrm{yr}^{-1}$ (Figure 2). Estimates considered as applicable were distributed across the entire range of the plot and included the highest point estimate, Jensen's third estimator at $0.322 \mathrm{yr}^{-1}$, indicating that technical applicability does not need to imply plausible estimates. Likewise, estimates considered as nonapplicable covered a wide range, though narrower than the applicable ones, whilst the estimators that can be used cautiously ranged from Alverson \& Carney's estimator at the low end of the range to the center of the range with Then's fifth estimator.

Using the different estimates in the statistical catch-at-age model for beaked redfish in the Norwegian and Barents Seas, showed that a change in M, with otherwise the same settings and input data has a strong effect on the SSB (Figure 3). With $M \geq 0.2$ for estimates across lifehistory the model failed to converge at the standard maximum number of iterations $\left(10^{6}\right)$, which was the same for the weight-based estimators by Lorenzen as well as Jennings and Dulvy. When doubling the number of iterations, the model did converge, but the resulting SSB-trajectories were substantially different from all other SSB-trajectories, with the biomass always far below the confidence interval. Only three estimators were completely within the confidence interval of the benchmark run over the entire assessment period (1992-2016), ranging from 0.054-0.057 yr^{-1}, all of them estimates across life-history (Table 2, Figure 3). Of the other estimates, most across life-history, as well as age or size specific estimates tracked the benchmark trajectory until
the mid-2000s and then deviated outside the confidence interval (Figure 3). Estimators below $0.05 \mathrm{yr}^{-1}$ were slightly below the benchmark trajectory, rising above the confidence interval in the 2000s. Estimators above $0.05 \mathrm{yr}^{-1}$ exhibited the opposite pattern, starting out slightly above the benchmark SSB and then dropping below the confidence interval in about the same time period. No estimators were outside the confidence interval at the beginning of the assessment period and where within at the end and a small number of estimators, Then's sixth estimator, Griffiths and Harrod's estimator as well as Rikhter and Efanov's second estimator, were outside the confidence interval at both ends of the assessment period.

Age or size dependent estimators, exhibited no particularly different behaviour to those across life history. Although it was excluded due to uncertainty about t_{s}, it is worth mentioning that Chen and Watanabe's estimator yielded a SSB-trajectory within the confidence interval over the entire assessment period. The length-based Gislason estimators were among those outside the confidence interval at the beginning and end of the assessment period, although only very slightly at the beginning (Figure 3). All the weight-based mortality estimates exhibited very high M at small size and age, putting all but Charnov's estimator into the group that did not converge at 10^{6} iterations. Charnov's estimator was also among the cluster of estimates around the peak of the frequency distribution, comprising otherwise Then's second estimator as well as Hamel's first and second estimators (Table 2, Figures $2 \& 3$). However, whilst the three latter estimators dipped below the confidence interval only in the mid-2000s, Charnov's estimator did so already in the early 2000s.

4 Discussion

The wide variety of estimators examined yielded a wide range of SSB-trajectories, showing how sensitive it is to different values of M. Another take home message is that age- or size-dependent estimators, whilst more realistic, are no panacea and at least the weight-based ones exhibit very high mortality rates at the lowest weights and therefore ages. Stepwise approaches like the gnomonic approach, which also exhibits high mortalities at the lowest ages, or those used for several Pacific rockfish stocks (Cope et al. 2016) may be a reasonable compromise. For the assessment of beaked redfish in the Northeast arctic, short of adopting an age or size specific
mortality model, a higher natural mortality than is used now may be adopted, potentially $0.07 \mathrm{yr}^{-}$ ${ }^{1}$ to reflect the frequency distribution of the examined, and applicable, estimators.

In the range of life histories exhibited by teleosts, S. mentella is closer to typical K-selectors than to r-selectors, being a long-lived species (Campana et al. 1990), that matures late in life (Planque and Nedreaas 2010) and produces comparatively few offspring (Zakharov et al. 1977; Lukmanov 1988; Drevetnyak and Gusev 1996). This combination of traits makes it difficult to manage in a fisheries context, even more so as the fish undergo a change in habitat and lifestyle when becoming mature (Anon. 2009). The majority of the mature stock migrates out of the Barents Sea and adopts a pelagic lifestyle in the Norwegian Sea. This increases uncertainty in the assessment as the mature component is only surveyed every third year and only in parts of its habitat (ICES 2019). As the uncertainty caused by this ontogenetic migration cannot be avoided, reducing uncertainty in the assessment model and its parameters is important. The reasoning underlying the currently used $M=0.05$ in the assessment model is derived from Hoenig's estimator (Hoenig 1983) and expert judgement (Brodziak et al. 2011; Pope et al. 2021; ICES 2018a) and deserves to be re-evaluted with new approaches.

A wide range of taxa were used collectively in the development of the 48 considered Mestimators, but the development of individual estimators was often based on a narrower range of species. A number of estimators was derived from studying short-lived pelagic fishes, not comparable to beaked redfish (Bayliff 1967; Sekharan 1974; Tanaka 1960; Alagaraja 1984). On the other end of the spectrum there is Frisk's estimator (Frisk et al. 2001), developed specifically for elasmobranch. Frisk's estimator provided a high estimate of $0.116 \mathrm{yr}^{-1}$, whilst those methods developed from pelagic fish yielded estimates between $0.034 \mathrm{yr}^{-1}$ (Alagaraja 1984) and $0.085 \mathrm{yr}^{-1}$ (Bayliff 1967). Although these values are not very far off the value used in the assessment model the underlying taxa made their use questionable.

Likewise, estimators based on snappers and groupers (Ralston 1987; Pauly and Binohlan 1996) as well as on Mediterranean fish (Djabali et al. 1993, 1994) were not considered since they were derived from taxa in substantially warmer climate zones, yielding higher mortality estimates, averaging $0.11 \mathrm{yr}^{-1}$ across the estimators based on snappers and groupers, and $0.22 \mathrm{yr}^{-1}$ for Djabali's estimator (Djabali et al. 1993, 1994).

Estimators with a broader basis appear to be more applicable, particularly when they afford to select parameters for specific groups, such as Hoenig's estimator (Hoenig 1983) which offers to use parameters specific for fish or the global dataset including whales and molluscs. Whilst this yielded a low estimate of $0.036 \mathrm{yr}^{-1}$, other estimators based on many taxa resulted in a wide range of estimates from $0.05 \mathrm{yr}^{-1}$ from Gislason et al. (2010) to $0.17 \mathrm{yr}^{-1}$ from Griffiths and Harrod (2007).

A variable mortality rate is desirable for a long-lived species like beaked redfish. However, mortality estimators that varied with age (Chen and Watanabe 1989), length (Gislason et al. 2010; Charnov et al. 2013) or weight (Peterson and Wroblewski 1984; Lorenzen 1996; Ursin 1967; Jennings and Dulvy 2008; Charnov et al. 2013) yielded highly variable results. With a median value of $0.617 \mathrm{yr}^{-1}$ the estimates from Jennings and Dulvy (2008) were the highest estimated values and high values were consistently seen with all the weight dependent estimates, except for Charnov's estimator (2013) which was more in line with other methods.

The gnomonic approach, which considers separate life stages (Caddy 1991, 1996; TorrejónMagallanes et al. 2021), is interesting for a species with several distinct life stages. However, the method is geared for fish with high fecundity and a planktonic egg stage, whilst the genus Sebastes is ovoviviparous, releasing comparatively few living larvae after they hatch within the ovaries. Accordingly, the method produces extremely high estimates for early life stages of beaked redfish and more sensible estimates for later stages.

Overall, the frequency distribution of the mortality estimators exhibited a cluster close to $0.07 \mathrm{yr}^{-}$ ${ }^{1}$, most closely matched by Hamel's first and second as well as Then's second estimator (0.067$0.072 \mathrm{yr}^{-1}$, Hamel 2015; Then et al. 2015; Hamel and Cope 2022) and Charnov's weight-based estimator (Charnov et al. 2013). All of these showed a similar development of the spawning stock biomass when used in the assessment model, tracking the benchmarked SSB closely in the early years of the assessment period and then gradually declining to values that fall short of the accepted assessment (951 kt) by 231 kt to 320 kt . However, these values are even in the worst case more than 300 kt above the precautionary biomass $\left(\mathrm{B}_{\mathrm{pa}}\right)$ of 315 kt for this species.

The Atlantic ocean hosts only four species of redfish and only three are of commercial interest and assessed, Sebastes norvegicus, S. mentella and Sebastes fasciatus. There appears to be a
consensus for the Atlantic species in using a constant M across all age classes, ranging between $0.05 \mathrm{yr}^{-1}$ and $0.1 \mathrm{yr}^{-1}$ (Miller et al. 2008; ICES 2021, 2022). Compared to the Atlantic the diversity of mortality estimates used for Sebastes species along the Pacific coast of North America is much higher, with several species assessed as complexes (Dick et al. 2017, 2021). Here, natural mortality often takes different values for males and females (Cope et al. 2016; Dick et al. 2021) and in several cases with a step-change or a linear increase over a short period of time between younger and older ages (Cope et al. 2016). Several species do not have a direct input of M, but use a prior distribution derived with the natural Mortality Tool (NMT, Cope and Hamel 2022), often using the log-normal Hamel prior (Dick et al. 2021; Monk et al. 2021; Spencer and Ianelli 2021). Another common approach is based on $T_{\max }$ using Hoenig's approach (Hoenig 1983; Dick et al. 2017) or Then's revision thereof (Then's third estimator, Then et al. 2015). For squarespot rockfish (Sebastes hopkinsi) off California a similar method as in the present study was used, taking the median of $M=0.133$ of four empirical estimators (Cope et al. 2021). This value is also typical for Pacific species, where estimates are overall higher than for their Atlantic congeners. However, a recent re-evaluation for the S. mentella and S. fasciatus complex in the northwestern Atlantic found a median prior of $0.125 \mathrm{yr}^{-1}$ (Cadigan et al. 2022), in line with estimates for Pacific species. Contrarily, as demonstrated for yelloweye rockfish (Sebastes ruberrimus) with a median prior of $0.05 \mathrm{yr}^{-1}$, Pacific species may also exhibit low estimates of natural mortality (Cope and Hamel 2022).

One of the limitations of the current SCA used for S. mentella in the Northeast Arctic is that, whilst being technically able to, in practice it cannot estimate F and M in the same model run. Therefore, estimating a prior with uncertainties, as in Cadigang et al. (2022) and Cope and Hamel (2022), may not currently be useful for the assessment. However, as this study demonstrates, relying on any single estimator may be misleading and before examining a range of estimators one has to carefully curate the candidates in relation to what taxa they are based on and whether these taxa occupy similar habitats than the species one wants to derive an estimate of M for. Age or size dependent estimates are attractive as they account for changes in life history. However, they may be difficult to apply to very early ages. In case of the gnomonic estimator (Caddy 1991, 1996; Torrejón-Magallanes, Morales-Bojórquez, and Arreguín-Sánchez 2021) this may be due to it being developed with more typically commercially exploited species, with an egg stage, in mind. Adaption to ovoviviparous and viviparous species may make it more
suitable for the genus Sebastes. A large number of estimators rooted in ecological theory was evaluated as useful "with caveats." Although they may be more widely applicable than those based on specific taxa, the may be more useful when used with a species- or genus-specific adjustment factor, similar to the adjustment factor for Clupeidae in Pauly's first estimator (Pauly 1980).

Even after all these considerations there remain some estimators yielding implausibly high estimates for M, whilst being technically applicable. As a simple plausibility test estimated values for M can be used to determine the corresponding longevity, using any longevity-based estimator, such as Hamel's first estimator (Hamel 2015; Hamel and Cope 2022). Using this estimator under the consideration that the bulk of the population of S. mentella in the Norwegian and Barents Seas ranges between age-11 and age-40 (Planque and Nedreaas 2010), any estimate for M above $0.135 \mathrm{yr}^{-1}$ may be considered implausibly high. Such simple reality checks can support sensitivity analysis, recommended by Maunder et al. (2023) as part of good practices for using M in stock assessments. The same paper reviewed several estimators also considered here, partially coming to different conclussions based on the criterea these authors used (Maunder et al. 2023).

In summary, taking the peak of the frequency distribution or the median across a range of prescreened estimators may be the most recommendable way forward if using a single mortality estimate. However, age and size specific estimates may be preferable, provided they can be adjusted for earlier ages and lower weights. Step-changes may be a useful compromise, particularly for stocks like S. mentella in the Northeast Arctic with well defined life stages and corresponding habitats.

Acknowledgements

We thank the captains, crews and other participants of the research surveys that collected the data at sea and the technicians who provided age data. Thanks also to Claudia Junge who gave constructive critisims to early stages of this paper. The research on this paper was funded by the Institute of Marine Research (IMR).

Table and figure captions

Table 1: Parameters used in the equations for the different mortality estimators. Apart from the parameters shown here, latin letters are used to denote coefficients and exponents in the equations presented in the supplementary material.

Table 2: Natural mortality estimates from the 48 considered estimators and their applicability to beaked redfish (Sebastes mentella). Estimators marked with an asterisk are age, length or weight specific and the estimate given is the median of the considered range (only mature and immature adults for the gnomonic approach). Estimators evaluated as with caveats may be applicable but suffer from reliability issues or make assumptions that are difficult to assess.

Figure 1: Von Bertalanffy growth functions calculated with growth parameters from 3 different sources. Aanes (2012) assumes $t_{0}=0$. Nedreeaas (1990) covers the most complete range of beaked redfish life history as it includes the juvenile stage, whilst the DeepFishMan-report (2010) covers only the adult population.

Figure 2: Frequency plot of point estimates for natural mortality rates. Estimators that have been evaluated as applicable to beaked redfish are indicated with green ticks and labels, cautiously useful estimators are orange and those deemed not applicable are red. The dashed red line indicates the value $0.05 \mathrm{yr}^{-1}$ currently used in the assessment, the blue dashed line the peak of the frequency distribution for all estimators $\left(0.065 \mathrm{yr}^{-1}\right)$ and the green dashed line the peak for the applicable estimators ($0.066 \mathrm{yr}^{-1}$).

Figure 3: SSB from the benchmark assessment model with selected estimates of natural mortality demonstrating the different trajectories taken by SSB when using higher or lower estimators as well as constant estimators or estimators depending on age or size. Only a few estimators yielded results that were in the currently accepted confidence interval (shaded area) across the assessment period, indicated by bold font in the legend. The thick red line indicates a M-value of $0.07 \mathrm{yr}^{-1}$ which would be a proposed new value to adopt for stock assessment should a constant value for M be retained.

Tables

Table 1

Table 4.1: Parameters used in the equations for the different mortality estimators. Apart from the parameters shown here, latin letters are used to denote coefficients and exponents in the equations presented in the supplementary material.

Symbol	Parameter
α	Parameter of the length-weight relationship
α_{G}	Proportionality constant of the gnomonic approach
β	Exponent of the length-weight relationship
δ_{i}	duration of an individual gnomonic interval
θ_{i}	annual proportional duration of a gnomonic interval
τ	Mean environmental temperature
F	Fishing mortality
G	Proportion of overall natural mortality rate
K	Parameter of the von Bertalanffy growth curve
L_{∞}	Asymptotic fish length
I	Individual fish length
I_{m}	Length at reproductive maturity
M	Natural mortality rate
M_{i}	Natural mortality rate of a gnomonic interval
M_{l}	Natural mortality rate at length l
M_{t}	Natural mortality rate at age t
M_{w}	Natural mortality rate at weight w
$M L F$	Mean Lifetime Fecundity
N_{i}	Number of individuals in a population at time or age i

Symbol Parameter
$N_{i, j} \quad$ Number of individuals in year-class j at time i
$N_{0} \quad$ Number of individuals in a year class at age zero
$n \quad$ Number of individuals in a sample
$n_{e} \quad$ Effective sample size, as defined for use in Kenchington's Estimator
$P \quad$ Proportion of fish in a population surviving to age $T_{\max }$
$T_{\max } \quad$ Maximum age, observed or assumed
$T_{\infty} \quad$ Age at which fish are expected to grow to a length of $L_{\infty}-5 \mathrm{~mm}$
$T_{95 \%} \quad$ Age at which fish are expected to grow to $0.95 * L_{\infty}$
$t \quad$ Water temperature in ${ }^{\circ} \mathrm{C}$
$t_{a} \quad$ Average female adult lifespan
$t_{c} \quad$ Youngest age fully represented in the catch or the minimum age considered in n_{e}
$t_{m} \quad$ Age at reproductive maturity (at 50% mature)
$t_{m b} \quad$ Age at which year-class achieves its maximum biomass in the absence of fishing
$t_{s} \quad$ Age at onset of senescence
$t_{0} \quad$ Parameter of the von Bertalanffy growth curve
$W_{\alpha} \quad$ Weight at first reproduction
$W_{\infty} \quad$ Asymptotic fish weight
$w \quad$ Fish weight
Z Total mortality rate

Table 2

Table 4.2: Natural mortality estimates from the 48 considered estimators and their applicability to beaked redfish (Sebastes mentella). Estimators marked with an asterisk are age, length or weight specific and the estimate given is the median of the considered range (only mature and immature adults for the gnomonic approach). Estimators evaluated as with caveats may be applicable but suffer from reliability issues or make assumptions that are difficult to assess.

Estimator	Category	Parameters	Estimate	Evaluation
Bayliff's	age	$T_{\text {max }}$	0.085	
				applicable
Then's I	age	$T_{\text {max }}$	0.068	
				applicable
Hoenig's	age	$T_{\text {max }}$	0.036	applicable
Hamel's I	age	$T_{\text {max }}$	0.072	applicable
Then's II	age	$T_{\text {max }}$	0.071	applicable
Then's III	age	$T_{\text {max }}$	0.094	with caveats
Sekharan's	age	$P, T_{\text {max }}$	0.061	not
				applicable
Tanaka's	age	$P, T_{\max }$	0.040	not
				applicable
Kenchington's	age	$T_{\text {max }}$	0.065	
Charnov \& Berrigan's	age	t_{m}	0.200	applicable
Jensen's I	age	t_{m}	0.150	not
Alverson \& Carney's	age	$K, t_{m b}$	0.014	with caveats
Zhang \& Megrey's	age	$\beta, K, t_{0}, t_{m b}$	0.019	applicable

Estimator	Category	Parameters	Estimate	Evaluation
Roff's I	age	K, t_{m}	0.213	not
				applicable
Rikhter \& Efanov's I	age	β, K, t_{0}, t_{m}	0.057	applicable
Rikhter \& Efanov's II	age	t_{m}	0.116	applicable
Chen \& Watanabe's*	age	K, t, t_{0}	0.051	not
				applicable
Alagaraja's	life history	K, t_{0}, L_{∞}	0.034	not
	correlates			applicable
Ralston's I	life history	K	0.042	not
	correlates			applicable
Then's V	life history	K	0.165	with caveats
	correlates			
Ralston's II	life history	K	0.177	not
	correlates			applicable
Pauly's I	life history	K, L_{∞}, τ	0.115	applicable
	correlates			
Pauly's II	life history	K, L_{∞}, τ	0.101	
	correlates			applicable
Jensen's III	life history	K, τ	0.322	applicable
	correlates			
Griffiths \& Harrod's	life history	K, W_{∞}	0.167	applicable
	correlates			
Then's VI	life history	K, L_{∞}	0.118	applicable
	correlates			
Djabali's	life history	K, W_{∞}	0.220	
	correlates			applicable

Estimator	Category	Parameters	Estimate	Evaluation
Frisk's	life history correlates	K	0.116	not applicable
Gislason's I*	life history correlates	K, l, L_{∞}	0.051	applicable
Gislason's II*	life history correlates	K, l, L_{∞}	0.055	applicable
Cubillos’	life history correlates	K, t_{0}	0.079	with caveats
Gunderson's	life history correlates	GSI	0.054	applicable
Hamel's III	life history correlates	GSI	0.055	applicable
Mangel's	life history correlates	K, t_{m}	0.259	applicable
Jensen's II	ecological theory	K	0.065	with caveats
Then's IV	ecological theory	K	0.073	not applicable
Hamel's II	ecological theory	K	0.067	applicable
Peterson \& Wroblewski’s*	ecological theory	w	0.244	not applicable
Lorenzen's*	ecological theory	w	0.445	applicable
Ursin's*	ecological theory	w	0.110	with caveats
Jennings \& Dulvy's*	ecological theory	w, t	0.617	applicable
Roff's II	ecological theory	K, L_{∞}, l_{m}	0.056	with caveats
Groeneveld's	ecological theory	L_{∞}, l_{m}	0.204	not applicable
Charnov's*	ecological theory	w, W_{α}	0.058	applicable

Estimator	Category	Parameters	Estimate	Evaluation
Gnomonic determinate ecological theory $\alpha_{G}, \delta_{i}, \theta_{i}, G, M_{i}$, simple* * 0.131 with caveats Gnomonic determinate ecological theory $\alpha_{G}, \delta_{i}, \theta_{i}, G, M_{i}$, $M L F$ 0.216 with caveats				
extended*				
Gnomonic stochastic simple*	ecological theory	$\alpha_{G}, \delta_{i}, \theta_{i}, G, M_{i}$,	0.132	with caveats
Gnomonic stochastic	ecological theory	$\alpha_{G}, \delta_{i}, \theta_{i}, G, M_{i}$,	0.218	with caveats
extended*		$M L F$		

Figures
Figure 1

Figure 2

Figure 3

393

References

Aanes, S. 2012. "Empirical Analysis of Growth of Sebastes Marinus and s. Mentella in ICES Subareas i and II." ICES WKRED 2012, 9 pp.

Alagaraja, K. 1984. "Simple Methods for Estimation of Parameters for Assessing Exploited Fish Stocks." Journal Article. Indian Journal of Fisheries 31 (2): 177-208.

Alverson, DL, and MJ Carney. 1975. "A Graphic Review of the Growth and Decay of Population Cohorts." Journal Article. ICES Journal of Marine Science 36 (2): 133-43.

Anon. 2009. "Report of the NEAFC Working Group on Collating Information on the Distribution of Sebastes Mentella ICES Sub-Areas i and II and Distribution of Catches from the Stock." Report. North East Atlantic Fisheries Commission.

Bayliff, WH. 1967. "Growth, Mortality, and Exploitation of the Engraulidae, with Special Reference to the Anchoveta, Cetengraulis Mysticetus, and the Colorado, Anchoa Naso, in the Eastern Pacific Ocean." Journal Article. Inter-American Tropical Tuna Commission Bulletin 12 (5): 365-432.

Beverton, RJH. 1956. "A Review of Methods for Estimating Mortality Rates in Fish Populations, with Special Reference to Sources of Bias in Catch Sampling." Rapp Proces-Verb Reun Cons Int Explor Mer 140: 67-83.
—_. 1963. "Maturation, Growth and Mortality of Clupeid and Engraulid Stocks in Relation to Fishing." Rapport Conseil International Exploration de La Mer 154: 44-67.

Brodziak, JKT, JN Ianelli, K Lorenzen, and RD Methot. 2011. "Estimating Natural Mortality in Stock Assessment Applications August 11-13, 2009, Alaska Fisheries Science Center, Seattle, WA."

Caddy, JF. 1991. "Death Rates and Time Intervals: Is There an Alternative to the Constant Natural Mortality Axiom?" Reviews in Fish Biology and Fisheries 1 (2): 109-38.
——. 1996. "Modelling Natural Mortality with Age in Short-Lived Invertebrate Populations: Definition of a Strategy of Gnomonic Time Division." Aquatic Living Resources 9 (3): 197-207.

Cadigan, NG, DE Duplisea, C Senay, GJ Parent, PD Winger, B Linton, and K Kristinsson. 2022. "Northwest Atlantic Redfish Science Priorities for Managing an Enigmatic Species Complex." Canadian Journal of Fisheries and Aquatic Sciences, no. ja.

Campana, SE, KCT Zwanenburg, and JN Smith. 1990. "210Pb/226Ra Determination of Longevity in Redfish." Canadian Journal of Fisheries and Aquatic Sciences 47 (1): 163-65.

Charnov, EL, and D Berrigan. 1990. "Dimensionless Numbers and Life History Evolution: Age of Maturity Versus the Adult Lifespan." Evolutionary Ecology 4 (3): 273-75.

Charnov, EL, H Gislason, and JG Pope. 2013. "Evolutionary Assembly Rules for Fish Life Histories." Journal Article. Fish and Fisheries 14 (2): 213-24.

Chen, S, and S Watanabe. 1989. "Age Dependence of Natural Mortality Coefficient in Fish Population Dynamics." Journal Article. Nippon Suisan Gakkaishi 55 (2): 205-8.

Cope, JM, and OS Hamel. 2022. "Upgrading from m Version 0.2: An Application-Based Method for Practical Estimation, Evaluation and Uncertainty Characterization of Natural Mortality." Fisheries Research 256: 106493.

Cope, JM, D Sampson, A Stephens, M Key, PP Mirick, M Stachura, TS Tsou, et al. 2016. "Assessments of California, Oregon and Washington Stocks of Black Rockfish (Sebastes Melanops) in 2015." Northwest Fisheries Science Center, Seattle, USA.

Cope, JM, CR Wetzel, BJ Langseth, and Budrick JE. 2021. "Stock Assessment of the Squarespot Rockfish (Sebastes Hopkinsi) Along the California u.s. West Coast in 2021 Using Catch, Length,and Fishery-Independent Abundance Data." Pacific Fishery Management Council, Portland, USA.

Cubillos, LA, R Alarcón, and A Brante. 1999. "Empirical Estimates of Natural Mortality for the Chilean Hake (Merluccius Gayi): Evaluation of Precision." Fisheries Research 42 (1-2): 147-53.

Dick, EJ, Aaron Berger, Joe Bizzarro, Katelyn Bosley, Jason Cope, John Field, Libby GilbertHorvath, Nicholas Grunloh, et al. 2017. "The Combined Status of Blue and Deacon Rockfishes in US Waters Off California and Oregon in 2017." Pacific Fishery Management Council, Portland, USA.

Dick, EJ, Melissa H Monk, Tanya L Rogers, John C Field, and Emma M Saas. 2021. "DRAFT the Status of Vermilion Rockfish (Sebastes Miniatus) and Sunset Rockfish (Sebastes Crocotulus) in US Waters Off the Coast of California South of Point Conception in 2021." Southwest Fisheries Science Center, Santa Cruz, USA.

Djabali, F, A Mechailia, M Koudil, and B Brahmi. 1994. "A Reassessment of Equations for Predicting Natural Mortality in Mediterranean Telosts."

Djabali, F, A Mehailia, M Koudil, and B Brahmi. 1993. "Empirical Equations for the Estimation of Natural Mortality in Mediterranean Teleosts." Journal Article. NAGA, the ICLARM Quarterly 16 (1): 35-37.

Drevetnyak, KV, and EV Gusev. 1996. "On Fecundity of Redfish (Sebastes Mentella, Travin) from the Norwegian-Barents Sea Population." ICES CM.

Frisk, MG, TJ Miller, and MJ Fogarty. 2001. "Estimation and Analysis of Biological Parameters in Elasmobranch Fishes: A Comparative Life History Study." Journal Article. Canadian Journal of Fisheries and Aquatic Sciences 58 (5): 969-81.

Gislason, H, N Daan, JC Rice, and JG Pope. 2010. "Size, Growth, Temperature and the Natural Mortality of Marine Fish." Journal Article. Fish and Fisheries 11 (2): 149-58.

Griffiths, D, and Ch Harrod. 2007. "Natural Mortality, Growth Parameters, and Environmental Temperature in Fishes Revisited." Journal Article. Canadian Journal of Fisheries and Aquatic Sciences 64 (2): 249-55.

Hamel, OS. 2015. "A Method for Calculating a Meta-Analytical Prior for the Natural Mortality Rate Using Multiple Life History Correlates." Journal Article. ICES Journal of Marine Science 72 (1): 62-69.

Hamel, Owen S, and Jason M Cope. 2022. "Development and Considerations for Application of a Longevity-Based Prior for the Natural Mortality Rate." Fisheries Research 256: 106477.

Hoenig, John M. 1983. "Empirical Use of Longevity Data to Estimate Mortality Rates." Journal Article. Fish.Bull 82 (1): 898-903.

ICES. 2018a. "Report of the Benchmark Workshop on Redfish Stocks (WKREDFISH), 29 January-2 February 2018." Vol. ICES CM 2018/ACOM:34. International Council for the Exploration of the Sea, Copenhagen, DK. https://doi.org/10.17895/ices.pub.19291142.v1.

ICES. 2018b. "Arctic Fisheries Working Group (AFWG)." Vol. ICES CM 2018/ACOM:06. International Council for the Exploration of the Sea, Copenhagen, DK. https://doi.org/10.17895/ices.pub.5.

ICES. 2019. "Working Group on International Deep Pelagic Ecosystem Surveys (WGIDEEPS)." Report. Edited by Kristjan Kristinsson. Copenhagen, DK: International Council for the Exploration of the Sea.

ICES. 2021. "Arctic Fisheries Working Group (AFWG)." Vol. ICES Scientific Reports. 3:58. International Council for the Exploration of the Sea, Copenhagen, DK.

ICES. 2022. "Northwestern Working Group (NWWG)." 734 pp. https://doi.org/10.17895/ices.pub. 19771381.

Jennings, S, and NK Dulvy. 2008. "Beverton and Holt's Insights into Life History Theory: Influence, Application and Future Use." In: Advances in Fisheries Science: 50 Years on From Beverton and Holt (Eds A.I. Payne, A.J.R. Cotter and E.C.E. Potter), 434-50.

Jensen, AL. 1996. "Beverton and Holt Life History Invariants Result from Optimal Trade-Off of Reproduction and Survival." Journal Article. Canadian Journal of Fisheries and Aquatic Sciences 53 (4): 820-22.

Kenchington, TJ. 2014. "Natural Mortality Estimators for Information Limited Fisheries." Journal Article. Fish and Fisheries 15 (4): 533-62.

Lorenzen, K. 1996. "The Relationship Between Body Weight and Natural Mortality in Juvenile and Adult Fish: A Comparison of Natural Ecosystems and Aquaculture." Journal Article. Journal of Fish Biology 49 (4): 627-42.

Lukmanov, EG. 1988. Individual Absolute and Population Fecundity of Deep-Sea Redfish (Sebastes Mentella Travin) of the Norwegian Sea - Barents Sea Stock. In Fish Biology of the North European Seas. PINROPtess, Murmansk. (In Russian).

Magnusson, KG. 1995. "An Overview of the Multispecies VPA—Theory and Applications." Reviews in Fish Biology and Fisheries 5 (2): 195-212.

Mangel, M. 2017. "The Inverse Life History Problem, Size Dependent Mortality and Two Extensions of Results of Holt and Beverton." Journal Article. Fish and Fisheries 18 (6): 11921200.

Maunder, Mark N, Owen S Hamel, Hui-Hua Lee, Kevin R Piner, Jason M Cope, André E Punt, James N Ianelli, Claudio Castillo-Jordán, Maia S Kapur, and Richard D Methot. 2023. "A Review of Estimation Methods for Natural Mortality and Their Performance in the Context of Fishery Stock Assessment." Fisheries Research 257: 106489.

Maunder, MN, and RA Wong. 2011. "Approaches for Estimating Natural Mortality: Application to Summer Flounder (Paralichthys Dentatus) in the US Mid-Atlantic." Fisheries Research 111 (1-2): 92-99.

Miller, TJ, RK Mayo, ML Traver, and LA Col. 2008. "Gulf of Maine-Georges Bank Acadian Redfish." Assessment of 19: 08-15.

Monk, MH, EJ Dick, JC Field, EM Saas, and TL Rogers. 2021. "DRAFT the Status of Vermilion Rockfish (Sebastes Miniatus) and Sunset Rockfish (Sebastes Crocotulus) in US Waters Off the Coast of California North of Point Conception in 2021." Southwest Fisheries Science Center, Santa Cruz, USA.

Nedreaas, K. 1990. "Age Determination of Northeast Atlantic Sebastes Species." ICES Journal of Marine Science 47 (2): 208-30.

Pauly, D. 1980. "A New Methodology for Rapidly Acquiring Information on Tropical Fish Stocks: Growth, Mortality and Stock-Recruitment Relationships, p. Roedel and s. Saila (Eds.) Stock Assessment for Tropical Small-Scale Fisheries." International Center for Marine Resources Development, University of Rhode Island, Kingston.

Pauly, D, and C Binohlan. 1996. "FishBase and AUXIM as Tools for Comparing Life-History Patterns, Growth and Natural Mortality of Fish: Applications to Snappers and Groupers'." Conference Proceedings. In Biology, Fisheries, and Culture of Tropical Groupers and Snappers:

Proceedings of an EPOMEX/ICLARM International Workshop on Tropical Snappers and Groupers, Held at the University of Campeche, Campeche, Mexico, 26-29 October 1993, 48:218. WorldFish.

Peterson, I, and JS Wroblewski. 1984. "Mortality Rate of Fishes in the Pelagic Ecosystem." Journal Article. Canadian Journal of Fisheries and Aquatic Sciences 41 (7): 1117-20.

Planque, B, and K Nedreaas. 2010. "DEEPFISHMAN - a Fp7 Project: Management and Monitoring of Deep-Sea Fisheries and Stocks." Wp2 - Case Study 4 Report, 74 pp.

Pope, JG, H Gislason, JC Rice, and N Daan. 2021. "Scrabbling Around for Understanding of Natural Mortality." Fisheries Research 240: 105952.

Quinn, TJ, and RB Deriso. 1999. Quantitative Fish Dynamics. oxford university Press.

Ralston, St. 1987. "Mortality Rates of Snappers and Groupers." Journal Article. Tropical Snappers and Groupers: Biology and Fisheries Management 375: 404.

Ricker, WE. 1975. "Computation and Interpretation of Biological Statistics of Fish Populations." Bull. Fish. Res. Bd. Can. 191: 1-382.

Roff, DA. 1984. "The Evolution of Life History Parameters in Teleosts." Journal Article. Canadian Journal of Fisheries and Aquatic Sciences 41 (6): 989-1000.

Saborido-Rey, F, R Domínguez-Petit, D Garabana, and P Sigurðsson. 2015. "Fecundity of Sebastes Mentella and Sebastes Norvegicus in the Irminger Sea and Icelandic Waters." Journal Article. Ciencias Marinas 41 (2): 107-24.

Sekharan, KV. 1974. "Estimates of the Stocks of Oil Sardine and Mackerel in the Present Fishing Grounds Off the West Coast of India." Indian Journal of Fisheries 21 (1): 177-82.

Spencer, PD, and JN Ianelli. 2021. "Assessment of the Northern Rockfish Stock in the Bering Sea/Aleutian Islands." Alaska Fisheries Science Center, Seattle, USA.

St-Pierre, J-F, and Y De Lafontaine. 1995. Fecundity and Reproduction Characteristics of Beaked Redfish (Sebastes Fasciatus and s. Mentella) in the Gulf of St. Lawrence. Book. Pêches et océans Canada.

Tanaka, S. 1960. "Studies on the Dynamics and the Management of Fish Populations." Bull. Tokai Fish. Res. Lab. 28: 1-200.

Then, AY, JM Hoenig, NG Hall, DA Hewitt, and Handling editor: Ernesto J. 2015. "Evaluating the Predictive Performance of Empirical Estimators of Natural Mortality Rate Using Information on over 200 Fish Species." ICES Journal of Marine Science 72 (1): 82-92.

Torrejón-Magallanes, J. 2021. gnomonicM: Estimate Natural Mortality for Different Life Stages. https://CRAN.R-project.org/package=gnomonicM.

Torrejón-Magallanes, J, E Morales-Bojórquez, and F Arreguín-Sánchez. 2021. "Improving the Gnomonic Approach with the gnomonicM r-Package to Estimate Natural Mortality Throughout Different Life Stages." PeerJ 9: e11229.

Ursin, E. 1967. "A Mathematical Model of Some Aspects of Fish Growth, Respiration, and Mortality." Journal Article. Journal of the Fisheries Board of Canada 24 (11): 2355-453.

Xucai, X, HMA Mohammed, AY Al-Ghunaim, and F Al-Yamani. 1996. "Temporal Variability in Natural Mortality of Green Tiger Prawns, Penaeus Semisulcatus, in Kuwait Waters." Oceanographic Literature Review 9 (43): 938.

Zakharov, GP, TL Nikolskaya, VP Sorokin, VA Chekhova, and LM Shestova. 1977. Deep-Sea Redfish. In Commercial Biological Resources of Rhe North Atlantic and Adjacent Warers of Rhe Arctic Ocean. Vol. Part 2. Pishchevaya Promyshlennosr Press, Moscow. (In Russian).

[^0]: ${ }^{1}$ Corresponding author: Email address:* hannes.hoffle@hi.no Tel. +47 46817847

