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Abstract 19 

Enhanced warm, salty sub-Arctic inflows drive high-latitude atlantification, weakening 20 

oceanic stratification, amplifying heat fluxes, and reducing sea ice. Here we show that the 21 

atmospheric Arctic Dipole (AD) associated with anticyclonic winds over North America and 22 

cyclonic winds over Eurasia modulates inflows from the North Atlantic across the Nordic 23 

Seas. The alternating AD phases create a "switchgear mechanism." In 2007–2021, switchgear 24 

weakened northward inflows and enhanced sea-ice export across Fram Strait, and increased 25 

inflows throughout the Barents Sea. By favoring stronger Arctic Ocean circulation, 26 

transferring freshwater into the Amerasian Basin, boosting stratification, and lowering 27 

oceanic heat fluxes there after 2007, AD+ contributed to slowing sea-ice loss. A transition to 28 

a new AD– phase may accelerate the Arctic sea-ice decline, furthering Arctic climate 29 

system’s changes. 30 

 31 

One-Sentence Summary: Shifts in a large-scale atmospheric pattern have influenced Arctic 32 

Ocean currents with profound consequences for the Arctic climate system. 33 

  34 
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Introduction 35 

The Arctic region is rightfully called a frontier for global climate change. Linked to 36 

atmospheric circulation, radiative forcing, and a host of climate feedback mechanisms, Arctic 37 

surface air temperatures are rising at least three times faster than global-average air 38 

temperatures (1). The Arctic Ocean is warming faster than the global ocean (2). Sea-ice 39 

decline is a true indicator of climate change, affecting all aspects of life in the northern high-40 

latitude regions (1). One of the reasons for sea-ice loss is the warming Arctic Ocean caused in 41 

part by anomalous inflows from the North Atlantic and North Pacific (e.g., 3-5). System-wide 42 

changes in Arctic basins caused by anomalous inflows from the Nordic Seas are referred to as 43 

atlantification (e.g., 5-7). One of many manifestations of atlantification in the Eurasian Basin 44 

of the Arctic Ocean is decreased upper-ocean stratification and enhanced heat release from 45 

the warm intermediate (150-800 m depth) Atlantic Water layer, resulting in accelerated loss 46 

of sea ice (5, 8, 9). However, these changes are complex, and their driving forces and 47 

interactions with the Arctic atmosphere–ice–ocean system are not well understood. This 48 

study identifies important mechanisms steering high-latitude atlantification, informing a 49 

broad and comprehensive understanding of system function. 50 

Sea ice changes 51 

While the end-of-summer ice extent and thickness are declining, our results indicate that the 52 

rate of decline slowed after 2007 compared with 1992–2006 (Figs. 1a,b). Over the satellite 53 

record, the trend in summer ice extent during 2007–2021 (–0.07±0.18×106 km2 per decade) is 54 

weak and not statistically significant in contrast to the much larger negative trends in 1979–55 

2021 (–0.79±0.13×106 km2 per decade) and 1992–2006 (–0.99±0.51×106 km2 per decade). 56 

Thus, a more stable regime of Arctic sea ice appears to have begun in 2007. This transition 57 
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was abrupt, with 2007 setting a record for a single-year sea-ice-extent decrease of –1.6×106 58 

km2 (compare to 2012’s second record-year drop of –1.0×106 km2) (see for details 10).  59 

     Similarly, the composite record of mean winter (February–March) ice thickness in the 60 

central Arctic, now close to ~2 m, has not changed significantly since 2007 (Fig. 1a), even 61 

though the multi-decadal decline has been significant. In addition, the mean thickness in fall 62 

(October–November) has remained above the 1m low established after the end of the summer 63 

of 2007. Between 2003 and 2007, the thinning was remarkable and occurred with the loss of 64 

a large fraction of thick multiyear sea ice (11). The overall thinning has slowed since 2007, 65 

when satellite-based records of ice thickness began (ICESat, ICESat-2, and CryoSat-2, 2003–66 

2021). The Arctic is now dominated by the behavior of thinner seasonal ice, which now 67 

solely controls the variability of ice thickness in the central Arctic (12, 13). 68 

Atmospheric changes 69 

The atmosphere over the Arctic Ocean is dominated by high pressure (known as the Polar 70 

High) centered over the western Arctic (Fig. 2a), which generates a mean anticyclonic 71 

(clockwise) circulation. This drives predominant features of sea-ice drift and upper-ocean 72 

circulation known as the Beaufort Gyre in the Amerasian Basin as well as the Transpolar 73 

Drift flowing from the Siberian shelf towards the Canadian Archipelago and Fram Strait (Fig. 74 

1g).  75 

     The primary mode of variability of the pan-Arctic sea-level pressure is known as the 76 

Arctic Oscillation, and the related wind pattern accounts for the observed climatological 77 

features of the atmospheric circulation. Beginning in 2007, however, the secondary Arctic 78 

Dipole (AD) pattern, featuring higher sea-level pressure over the Beaufort Gyre and the 79 

Canadian Archipelago along with lower sea-level pressure over the Siberian Arctic, became 80 

dominant (Fig. 2c; see also 16-18), whereas the Arctic Oscillation remained close to neutral 81 
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(Fig. S4). This shift is evident in the higher spatial correlation between the mean 2007–2021 82 

sea-level pressure and AD (R=0.59), compared to that with Arctic Oscillation (R=0.47).  83 

     The AD index, a characteristic of the wind cyclonicity in the central and Siberian Arctic 84 

(16), varies between positive (AD+) and negative (AD–) over ~15-year regimes (see wavelets 85 

in Figs. S2, S3). During 1992–2006, both the AD and Arctic Oscillation indices were slightly 86 

negative (Fig. S4d,e), while during 2007–2021 the AD index became increasingly positive 87 

(Fig. S4e).  88 

     The AD+ drives an enhanced anticyclonic Beaufort Gyre and Transpolar Drift (19), Fig. 89 

2. Distinct from the Arctic Oscillation (20, 21), the across-pole AD pattern results in 90 

increased heat advection into the Arctic, especially along the Siberian shores (Fig. 2b), and 91 

contributes to higher surface-air temperatures (Fig. S3). The AD was a major driver of the 92 

second record-low sea-ice extent in summer 2007 during the satellite record (22). The Fram 93 

Strait sea-ice export is correlated with the AD index during 1979–2014 (significant R=0.45, 94 

(19), see Fig. 2d), with a stronger link to the AD than to the Arctic Oscillation (23).  95 

     Most important for the present study, the alternating AD phases were pivotal for a 96 

switchgear mechanism modulating the relative strength of the Fram Strait and Barents Sea 97 

branches transporting Atlantic Water into the Arctic Ocean. For example, the anomalous 98 

atmospheric forcing during the AD+ in 2007–2021 was favorable for reduced flows into the 99 

Arctic through the Fram Strait along with enhanced inflows through the Barents Sea Opening 100 

(Fig. 2b,e,f). The Arctic Oscillation pattern contributes to large-scale cyclonicity in Arctic 101 

atmosphere, ocean, and ice circulation (e.g., 24) but not the finer details suggested by the 102 

switchgear mechanism discussed here (Fig. S4). The AD-driven forcing is best developed in 103 

spring and summer (Figs. S2, S5), but can affect air temperatures, surface energy fluxes, 104 
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storm tracks, sea-ice drift and exports, and upper-ocean circulation in all seasons (e.g., Fig. 105 

S3).  106 

Changes in the Arctic Ocean  107 

Switchgear between Fram Strait inflow and Barents Sea throughflow  108 

Water exchanges between the Nordic Seas and the Arctic Ocean are critically important for 109 

the state of the Arctic climate system. ORAS5 reanalysis data (see Supplementary Materials 110 

for details) suggest that these exchanges in the upper 50 m were amplified across the northern 111 

Barents Sea Opening and in the northern and central Barents Sea while being reduced across 112 

the Fram Strait in the past 15 years (Fig. 3), with similar patterns but weaker anomalies in the 113 

50–200 m layer (Fig. S6). Time series of currents across the Barents Sea Opening and Fram 114 

Strait clearly show this alternating pattern, with 5% increased annual mean currents in the 115 

Barents Sea Opening and 15% decrease in Fram Strait (Fig. 3c,d). Summer and fall ORAS5 116 

transports were the most significant contributors to anomalous Barents Sea Opening inflows 117 

(15% increase), while spring and summer processes dominated Atlantic Water inflows 118 

through Fram Strait (28% decrease in current speed) (Fig. S7).  At the 95% confidence level, 119 

each of the aforementioned estimates of anomalous transports is statistically significant. In 120 

comparison to the Barents Sea Opening, changes in the upper 50m water volume transports 121 

were ~2.2 times stronger in the Fram Strait. As a result, changes in transports through these 122 

gateways do not countervail, and the importance of other gateways in establishing the Arctic 123 

Ocean’s water balance cannot be overstated.  On weekly-to-monthly time scales, increased 124 

eastward flow in the northern Barents Sea and weakened inflow across the Fram Strait are 125 

associated with a northward shift in atmospheric cyclones over the Barents Sea (25). 126 

     Amplified Barents Sea Opening inflows in 2007–2021 resulted in increased transports 127 

across the Franz Joseph Land–Novaya Zemlya pass by 23%, thus providing an enhanced 128 
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inflow from the Barents Sea into the Arctic Ocean (Figs. 3g, S8). These changes were crucial 129 

for the new state of the eastern Arctic Ocean brought on by atlantification (5). Tracer 130 

experiments showed a doubled probability that water parcels in the upper 50m crossed the 131 

Barents Sea in 2007–2021 compared with 1992–2006, in contrast with Fram Strait, where the 132 

number of tracers decreased over the same time by a factor of four (Fig. 4d,e). Stronger 133 

impacts of the local winds on the Barents Sea compared with Fram Strait inflows are 134 

consistent with stronger topographic steering and more complex flow in the Fram Strait (26, 135 

27). 136 

     These findings are strongly supported by both in situ and satellite observations. For 137 

example, mooring and reanalysis records are positively correlated and show consistent 138 

increasing (decreasing) trends of currents across the Barents Sea Opening (Fram Strait) over 139 

the last 15 years (Fig. S9). A modest correlation R=0.34 between the Barents Sea Opening 140 

mooring and reanalysis time series is likely because moorings do not cover the northern 141 

regions where the reanalysis shows the greatest increase in flow. Moreover, anomalies in the 142 

satellite-based sea-surface height provide further confirmation for the switchgear mechanism 143 

modulating the inflows through the Barents Sea and Fram Strait during the current AD+ (Fig. 144 

4g). Geostrophic currents forced by the anomalous 2007–2021 sea-surface height were 145 

amplified in the northern Barents Sea Opening and in the central Barents Sea showing little 146 

difference in the southern Barents Sea Opening. However, the sea-surface height indicates an 147 

anomalous flow from the Lofoten Basin to the Barents Sea in 2007–2020 (Fig. 4g). The 148 

possibility of the Lofoten Basin feeding the Barents Sea has been suggested by (28), 149 

attributed to the vigorous eddy activity in the Lofoten Basin (29, 30), and is further linked to 150 

the atmospheric wind forcing (31). In contrast to the Barents Sea Opening, the geostrophic 151 

flow across Fram Strait weakened (Fig. 4g).   152 
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Imprints of alternating AD patterns on the Arctic Ocean circulation 153 

The Arctic basins responded to the AD+ atmospheric regime in 2007–2021 with basin-wide 154 

changes in the upper Arctic Ocean circulation associated with an amplified Beaufort Gyre, 155 

stronger boundary currents along the Siberian slope, and a shifted Transpolar Drift from the 156 

Amerasian Basin towards the Lomonosov Ridge (Fig. 3b, 4a,b).  157 

     Since 2007, a smaller but more intense Arctic high, associated wind-driven circulation, 158 

and convergence of the upper Beaufort Gyre have resulted in enhanced freshening and 159 

thickening of the surface fresh layer in the Amerasian Basin (e.g., 24, 32). The Beaufort Gyre 160 

mooring record provides confirmation of these findings (Fig. 5a,b). This evidence is further 161 

supported by observed sea-ice melt, redirected Siberian riverine waters into the Beaufort 162 

Gyre, increasing inflow of relatively fresh Pacific Water through Bering Strait, and 163 

strengthened stratification between the Amerasian Basin’s surface and deep layers (e.g., 24, 164 

32, 33, 34). At the same time, reanalysis and mooring observations showed contrasting 165 

changes in the Eurasian Basin, with increased salinification and weakened stratification in the 166 

halocline, along with amplified upward heat fluxes (5, 35), Fig. 5c,d. 167 

     Our tracer experiments support these findings (Figs. 4a-c, S11). For example, the 2007–168 

2021 cyclonic atmospheric forcing widely dispersed transports of freshwater from the 169 

Siberian shelves (where the Transpolar Drift originates) and drove a substantial portion (17% 170 

of all trajectories) of the Siberian freshwater into the Beaufort Gyre. In contrast, during the 171 

anticyclonic 1992–2006 AD– phase, not a single water parcel ended up trapped in the 172 

Beaufort Gyre, and instead left the central Arctic through the straits of the Canadian 173 

Archipelago. Changes in the spatial distributions of meteoric water (i.e., precipitation 174 

including water from lakes and rivers) provide confirmation of the diversion of freshwater 175 

from the Eurasian Basin to the Amerasian Basin, with meteoric water content decreasing in 176 
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the Eurasian Basin and increasing in the Amerasian Basin, consistent with (36, 37).  These 177 

changes in meteoric water content are accompanied by a general increase in net sea-ice 178 

meltwater (Fig. S12). 179 

     In the Eurasian Basin, the local effects of alternating AD patterns and the remote effects of 180 

atlanticification owing to changing influxes across Fram Strait and Barents Sea are 181 

interconnected in an ice/ocean-heat feedback mechanism. Weakened stratification and 182 

increased oceanic heat fluxes associated with atlantification drive sea-ice melt, which is 183 

amplified by increased oceanic heat fluxes through increased convective entrainment in 184 

winter (5, 9). A stronger coupling between atmosphere, ice, and ocean in the eastern Arctic in 185 

the recent decade and intensified upper-ocean currents play critical roles in developing this 186 

feedback (38), Fig. 3b. 187 

Changes in the Nordic Seas 188 

Anomalous anticyclonic winds over the Nordic Seas, as evident during the AD+ in 2007–2021 189 

(Fig. 2b), weakened the poleward Atlantic Water flow from south of the sub-polar gyre and 190 

through the Nordic Seas (27, 39). Attributed to a weak reinforcement of the sub-polar gyre 191 

(Fig. S13), altering the properties of the inflowing Atlantic Water (40), the Atlantic Water 192 

inflow from the northern North Atlantic became colder and fresher in the late 2000s (41), Figs. 193 

5q,r. The Atlantic Water temperatures and salinities in the Nordic Seas and the Barents Sea 194 

Opening responded to this change by peaking in the late 2000s (Figs. 5m-p). 195 

     Consistent with these changes, the salinity trends in the Nordic Seas after 2006/2007 are 196 

negative and similar in magnitude from the North Atlantic up to the Barents Sea Opening (Fig. 197 

5r,p,n,j,i). Atmospheric circulation over the Nordic Seas associated with the AD+ in 2007–198 

2021 (Fig. 2b) weakened the northward Norwegian Atlantic Current (Fig. 3b, 42), which is 199 

consistent with a negative trend of –3cm/s per decade shown by the mooring record from 200 
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Svinøy section, the gateway for the Atlantic Water into the Nordic Seas (Fig. S9). Despite these 201 

changes in the Nordic Seas, the salinity in the eastern Eurasian Basin halocline and Atlantic 202 

Water increased (Fig. 5d), driven by salinification in the upstream northern Barents Sea due to 203 

lack of meltwater input from seasonal ice melt (43). 204 

     The cooling trend in 2007–2021 is reduced along-stream the Atlantic Water from the 205 

northern North Atlantic into the Barents Sea and Fram Strait (–0.55oC in the North 206 

Atlantic/Rockall, –0.36oC at Svinøy, and insignificant farther north, Fig. 5). These changes in 207 

the Nordic Seas are supported by the reduced oceanic heat loss over the last decades (44). Thus, 208 

the traditional paradigm of Atlantic Water variability associated with either cold and fresh or 209 

warm and saline Atlantic Water has changed (Fig. 5e-n). Moreover, our analysis confirms a 210 

northward amplification of oceanic warming (7), with the origin in the Nordic Seas, making 211 

this a source region of atlantification and Arctic amplification. 212 

     We note that the observed temperature and salinity trends are also consistent with the 213 

switchgear-driven stronger flow through the Barents Sea Opening compared with Fram Strait 214 

flow after 2006/2007, with temperatures at the Barents Sea Opening and northeastern Barents 215 

Sea showing little or no decrease (Fig. 5g,k), while the Frams Strait temperatures fell rapidly 216 

(Fig. 5e,i). Since the mid-2000s, the along-track heat loss of the Fram Strait inflow has 217 

increased (45), while the heat loss of the Barents Sea throughflow has decreased or remained 218 

stable (45, 46), thereby implying a stronger warming of the Atlantic Water entering the Arctic 219 

from the Barents Sea as compared to Fram Strait. Thus, a combination of the switchgear and 220 

regional changes in heat loss make the Barents Sea a key contributor to the Arctic Ocean 221 

atlantification. 222 

Discussion 223 
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This research identifies the mechanisms driving atlantification and paints a broad and 224 

comprehensive picture of changes in the northern high-latitude climate system. Switchgear is 225 

one of these mechanisms resulting from alternating AD atmospheric regimes. We discovered 226 

increased Atlantic Water inflows throughout the Barents Sea and reduced inflow across Fram 227 

Strait as well as a stronger warming of the Barents Sea as compared to Fram Strait during 228 

2007–2021. This regime was also associated with the amplified Beaufort Gyre, stronger 229 

boundary currents at the Siberian slope, and a shifted Transpolar Drift from the Amerasian 230 

Basin towards the Lomonosov Ridge.  231 

     One of the most striking changes associated with AD variability is the 2007-2021 hiatus of 232 

Arctic summer sea-ice loss, which, we argue, is a response to enhanced redistribution of 233 

freshwater into the Amerasian Basin caused by anomalous winds and increased stratification 234 

that suppress oceanic heat fluxes. This process is regionally limited to the Amerasian Basin, 235 

where the sea-ice area has actually increased since 2007 (Fig. 1d,e). Thus, while variations in 236 

atmospheric forcing may affect the ice-loss slowdown since 2007 (47), the shutting down of 237 

oceanic heat fluxes by increasing Amerasian Basin stratification (Fig. 1b, insert) may help 238 

drive the ice-loss hiatus. To validate this hypothesis, we used the winter survival of the near-239 

surface temperature maximum created by the summer trapping of solar radiation below the 240 

surface mixed layer (10–30 m depth) (48). Using an extensive 2007–2020 archive of Ice-241 

Tethered Profiler observations, we found that 65% of vertical temperature profiles showed 242 

the presence of the near-surface temperature maximum (and therefore negligible upper 243 

Amerasian Basin ventilation) during October–March (Fig. S14; see Methods for details) – a 244 

convincing argument that enhanced sea-ice winter growth owing to reduced ocean heat fluxes 245 

contributed to the observed 2007–2021 ice-loss hiatus. Sea-ice dynamics should not be 246 

disregarded, though. For example, despite increased ice-area export (Fig. 2d), decreased ice 247 

thickness in Fram Strait (10) may cause a decline in ice volume export, offsetting the decline 248 
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in net ice production in high-latitude regions (e.g., 49). In contrast to the Amerasian Basin, 249 

ventilation of the upper Eurasian Basin in the 2010s is well documented (e.g., 5, 9, 38), and 250 

sea-ice loss in this basin continued through the 2010s (Fig. 1d,e). 251 

     There are numerous ongoing and potential ecological consequences of the observed 252 

physical changes. For example, the summer-integrated Normalized Difference Vegetation 253 

Index (TI-NDVI), a remotely sensed proxy for Arctic vegetation productivity, shows 254 

remarkably different behavior during AD+ and AD–. The TI-NDVI trends at all longitudes 255 

were primarily positive in 1992–2006, suggesting the vegetation gained biomass and 256 

photosynthetic productivity increased; the vegetation was ‘greening’ (Fig. 1c,f). In 2007–257 

2021, negative trends dominated the area between 210oE-300˚E (corresponding to the 258 

Amerasian Basin sector where sea ice increased during 2007–2021), suggesting the 259 

vegetation lost biomass and was possibly less vigorous; often called ‘browning’ (Fig. 260 

1d,f). Thus, sea ice variability can influence Arctic vegetation productivity on numerous time 261 

scales, consistent with a correlation between the TI-NDVI and spring sea-ice variations (50).        262 

     Furthermore, the import of sub-Arctic waters has profound impacts on Arctic marine life 263 

(51), and both the Fram Strait and the Barents Sea Opening branches are potential pathways 264 

of subarctic-boreal organisms into the eastern Eurasian Basin (52). Our results suggest that 265 

organisms drifting in the upper 50 m of the Fram Strait branch had a fundamentally different 266 

fate if entering during AD– as compared to AD+ (Fig. 4d-e). During AD– most organisms 267 

entered the western Eurasian Basin via the Transpolar Drift, while during AD+ they were 268 

kept at the shelf break and transported into the eastern Eurasian Basin. In addition, during 269 

AD+, more organisms entered the eastern Eurasian Basin from the Barents Sea (Fig. 4e). 270 

Increased influence of the Barents Sea may cause the eastern Eurasian Basin to be more 271 

productive and provide more suitable living conditions for subarctic-boreal species than its 272 
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western part (53), which is consistent with recent observations (52). Improved knowledge of 273 

asymmetric conditions in the pelagic ecosystems of the western and eastern Eurasian Basin is 274 

imperative to properly understand and manage the central Arctic Ocean fisheries agreement 275 

established in 2021. 276 

     Finally, we note that recent atmospheric changes as indicated by a shifting AD phase have 277 

been important drivers of the regional patterns of sea ice and oceanic responses. There are, 278 

however, indications that the Arctic system may be entering another new regime (see 279 

wavelets in Figs. S3, S7, S8), with potential consequences for the state of the physical, 280 

chemical, and biological components. The transition may be abrupt, similar to the rapid 281 

changes in 2007. The trajectory of the Arctic climate system into the future is further 282 

complicated by the existence of large-amplitude, multidecadal variability (Fig. S15). Thus, 283 

accurate future projections require a comprehensive understanding of complex air-ice-ocean 284 

interactions and associated feedbacks on broad spatiotemporal scales through advancement of 285 

the observing system and modeling capabilities.  286 
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Figures 553 

 554 

 555 

Figure 1: Loss of Arctic sea-ice thickness and extent.  556 
(a) Arctic sea ice thickness changes for autumn (red/dotted red) and winter (blue/dotted blue). 557 
Shadings (blue and red) show 1 S.E. ranges from the regression analysis of submarine ice 558 
thickness and expected uncertainties in satellite ice thickness estimates. Data release area of 559 
submarine data ice thickness data is shown in inset. Satellite ice thickness estimates are for 560 
the Arctic south of 88°N. Thickness estimates from more localized airborne/ground 561 
electromagnetic surveys near the North Pole (diamonds) and from Operation IceBridge 562 
(circles) are shown within the context of the larger scale changes in the submarine and 563 
satellite records (14).  564 
(b) September sea-ice extent (blue line), the long-term trend (green line), and different 565 
regimes of sea-ice extent change in 1992–2006 and 2007–2021 (red segments); the insert 566 
shows available potential energy (APE) anomalies in the upper ocean (surface mixed layer 567 
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and halocline) for 2007–2017 relative to 1992–2006 (increasing APE signifies stronger 568 
stratification suppressing mixing).  569 
(c,d) Maps of trends for (c) the sea-ice concentration (% per year, c) and (d) the summer bi-570 
weekly (time-integrated) Normalized Difference Vegetation Index (TI-NDVI, decade-1) over 571 
Arctic tundra for 1992–2006 and 2007–2021. The NDVI is a remotely sensed proxy for 572 
vegetation productivity and is derived from remotely sensed products in the Arctic. A 573 
positive NDVI trend means that the vegetation has more biomass and more photosynthetic 574 
productivity; this process is called greening. A negative NDVI trend means that the 575 
vegetation has less biomass and is less healthy, and it is called browning.  576 
In (e,f), September sea-ice extent trends (e) and the TI-NDVI (f) for 1992–2006 (blue) and 577 
2007–2021 (red) as a function of longitude.  578 
 (g) Diagram of sea ice drift and upper ocean circulation (blue arrows), as well as Atlantic 579 
Water circulation (red arrows) (from 15). FJL-NZ, TPD, and BG indicate Franz Joseph Land 580 
– Novaya Zemlya pass, TransPolar Drift, and Beaufort Gyre, respectively. 581 
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 582 
Figure 2: Atmospheric forcing governing the switchgear mechanism. (a) Annual sea level 583 
pressure (hPa) averaged over 1992–2006. (b) Annual pressure anomalies (hPa, shading) in 584 
2007–2021 relative to 1992–2006. Vectors show corresponding anomalous geostrophic 585 
winds. (c) Arctic Dipole (AD, hPa) pattern, which is correlated with the 2007–2021 pressure 586 
anomalies at R = 0.59. (d-f) Time series of atmospheric parameters. (d) April-July AD (blue) 587 
and March-August ice area transport across Fram Strait (green, from Smedstrud et al. 2017) 588 
are reduced to anomalies by subtracting means (Mn) and normalized by standard deviations 589 
(SD); AD and ice export are correlated at R = 0.44. (e,f) Annual wind across Fram Strait (e) 590 
and Barents Sea Opening (f, BSO). In (d-f), red horizontal segments show 1992–2006 and 591 
2007–2021 means. 592 
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 593 

 594 
Figure 3: Changes in upper 50 m oceanic circulation from ORAS5 reanalysis between 595 
alternate AD phases. (a,b) Maps of (a) 1992–2006 annual mean current speed |U| and (b) 596 
2007–2021 |U| anomalies (relative to the 1992–2006 mean) of the Arctic Ocean and Nordic 597 
Seas region with removed low-frequency (1/30yrs cutting off frequency) components using 598 
running mean filtering. (c-e) Time series of the ocean annual mean currents inflowing into 599 
the Arctic through Fram Strait (c, 80oN, 14oW-10oE), the Barents Sea Opening (d, 71–77oN, 600 
20oE), and the Franz Joseph Land–Novaya Zemlya (FJL–NZ) passage (e, 76.7–80.6oN, 60.5–601 
64.3oE). Red horizontal lines show means over 1992-2006 and 2007-2021. Transfer 602 
coefficients from current in cm/s to water transport in Sv (1Sv=106 m3/s) are given in each 603 
time series panel. Note the reduced (enhanced) inflow through Fram Strait and enhanced 604 
(reduced) Barents Sea throughflow in the years 2007–2021 (1992–2006).  605 
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 606 

Figure 4: Difference of the oceanic circulation patterns between alternate AD phases. A 607 

shift in the Transpolar Drift (a-c), inflows of Atlantic Water from the Nordic Seas across the 608 

Barents Sea Opening and Fram Strait (d-f), and anomalous (2007-2021 minus 1992-2006) sea 609 

surface height (SSH) and corresponding geostrophic currents (g). (a-c) ORAS5-based 610 

trajectories of parcels exiting the central Siberian shelf in 1992–2006 (a) and 2007–2021 (b), 611 

and the probability of finding a parcel within the polygon (indicated by the green line) north 612 

of the Canadian Archipelago (c). (d-f) ORAS5-based trajectories of parcels released in the 613 

Nordic Seas along the sections indicated by the black line in 1992–2006 (d) and 2007–2021 614 

(e), and the probability of finding a parcel traveling across the Barents Sea Opening, Fram 615 

Strait, and FJL-NZ (indicated by the green lines in (d) and (e)). (g) Satellite-based anomalous 616 

SSH and geostrophic currents showing switchgear from Fram Strait to Barents Sea Opening 617 

inflow after 2007.  618 

 619 
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 620 
Figure 5: Contrasting trends of ocean temperature and salinity in the region spanning 621 

from the northern North Atlantic to the Arctic Ocean during the positive (2007–2021) 622 

and negative (1992–2006) phases of the AD. Annual time series of water temperature and 623 

salinity from repeated observations from the Atlantic Water layer (for depth ranges, see 624 

Supplement; blue lines) and halocline (150 m, black lines) (see details in Methods). 625 

Observations with substantial gaps were complemented by ORAS5 reanalysis time series 626 

(gray lines; note that for the eastern Eurasian Basin (EEB), we plotted ORAS5 temperature, 627 

adding 1oC). 95% statistically significant trends are shown by solid red lines and black font; 628 

otherwise, dashed red lines and grey font are used. Locations are indicated on the map. 629 
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