
4584  |     Molecular Ecology. 2023;32:4584–4598.wileyonlinelibrary.com/journal/mec

Received: 25 October 2022  | Revised: 21 April 2023  | Accepted: 9 June 2023

DOI: 10.1111/mec.17056  

O R I G I N A L  A R T I C L E

Host genotype and microbiome associations in co- occurring 
clonal and non- clonal kelp, Ecklonia radiata

Sebastian Vadillo Gonzalez1,2  |   Sofie Vranken3  |   Melinda A. Coleman3,4 |   
Thomas Wernberg3,5 |   Peter D. Steinberg2,6 |   Ezequiel M. Marzinelli1,2,7

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

1The University of Sydney, School of Life 
and Environmental Sciences, Sydney, New 
South Wales, Australia
2Sydney Institute of Marine Science, 
Mosman, New South Wales, Australia
3UWA Oceans Institute & School of 
Biological Sciences, University of Western 
Australia, Crowley, Western Australia, 
Australia
4New South Wales Fisheries, Department 
of Primary Industries, National Marine 
Science Centre, Coffs Harbour, New South 
Wales, Australia
5Institute of Marine Research, Floedevigen 
Research Station, His, Norway
6School of Biological, Earth and 
Environmental Sciences, University of 
New South Wales, Sydney, New South 
Wales, Australia
7Singapore Centre for Environmental 
Life Sciences Engineering, Nanyang 
Technological University, Singapore City, 
Singapore

Correspondence
Sebastian Vadillo Gonzalez, Sydney 
Institute of Marine Science, The 
University of Sydney, School of Life and 
Environmental Sciences, Life, Earth and 
Environmental Sciences Building (LEES, 
F22), City Rd & Eastern Ave, Camperdown, 
NSW 2006, Australia.
Email: sebastian.vadillo@sims.org.au

Funding information
Australian Research Council, Grant/
Award Number: DP180104041 and 
DP200100201

Handling Editor: Suhua Shi

Abstract
A fundamental question in holobiont biology is the extent to which microbiomes are 
determined by host characteristics regulated by their genotype. Studies on the inter-
actions of host genotype and microbiomes are emerging but disentangling the role 
that host genotype has in shaping microbiomes remains challenging in natural settings. 
Host genotypes tend to be segregated in space and affected by different environ-
ments. Here we overcome this challenge by studying an unusual situation where host 
asexual (5 clonal lineages) and sexual genotypes (15 non- clonal lineages) of the same 
species co- occur under the same environment. This allowed us to partition the influ-
ence of morphological traits and genotype in shaping host- associated bacterial com-
munities. Lamina- associated bacteria of co- occurring kelp sexual non- clonal (Ecklonia 
radiata) and asexual clonal (E. brevipes) morphs were compared to test whether host 
genotype influences microbiomes beyond morphology. Similarity of bacterial com-
position and predicted functions were evaluated among individuals within a single 
clonal genotype or among non- clonal genotypes of each morph. Higher similarity in 
bacterial composition and inferred functions were found among identical clones of 
E. brevipes compared to other clonal genotypes or unique non- clonal E. radiata geno-
types. Additionally, bacterial diversity and composition differed significantly between 
the two morphs and were related with one morphological trait in E. brevipes (haptera). 
Thus, factors regulated by the host genotype (e.g. secondary metabolite production) 
likely drive differences in microbial communities between morphs. The strong asso-
ciation of genotype and microbiome found here highlights the importance of genetic 
relatedness of hosts in determining variability in their bacterial symbionts.
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1  |  INTRODUC TION

Recent research has provided strong evidence for the importance 
of the relationships between host organisms and their associated 
microbiota in forming functional ecological units or ‘holobionts’ 
(Dittami et al., 2021). Holobionts are composed of multiple micro-
bial communities that interact with the host and can determine and 
regulate multiple processes that support the host's performance, 
development, survival, and resilience to changing environments and 
different stressors (Egan et al., 2013; DeWeese & Osborne, 2021). 
Holobionts have been studied in multiple models from single- cell 
interactions (Sallinger et al., 2021) to larger and more complex sys-
tems that include invertebrates, vertebrates and plants (Rosenberg 
& Zilber- Rosenberg, 2014). These studies reveal that symbionts play 
a significant role in resource acquisition, health, pathogen regulation 
and fitness of the host, while hosts provide microbiomes with similar 
benefits (Fietz et al., 2018).

Changing environmental conditions surrounding holobionts can 
determine much of the variability observed in host and their asso-
ciated microbiomes (Phelps et al., 2021 and Whipps et al., 2008). 
However, intraspecific genotypic differences can determine pheno-
typical variation in hosts (Whipps et al., 2008), which, in turn, may 
also lead to changes in the associated microbes and the functional 
interactions that exist between them (Coyte et al., 2015). While the 
complexity and intraspecific variability of holobionts is determined 
not only by the environment, but also by processes that are depen-
dent at least in part on the host's genetic makeup, these factors are 
often difficult to disentangle. Morphological variation between indi-
viduals is, to some extent, influenced by the host genotype, but other 
phenotypic traits that often have a strong genetic component, such 
as the release of waste compounds, secondary metabolites or the 
host's immune response, may have a stronger effect on the microbi-
ome (Coyte et al., 2015; Griffiths et al., 2019). Indeed, microbiomes 
regulated by these traits are typically more similar between indi-
viduals with higher genetic relatedness (Engel et al., 2020; Selber- 
Hnatiw et al., 2020). For instance, although human gut microbiomes 
can be highly variable, with each individual person having a unique 
microbiota (Rosenberg & Zilber- Rosenberg, 2014), there is a higher 
microbiome similarity between related individuals such as identical 
twins (Goodrich et al., 2016; Selber- Hnatiw et al., 2020) and similar 
trends have been observed for other species (Benson et al., 2010; 
Fietz et al., 2018; Griffiths et al., 2018; Pearce et al., 2017; Uren 
Webster et al., 2018). In marine systems, corals can directly influ-
ence the abundance of their microbial symbionts through upregu-
lating the expression of specific genes (e.g. iron sequestration and 
oxygen stress response) and this response has been found to have 
intraspecific variability and related to how genetically similar the 
coral colonies are (Parkinson et al., 2015). Multiple other recent 
examples in corals have also demonstrated the influence of host 
genotype on the associated microbial communities (Acropora tenuis, 
Glasl et al., 2019; and Millepora sp., Dubé et al., 2021). Similarly, a 
higher genetic relatedness among sponges of the same species has 

been seen to translate into a higher similarity of their associated mi-
crobiome (Griffiths et al., 2019). Kelps (large brown macroalgae) are 
dominant marine habitat- formers that underpin coastal biodiversity. 
Kelp health and function are affected by changes in their microbi-
ome (e.g. Marzinelli et al., 2015; Qiu et al., 2019), but we have little 
information about the relationship between host genetics and their 
microbiome (Wood et al., 2022). Understanding the link between 
the host's genotype, phenotype and its microbiome is essential to 
determine the potential influences of environmental change on nat-
ural populations.

Ecklonia radiata is a laminarian kelp that dominates temperate 
and subtropical rocky reefs across much of the southern hemisphere 
(Wernberg et al., 2019). Like other kelps, E. radiata has a haplodiplon-
tic life cycle that alternates through a haploid gametophyte phase 
and a diploid sporophyte (Figure 1a). However, vegetative reproduc-
tion has also been observed at the sporophyte phase in a different 
morph of E. radiata, named Ecklonia brevipes, in restricted populations 
in Western Australia where both morphs co- occur (Cape Leeuwin; 
Coleman & Wernberg, 2018, Vranken et al., 2022). Similar modes of 
vegetative reproduction in E. radiata have been observed in other 
species (e.g. Ecklonia stolonifera, Hayashi et al., 2020) through the 
formation of specialized structures in the sporophyte (e.g. haptera) 
that eventually create new individuals that are clones of the parent 
kelp (see Figure 1b, based on Coleman & Wernberg, 2018). These 
modes of reproduction appear to be fixed with no clones (asexual 
reproduction) apparent among individuals of the sexual morph and 
both morphs adopting the same life history as their sporophyte par-
ents in culture (Coleman & Wernberg 2018; Vranken et al., 2022). 
Large morphological differences exists between both Ecklonia 
morphs, including differences in the size of laminae and the presence 
of lateral haptera, but the two morphs are still considered to be a 
single species (Rothman et al., 2015). However, to ease clarity within 
this study, the denomination of the vegetative morph as E. brevipes 
has been retained.

The difference in genetic make- up between the two morphs 
and the greater variability in genotype in the sexually non- clonal re-
producing vs. asexual clonal morph could be important drivers of 
the structure and function of their associated microbiomes. In this 
study, the bacterial communities associated with laminae of these 
two morphs (i.e. non- clonal E. radiata and clonal E. brevipes) co- 
occurring in the same area and with a consistent environment were 
compared and contrasted between several morphological traits and 
genotypes, including among individuals within and between morphs 
and among clones. Specifically, we predicted that bacterial commu-
nities would be more similar and less variable among identical clones 
of E. brevipes compared to different unique clonal genotypes of the 
same morph, which, in turn, would be more similar and less variable 
than unique non- clonal E. radiata genotypes produced exclusively by 
sexual reproduction (predictions in Figure 2b). The results generated 
in this study help unravel the potential influence that host genotype 
can have, beyond differences in morphological traits, on associated 
microbiomes.
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2  |  MATERIAL S AND METHODS

2.1  |  Field sampling and morphological 
measurements

Adult sporophytes (stage 3 cf. Kirkman, 1981) of both morphs (i.e. 
E. radiata and E. brevipes) from Hamelin Bay, Western Australia 
(34°13′48.79″ S; 115°0′52.70″ E) were collected at 11 m depth 
by SCUBA. While individuals of E. radiata occur homogeneously 
on the reefs, the distribution of E. brevipes can be patchy, with 
patches of E. brevipes separated by 5– 15 m (Figure 2a). The two 
morphs are interspersed on many reefs like the one sampled in 
this study, co- occurring in the same area and under the same 

environmental conditions. All samples were collected haphaz-
ardly within an area of ~50 m2 with individual kelps separated 
by at least 1 m (Figure 2a). Before collection, 15 individuals of 
each morph were labelled, and a clean lateral lamina was cut and 
carefully folded into a clean, labelled zip lock bag for microbial 
sampling. The surface of these laterals and secondary lamina at 
mid- thallus were swabbed (5 × 4 cm) for 30 s using a sterile cotton 
swab before genetic samples were taken (Marzinelli et al., 2015; 
Qiu et al., 2019). A ‘blank’ swab, that is handled similarly to other 
swabs except it was not used to swab kelp, was included to con-
trol for potential contamination. Swabs were immediately placed 
in sterile cryogenic tubes in liquid nitrogen and then stored in a 
−80°C freezer. All labelled individuals were then taken ashore and 

F I G U R E  1  General description of the reproductive mechanisms in Ecklonia radiata including A) sexual reproduction that produces unique 
genotypes through a haplodiplontic life cycle that alternates through a haploid gametophyte (n) phase and a diploid sporophyte (2n) and 
B) a vegetative reproduction of the diploid sporophyte (2n) seen only on the E. brevipes morph. Different colours of the algae represent 
distinct genotypes. (a) E. radiata sexual reproduction to produce unique genotypes. (b) E. brevipes vegetative reproduction to produce clonal 
genotypes.

 1365294x, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17056 by Institute O
f M

arine R
esearch, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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for every individual a clean young lateral was also snapped fro-
zen for DNA extraction and genotype description. The remaining 
sections of the individuals were kept moist and shaded until pro-
cessed for morphological measurements. In total, 12 morphologi-
cal measurements were taken (Table S1).

2.2  |  Genotype description

In all, 15 E. brevipes and 10 E. radiata individuals were swabbed 
for microbial assemblages and then processed for genotype de-
scription. DNA extraction and DNA clean- up were performed as 
in Vranken et al. (2021). Technical replicates were taken from 
E. radiata to be able to distinguish unique and clonal geno-
types. Following quality control, ddRAD (double digest restric-
tion associated DNA) libraries were developed as in Vranken 
et al. (2021). Briefly, 200 ng of DNA per sample was used to 
prepare ddRAD libraries adjusting the protocol of Severn- Ellis 
et al. (2020). Following digestion with restriction enzymes PstI 
and NlaIII (New England Biolabs [NEB]), the DNA fragments of 
each individual sample were ligated to a unique barcoded adap-
tor. Double size selection to retain 250– 800 bp fragments was 
performed with solid- phase reversible immobilization beads 
(SPRI, AMPure XP; Beckman Coulter). The libraries gener-
ated were amplified by polymerase chain reaction (PCR) using 
Phusion Hot- Start High- Fidelity Master Mix Polymerase (Thermo 
Fisher Scientific) and purified with SPRI beads. The quality of 
each library was confirmed using a LabChip GX Touch and the 

concentration determined using a Qubit. Equimolar concentra-
tions were pooled per 96 libraries, and each pool was sequenced 
on one lane of Illumina XTEN at the Kinghorn Centre for Clinical 
Genomics' Sequencing Facility. SNP calling and filtering were 
performed as in Vranken et al. (2022). Briefly, Illumina sequenc-
ing base calls were converted to fastq format using bcl2fastq 
(v2.19). Sequences were further processed for de novo SNPs 
calling with Stacks (Catchen et al., 2013). Further filtering to re-
tain only high- quality SNPs was performed with vcftools 0.1.15 
(Danecek et al., 2011). All indels, multiallelic sites and all individ-
uals containing >75% missing data were removed. Furthermore, 
a minimum depth of coverage (DP) of 3 and maximum coverage 
of 2× mean sequencing depth, maximum missingness of 10% per 
site, and a minimum allele frequency of 0.02 were required. Only 
SNPs with maximum heterozygosity of 80% and present in at 
least 80% of the individuals were included using Stacks (Catchen 
et al., 2013), resulting in a final dataset of 5597 SNPs with multi-
ple SNPs per RAD locus and 14 E. brevipes individuals and 10 E. 
radiata individuals.

Unique genotypes were identified as in Vranken et al. (2022). 
Briefly, the divergence among samples was estimated as bit-
wise distance which was calculated with poppr v 2.8.3 (Kamvar 
et al., 2014, 2015). The minimum bitwise distance found between 
technical replicate samples of E. radiata (d = 0.019) was used as a 
threshold. All individuals separated by a distance lower than this 
threshold were considered to belong to the same unique geno-
type. All E. radiata samples were found to be unique genotypes 
(15 unique non- clonal genotypes). For E. brevipes, we found 

F I G U R E  2  Experimental setup and spatial arrangement of co- occurring Ecklonia morphs (E. radiata and E. brevipes) across the 
experimental area (a) and the predicted outcomes showing that associated bacterial community similarity (i.e. composition and predicted 
function) is expected to increase as hosts have higher genetic relatedness determined by genotype similarity (b). Different kelp colours 
represent different genotypes and background (green or yellow) indicates the type of Ecklonia morph. Letters and boxes surrounding E. 
brevipes in A represent the same clonal genotype. Distance between algal patches (both morphs fully interspersed art each patch, 10– 
15 m) and distances between individuals (1– 5 m) are also shown. In (b), labels indicate same clonal genotype of E. brevipes (CB, based on 4 
genotypes); different clones of E. brevipes (NCB, 9 genotypes); all individuals of E. radiata with unique genotypes (SR, 15 genotypes) and 
among all genotypes of both morphs (SR_NCB, 24 genotypes). (a) Co- occurring Ecklonia morphs in the same experimental area. (b) Predicted 
outcomes.
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4588  |    GONZALEZ et al.

five genotypes (clonal lineages) containing two individuals each 
and four genotypes containing one individual (total of 9 clonal 
genotypes).

2.3  |  Microbial sampling and sequencing

Microbial DNA was extracted in random order from each swab using 
a DNEasy Powersoil Pro kit (Qiagen, Hilden, Germany) following 
the manufacturer's guidelines. Briefly, genomic DNA is extracted 
through mechanical and chemical homogenizations that optimize 
cell lysis and removal of any PCR inhibitors. A silica spin filter mem-
brane is then used to isolate the DNA from the purified lysate which 
is then eluted in a 10 mM Tris buffer. Isolated DNA extracts were 
stored in a −20°C freezer until amplification with PCR (Master mix: 
KAPA HiFi Hot Start Ready- mix (2×), Cat No. KK2602; Roche; 30 cy-
cles) using the primers 341F (5′ - CCTAC GGG NGG CWG CAG-  3′) and 
805R (5′ - GACTA CHV GGG TAT CTA ATCC-  3′), which target V3- V4 
regions of the 16S rRNA gene (Klindworth et al., 2013). No DNA 
was amplified from the blank (control) swabs. Agarose gel electro-
phoresis, Nanodrop 1000 and the Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific) were used to check the quality and quantity of the 
amplicons before being sent to the Ramaciotti Centre for Genomics 
(UNSW) for sequencing via the Illumina MiSeq Platform (2 × 300 
bp run, Reagent Kit v3 600- cycle and 10% PhiX control spike- in). 
All original amplicon sequences were provided as pair- end demul-
tiplexed fastq files by the sequencing centre and were submitted to 
the NCBI Sequence Read Archive (SRA) database (BioProject acces-
sion number: PRJNA891085).

2.4  |  Bioinformatics

Raw sequences were received from the sequencing centre as demul-
tiplexed paired- ended sequences per sample (i.e. a forward sequence 
with direction 5′- 3′ and its reverse complementary sequence). 
Primers present in the sequences were identified and removed by 
initially deleting ambiguous nucleotide bases (Ns) and then trimming 
them using the program cutadapt v.3.4. (Martin, 2011, running within 
a conda environment using python v.3.9). A quality trimming step 
was subsequently done, adjusting the maximum expected error to 2 
and 6 base pairs in the forward and reverse sequence respectively. 
Additionally, a maximum truncation length for both paired sequences 
was decided upon inspection of quality error plots (i.e. truncation 
at a maximum length of 240 base pairs for both paired sequences) 
and based on a mean Q score of 20. Any base pairs with a lower Q 
score of 20 were dropped. Independently of the trimming process, 
a maximum error rate model was constructed for each paired read 
using the overall error rate from the sequencing process and ensur-
ing their fit through complementary- base error plots. These error 
rate models were used to determine exact amplicon sequence vari-
ants (ASV) using the core DADA2 algorithm (Callahan et al., 2016) 
to perform a two- step denoising process (i.e. pseudo- pooling) that 

enabled a higher detection of rare ASV. All paired- ended sequences 
were merged into unique ASV, arranged into an abundance by sam-
ple table and chimeric sequences removed. An average of 79% of 
the original raw sequences per sample was kept at the end of the 
pipeline. These surviving reads were assigned within 6373 ASV and 
identified taxonomically using a trained version of the prokaryotic 
SSU taxonomic database silva v.138.1 formatted and optimized ex-
clusively for the dada2 pipeline (Quast et al., 2012). Six taxonomic 
levels were assigned to each ASV (i.e. kingdom, phylum, class, order, 
family and genus). ASV identified as chloroplasts, mitochondria and 
eukaryotes were removed. All steps in the pipeline unless specified 
were done using R v.3.6. and the package dada2 v. 1.20 (Callahan 
et al., 2016).

2.5  |  Bacterial functional predictions

To better understand the differences in bacterial communities be-
tween Ecklonia morphs and lineages, functional profiles of these com-
munities were predicted using the software picrust2 v.2.4.0 through 
a whole- genome reconstruction based on the 16S rRNA gene am-
plicon sequences (i.e. Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States; ran within a conda environ-
ment using python v.3.9; Douglas et al., 2020). Briefly, all unique ASV 
sequences were aligned and placed into a reference phylogenetic 
tree (hmmer, Wheeler & Eddy, 2013; epa- ng, Barbera et al., 2019; 
and gappa, Czech et al., 2020). This tree was used to make the best 
prediction of the missing section of the genome and the number of 
copies of gene families for each ASV sequence (castor R package; 
Louca et al., 2018). Nearest- sequenced taxon indices for each ASV 
were calculated to determine the quality of the inferred predicted 
genomes (good quality of prediction, NSTI < 2; Langille et al., 2013). 
Gene families for predictions were based on the enzyme commission 
numbering system (i.e. EC number) from the International Union of 
Biochemistry and Molecular Biology (IUBMB). The predicted num-
ber of copies of gene families was normalized between ASVs in 
all samples to account for variability in the number of these gene 
families and the total abundance of specific ASVs in the community. 
Finally, all predicted gene families were grouped to specific meta-
bolic reactions used to infer metabolic pathways and the abundance 
of these for each sample (inferred from MetaCyc pathways, MinPath, 
Ye & Doak, 2009).

2.6  |  Statistical analysis

The final ASV abundance per sample table was normalized to ac-
count for differences in sampling depth by calculating a modified 
geometric mean and estimating sample size differences which are 
used to correct unequal ASV abundances between both morphs 
(i.e. E. radiata and E. brevipes) (package DESeq2, Love et al., 2014). 
Singletons were removed and this normalized table was used in sub-
sequent analyses.
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Bacterial richness, diversity (Shannon- Wiener index) and even-
ness (Pielou index) were calculated in all samples (package phyloseq, 
McMurdie & Holmes, 2013) and linear mixed models (LMM) were 
constructed to test for differences in these alpha- diversity indices 
between E. radiata and E. brevipes and the possible influence of gen-
otype as a random predictor over these indices (package lmerTest, 
Kuznetsova et al., 2017). Within these LMM, relationships between 
alpha- diversity indices and morphological traits were also included 
(see Table S1 for a full list of morphological traits considered for 
this study). For this, morphological traits were checked for multicol-
linearity to reduce covariate explanatory redundancy (high collinear-
ity as variance inflation factor > 10) and were log- transformed and 
scaled before analyses. A stepwise model selection approach based 
on the Akaike information criterion (AIC) was used to determine 
the optimum model that only included the most relevant morpho-
logical traits (i.e. sequential replacement model selection, package 
mass, Ripley et al., 2013). Multiple- factor ANCOVAs were used to 
infer main effects in the LMM (covariates based on model selection, 
Satterthwaite's method, alpha < 0.05) and REML- likelihood ratio 
tests to determine random effects (alpha < 0.05, package lmerTest, 
Kuznetsova et al., 2017). All LMM were validated by checking all 
assumptions of linearity, homogeneity of variance, normality and 
presence of influential outliers (package performance, Lüdecke 
et al., 2021).

Bacterial community structure was compared between E. radi-
ata and E. brevipes using a Permutational Multivariate Analysis of 
Variance (PERMANOVA, alpha < 0.05, permutations = 9999, func-
tion adonis, package vegan; Oksanen et al., 2013) based on a Bray– 
Curtis dissimilarity matrix calculated from square- root transformed 
relative abundances of ASVs. We also tested for differences in dis-
persion of the bacterial communities between morphs using the 
function betadsiper and permutest in vegan (permutations = 999, 
alpha < 0.05, Oksanen et al., 2013) as a model validation step 
(Anderson, 2014). To determine which specific ASV differed be-
tween E. radiata and E. brevipes, a multivariate generalized linear 
model (negative- binomial GLM) was fitted to the normalized ASV 
table using Mvabund in R (Wang et al., 2012). p- Values were cal-
culated using bootstrap iterations (i.e. 1000 iterations) and were 
adjusted for multiple testing via a Bonferroni correction. All signifi-
cant ASVs were identified to a genus level and relative abundances 
pooled if assigned to the same genera. Only genera with >0.5% of 
average relative abundance across all samples were selected for 
further analysis. ASVs that were not identified to a specific genus 
were not analysed further (i.e. these constituted approx. 39% of 
the total significant ASV and with an average relative abundance 
of 11% across the whole community). Relative abundances of the 
selected genera were then analysed with simple linear models and 
one- way ANCOVA to determine differences between Ecklonia 
morphs and the influence of morphological traits found to be rel-
evant predictors of bacterial community composition (package 
car, Fox & Weisberg, 2018 and package performance, Lüdecke 
et al., 2021 for model validation).

To further test the hypothesis that bacterial community dissim-
ilarity would be lowest among identical clones of E. brevipes com-
pared to different unique clonal genotypes of E. brevipes or unique 
non- clonal E. radiata genotypes, the Bray– Curtis dissimilarities be-
tween pairs of samples in the following categories were calculated: 
(i) among individuals with identical clonal genotype produced by the 
vegetative morph, E. brevipes (clonal- brevipes, ‘CB’; n = 4 possible 
combinations based on four clonal genotypes that had two replicates 
each); (ii) among different clonal genotypes of E. brevipes (non- clonal 
brevipes, ‘NCB’; n = 36); (iii) among unique non- clonal genotypes of 
the sexual morph, E. radiata (sexual radiata, ‘SR’; n = 105); and (iv) 
dissimilarities between unique non- clonal genotypes E. radiata and 
unique E. brevipes clonal genotypes (‘SR_NCB’; n = 135). A univari-
ate linear model and a one- way ANOVA were done to test for dif-
ferences in the level of dissimilarity among the four categories (R 
Core Team, 2021, package car, Fox & Weisberg, 2018 and package 
performance, Lüdecke et al., 2021 for model validation). Contrasts 
between established categories were done using estimated marginal 
means (i.e. least- square means) and p- values corrected for multiple 
testing through a Bonferroni adjustment (package emmeans, Lenth 
et al., 2019). An unbalanced design with large differences in sample 
size among these categories limits the analysis above so, to try to ac-
count for this limitation, two subsets of Bray– Curtis distances from 
the above dataset were randomly selected from each established 
category. Random subset 1 included all categories in a balanced 
design based on the lowest possible sample size (n = 4) and random 
subset 2 included an unbalanced design with the same sample size 
for groups NCB, SR and SR_NCB (n = 36) and the maximum sample 
size for CB (n = 4). A similar univariate analysis as above was done for 
each of the random subsets.

A distance- based redundancy analysis (dbRDA) constructed 
from a Bray– Curtis distance matrix and the morphological traits 
was done to examine and visualize differences in bacterial commu-
nity structure and the influence of these traits on the two Ecklonia 
morphs. For this analysis, morphological traits were also included 
as relevant covariates upon an initial stepwise model selection (i.e. 
based on AIC, package vegan, Oksanen et al., 2013). As above, all 
morphological traits were log- transformed, normalized (i.e. centred 
by mean and standard deviation, function scale, base R) and checked 
for multicollinearity before the analysis. Marginal tests (i.e. distance- 
based linear modelling) were done to estimate the independent 
influence of each morphological trait in explaining the observed 
variation in bacterial community structure between the two morphs 
(alpha < 0.05, package vegan, Oksanen et al., 2013). In addition to 
the dbRDA, a principal component analysis (PCA) was used to exclu-
sively visualize the influence of morphological traits to differentiate 
the two morphs.

A similar statistical approach as above was used to determine 
functional differences (i.e. PICRUST2 predicted functional profiles) 
between E. radiata and E. brevipes and to test for differences in com-
munity dissimilarity among the four categories above (i.e. CB, NCB, 
SR and SR_NCB).

 1365294x, 2023, 16, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17056 by Institute O
f M

arine R
esearch, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4590  |    GONZALEZ et al.

3  |  RESULTS

3.1  |  Influence of host genotype on associated 
bacterial composition and predicted function

A total of 5486 bacterial ASV were identified and remained after 
pre- processing (i.e. singleton removal and normalization) and used 
for further analysis (86% of ASV remained and 89% of all total reads 
retained from the original ASV abundance table, see Table S10).

Comparisons of Bray– Curtis dissimilarities between pairs of 
samples within the four categories of host genotype combinations 
showed a higher bacterial compositional dissimilarity between dif-
ferent morphs (SR_NCB) than among unique genotypes within each 
morph (NCB and SR) or among identical clones of E. brevipes (CB) 
(Figure 3a and Table S2A, F = 24.2, df = 3 and p < .001). Interestingly, 
compositional variability of bacterial communities was also found 
to be lower between individuals with identical clonal genotype (CB) 
compared to categories that included comparisons among individ-
uals with different genotypes (Figure 1a, NCB, SR and SR_NCB). 
Additional tests with random subsets with the lowest possible bal-
anced design (n = 4) and a subset adjusted to the next lowest sam-
ple size (n = 36) provided further evidence of these patterns despite 
the differing sample size (Figure S1A,B and Table S2B,C, subset 
1: F = 5.44, df = 3 and p = .013; and subset 2: F = 15.28, df = 3 and 
p < .001).

Bray– Curtis dissimilarities from predicted metabolic pathways 
and the categories outlined above (i.e. CB, NCB, SR and SR_NCB) 
showed no differences in the functional profiles between the cat-
egories except between NCB and SR (Figure 3b) with higher func-
tional profile dissimilarity within sexual morphs of E. radiata than 
non- clones of E. brevipes (Figure 3b and Table S3A, F = 3.04, df = 3 
and p = .03). Further analysis with random subsets of balanced 
data as above showed no differences across the four categories 
(Figure S1C,D and Table S3B,C; subset 1: F = 1.11, d = 3 and p = .38; 
and subset 2: F = 1.56, df = 3 and p = .20). No difference in variabil-
ity of predicted functional profiles was found between categories 
(Figure S6).

3.2  |  Differences in bacterial communities driven 
by Ecklonia morphs

There was no differences in bacterial richness and evenness be-
tween the two Ecklonia morphs (Figure 4a,c, F = 0.99, df = 1 and p 
value = .33; F = 4.23, df = 1 and p value = .52, respectively) but bac-
terial diversity was lower in the sexual morph E. radiata (Figure 4b; 
F = 5.05, df = 1 and p value = .035). Evaluated morphological traits 
after model selection were not found to be significant predictors 
of alpha- diversity indices (Table S4, overall F = 3.62, df = 1 and 
p > .07). None of the bacterial alpha- diversity indices differed among 

F I G U R E  3  Comparison of Bray– Curtis dissimilarity distances calculated to compare (a) bacterial composition and (b) predicted metabolic 
pathways among established grouping categories: comparisons among individuals of the same clonal genotype of E. brevipes (CB, n = 4 
clones); different clones of E. brevipes (NCB, n = 36); all individuals of E. radiata with unique genotypes (SR; n = 105) and among all genotypes 
of both morphs (SR_NCB; n = 135). Box and whisker plots show median, minimum, maximum an interquartile of the Bray– Curtis dissimilarity 
index per category. Different kelp colours represent different genotypes and background (green or yellow) indicates the type of Ecklonia 
morph. Significant differences across categories in a and b are denoted by different letters (p < .05, based on post- hoc tests and Bonferroni 
p- value adjustment).
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    |  4591GONZALEZ et al.

genotypes of the two morphs (Table S4, overall LRT <0.003, df = 1 
and p > .90).

PERMANOVA results (Figure 5, Figure S2 and Table S5A, F = 5.02, 
df = 1 and p- value < .005) showed clear differences in the bacterial 
assemblage structure between the two morphs that is not driven by 

intra- group variability (PERMDISP, Figure S3 and Table S5B, F = 0.45, 
df = 1 and p value = .50). Measured morphological traits were found 
to differentiate the two morphs and as expected, the number of 
lateral haptera (Hap) was the main driver of this dissimilarity (PCA 
analysis, Figure S4). However, results of the dbRDA, stepwise 

F I G U R E  4  Alpha- diversity indices of host- associated bacterial communities between two Ecklonia morphs (E. radiata and E. brevipes). 
Significant decreases in the different alpha- diversity indices between morphs are marked with an asterisk (p < .05, based on the pairwise 
contrasts between morphs obtained from the multiple- factor ANCOVAs). These values are based on samples from 15 unique genotypes 
of E. radiata and 9 unique genotypes of E. brevipes. Values shown represent the mean ± SE of each alpha- diversity index per morph. See 
Table S2 for full details of statistical tests for each alpha- diversity index.

F I G U R E  5  Distance- based redundancy analysis (dbRDA) and principal coordinate ordination of the differences in bacterial community 
composition between two morphs of Ecklonia, E. radiata with 15 unique genotypes (UG) and E. brevipes with 9 different clonal genotypes 
(CG). Different colours represent the two Ecklonia morphs and different shapes for E. brevipes show distinct clonal genotypes. All E. 
radiata genotypes were unique and are represented as circles. Ellipses represent standard error of weighted centroids and arrows indicate 
significant morphological traits (Lateral width, LatW).
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model selection and associated marginal tests showed none of the 
morphological traits (except LatW) predicted bacterial community 
structure (Figure 5 and Table S6A; marginal test: F = 4.67, df = 1 and 
p- value > .001).

The structural differences of bacterial communities between 
E. radiata and E. brevipes were driven by the relative abundance of 
210 ASV within 53 identified genera. Of these, only seven genera 
showed a relative abundance higher than 0.5%, and only five were 
found to significantly differ between the two morphs (Figure 6 and 
Table S7, the full list of genera is shown in Table S8). The genera 
Granulosiccocus and Blastopirellula (class Gammaproteobacteria and 
Planctomycetes) were overall the most abundant taxa across all 
samples (see Figure S5). However, Granulosiccocus showed a higher 
abundance in E. radiata compared to E. brevipes (Figure 6, 73% 
higher in relative abundance, p < .05) while Blastopirellula and the 
genera, Litorimonas, Sva096 marine group and Rubidimonas (classes, 
Bacteroidia, Acidimicrobiia and Alphaproteobacteria, respectively) 
had greater relative abundance in E. brevipes (Figure 3, p < .05). The 
relative abundances of these genera showed no significant linear 
relationship with lateral width (Table S7, overall F < 1.93, df = 1 and 
p > .2).

The relative abundance of predicted bacterial metabolic path-
way composition differed between the two morphs (Figure 7, 
PERMANOVA: F = 4.78, df = 1 and p = .012, Table S5). These dif-
ferences were not driven by intra- group dispersion (Figure S6 and 
Table S5, F = 1.21, df = 1 and p = .26) but marginal tests of relevant 
morphological traits based on model selection showed the influence 
of lamina width (LamW) as a potential driver of predicted bacterial 
metabolic composition (Figure 5 and Table S6B). However, only one 
predicted metabolic pathway was found to differ between Ecklonia 
morphs which corresponded to a carbohydrate degradation pathway 
(i.e. L- rhamnose degradation, W = 16.62 and p = .043) which is 40% 
higher in E. brevipes than E. radiata but was an overall rare pathway 
(0.02% of all predicted gene families across all samples; Table S9).

4  |  DISCUSSION

Host genotype is known to be an important driver of associated mi-
crobiomes through multiple mechanisms that are only beginning to be 
studied in marine habitat- forming species (e.g. Griffiths et al., 2019; 
Lachnit et al., 2009; Longford et al., 2019). Morphological variability 
in the host is an important factor that determines the colonization 
and structure of associated microbial communities (Van der Loos 
et al., 2019) as these differences may contribute to varying levels 
of resource availability and protection towards the changing envi-
ronment (Dittami et al., 2021; Egan et al., 2013; Jiang et al., 2020; 
Whipps et al., 2008). Differences in morphological traits between 
individuals of a same species are undoubtedly regulated by a genetic 
background and influence associated microbiomes; however, other 
process determined by the host genotype may also be involved in 
shaping microbial assemblages but are yet to be clearly defined 
and remain challenging to study. To disentangle the roles of host 

genotype independently from morphological traits, we explored 
variation in microbial communities between co- occurring clonal veg-
etative and non- clonal sexual morphs of the kelp, E. radiata that live 
interspersed on the same reefs and hence experience consistent en-
vironmental conditions.

4.1  |  Genotype as a driver of bacterial assemblages 
on Ecklonia radiata

Genetic host variants and specific gene polymorphisms have been 
directly linked to the increase and decrease in specific bacterial 
groups in many host systems (Imhann et al., 2018; Wang et al., 2018). 
From these studies, it becomes clear that genetic variation, even be-
tween individuals in the same population, can be highly specific and, 
in turn, can determine individual differences in the associated mi-
crobiomes and the functions they regulate. Our results highlight the 
importance of the genotype in defining the associated bacterial com-
munity of E. radiata. Within this species, unique non- clonal sexual E. 
radiata genotypes (15 unique genotypes) and 9 unique vegetative E. 
brevipes genotypes (each with 1 or 2 identical clonal replicates) were 
found. Individuals within each E. brevipes clone genotype had a more 
similar and less variable bacterial composition compared to different 
non- clonal genotypes of E. brevipes and all individuals with unique 
genotypes of E. radiata that were produced sexually (Figure 1a and 
subset analysis in Figure S1A,B) providing evidence that host geno-
type plays a role in determining the microbiome. This, however, was 
not reflected in the functional metabolic profiles (Figure 1b and 
random subset analysis in Figure S1C,D) where predicted metabolic 
composition was found to be less variable and more similar across 
the different genotype categories (i.e. CB, NCB, SR and SR_NCB) 
than that of the same categories (Figure 1a).

With an identical genetic relatedness among individuals within 
clones of E. brevipes, it is possible that regulation of multiple pro-
cesses would result in a more similar bacterial assemblage. Such 
processes may include epithelial release of multiple primary and 
secondary metabolites that influence resource allocation and avail-
ability for the microbiome (Coyte et al., 2015). This metabolite pro-
duction can also control associated microbial abundances through 
the release of antimicrobial compounds (Kelman et al., 2001) or by 
regulating the host's immune response and defence to environ-
mental change, xenobiotics or external pathogens (Chi et al., 2018; 
Jani & Briggs, 2018; Leopold & Busby, 2020; McKnite et al., 2012; 
Parkinson et al., 2015). Evidence of the importance of genetic relat-
edness on the regulation of functional processes that directly affect 
the associated microbiome can be found in many species. For ex-
ample, gut microbiota from identical twins has been observed to be 
more similar in composition compared to fraternal twins (Goodrich 
et al., 2016; Selber- Hnatiw et al., 2020; Xie et al., 2016) and even 
determine their functional response during disease (e.g. IBD, Imhann 
et al., 2018). Another example in birds demonstrates that members 
of the same family have a more similar skin microbiome in contrast to 
other families of the same species (Engel et al., 2020). It is important 
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to note that compositional and structural taxonomical differences 
in microbial communities between individuals may not translate to 
functional shifts as predicted in the present study. Large redun-
dancy in functional roles exists across bacterial taxa (Doolittle & 

Booth, 2017; Louca et al., 2018) so additional research is needed 
to elucidate which processes are being directly regulated by the ge-
notypic identity of E. radiata individuals that possibly gives them a 
structural and functional genotype- specific microbiome profile.

F I G U R E  6  Selected genera (relative abundance >0.5%) that differed significantly between two Ecklonia morphs (E. radiata and E. brevipes, 
p < .05). Relative abundance values are shown as mean ± SE and significantly lower relative abundance between the two morphs are shown 
with an asterisk (p < .05, based on pairwise contrast obtained through a one- way ANCOVA for each genus).

F I G U R E  7  Distance- based redundancy analysis (dbRDA) and principal coordinate ordination of the compositional differences of 
predicted bacterial metabolic pathways composition between two morphs of Ecklonia, E. radiata with 15 unique genotypes (UG) and E. 
brevipes with 9 different clonal genotypes (CG). Different colours represent the two Ecklonia morphs and different shapes for E. brevipes 
show distinct clonal genotypes. All E. radiata genotypes were unique and are represented as circles. Ellipses represent standard error of 
weighted centroids and arrows indicate significant morphological traits (Lamina width, LamW).
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4.2  |  Morphological traits as drivers of 
microbiomes in two Ecklonia radiata morphs

Morphology is a key component that determines intraspecific varia-
tion and is directly influenced by the different genotypes present in 
a population. Variation in morphological traits has been seen to di-
rectly affect multiple ecosystem processes and resistance to stress-
ors (e.g. Séguin et al., 2014; Vadillo Gonzalez et al., 2021) so it was 
hypothesized that morphological variability would also play a role to 
shape host associated microbiomes. However, its role as the main 
driver of microbial communities is not fully understood and other 
explanatory factors also regulated by the host's genotype were 
expected to be at play (e.g. production of secondary metabolites, 
immune responses or nutrient allocation). In this study, most mor-
phological traits did not explain most variation in the structure of 
the host microbiome, except the presence of haptera. Although the 
kelp region targeted for microbial sampling was not the haptera, and 
was consistent across individual kelp, this is the main morphological 
feature that differs between morphs. Thus, any observed difference 
in microbial assemblage structure between morphs is very likely to 
be related with differences in the lateral haptera even though micro-
bial samples were sampled consistently on similar sections of blades. 
Alternatively, haptera, as being vegetative- reproductive structures 
that have constant growth, may hold a unique localized microbial 
community that may be transferred to the new clone but targeted 
sampling on this section of the thallus is needed to assess this 
(Coleman & Wernberg, 2018). Kelp need high translocation of nutri-
ents from other regions of the lamina (also seen in other Laminariales 
such as Macrocystis pyrifera, Lobban, 1978) and may provide a larger 
exchange surface for biofilm formation and nutrient exchange with 
the bacterial communities. Thus, it may be possible but still largely 
speculative that the quality and number of resources allocated to 
production of lateral haptera may modulate not only a slightly more 
diverse bacterial community in E. brevipes as seen in this study (14% 
more diverse than E. radiata), but also the specific taxa and their as-
sembly. Additionally, a greater morphological complexity given by 
the haptera can directly affect the host's physicochemical proper-
ties with the formation of microniches where the microbial commu-
nities can survive and thrive (Phelps et al., 2021; Tang et al., 2010). 
For other kelp species, higher morphological complexity increases 
surface area for the establishment of heterotrophic microbial com-
munities and biofilm formation (Van der Loos et al., 2019). Biofilm 
formation is directly dependent on the spatial region within individ-
ual algae as some parts of the host (i.e. haptera) may provide a better 
microhabitat for specific microbes (Lemay et al., 2021).

In E. radiata, the most abundant bacterial taxa, Granulosiccocus, 
showed a decrease in E. brevipes while the rest of the identified genera 
(Blastopirellula, Litorimonas, Sva0996 marine group and Rubidomonas) 
presented an increase in the latter morph. All these genera are known 
to be widespread in marine environments (Gonzalez et al., 2021) and 
appear as heterotrophic bacteria utilizing secreted nutrients from the 
surfaces of laminarian brown algae (Behera et al., 2017; Bengtsson 
& Øvreås, 2010; Park et al., 2014; Ramírez- Puebla et al., 2022; Rizzo 

et al., 2016). However, Granulosiccocus has been seen in some stud-
ies to be more abundant in mature blades compared to newer re-
gions with possibly higher growth rates (seen in the kelp, Nerocystis 
luekeana; Weigel & Pfister, 2021). These characteristics may provide 
evidence that lateral haptera and associated structures in E. brevi-
pes could delimit the bacterial composition through a microhabitat 
that selects for specific taxa and population reduction of others. 
However, it is likely that even with these clear differences in bacte-
rial composition between the two morphs, a high functional redun-
dancy may exist.

By predicting functional abundances of genetic families using the 
16S amplicon sequences, it was possible to infer a potential overview 
of the bacterial metabolic capacity of each associated microbiome in 
both Ecklonia morphs. Results show some evidence of different pre-
dicted functional compositions between both Ecklonia morphs; how-
ever, these differences are only represented significantly by a single 
and low abundant metabolic pathway (i.e. L- rhamnose degradation). 
L- rhamnose is a known sugar that appears in many carbohydrates 
like Pectin and Ulvan and are an important structural component in 
many macroalgal cell walls (Martin et al., 2014). Many known bac-
terial taxa can degrade not only L- rhamnose but many other sug-
ars available in macroalgal laminar surfaces (Martin et al., 2014); 
therefore, the relatively higher levels of this potential metabolic 
activity in E. brevipes may not reflect a substantial difference in the 
functional roles of the associated microbiomes. Some examples in 
marine organisms are known where large taxonomical differences 
in microbial communities exist between individuals of the same 
species but do not translate to differences in the functional meta-
bolic processes they regulate (e.g. Ulva australis, Burke et al., 2011 
or sponges, Thomas et al., 2016). Results in this study may suggest 
a possible functional redundancy between bacterial communities 
that is uncoupled to the observed differences in bacterial com-
munity composition and structure between both Ecklonia morphs. 
It needs to be noted that the prediction of functional profiles and 
other annotation methods such as the one used in this study have 
important limitations when interpreting functions in microbial com-
munities. For example, functional predictions can be highly variable 
compared to data obtained through direct functional assessments 
such as shotgun metagenomic sequencing and transcriptomics 
(Toole et al., 2021) and may be poorly represented in non- human 
environments (Sun et al., 2020). Nonetheless, the available genomes 
from which the present functional profiles are being predicted are in 
constant development and enough resolution at this stage exists to 
be able to do a general metabolic profiling of the bacterial communi-
ties (Douglas et al., 2020; Trego et al., 2022). Thus, the results here 
can provide a rough understanding of the functional capacity of the 
kelp's associated bacterial community, but further research should 
be done to assess specific functions and real- time intraspecific ge-
netic regulation that could vary between the two morphs.

In this study, clear differences in bacterial communities were ob-
served between two different morphological groups (E. radiata and 
E. brevipes) but also at the level of individuals with distinct genotype. 
Specifically, individuals of the same clonal genotype of E. brevipes 
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show evidence of a more similar bacterial community composition 
and possibly a functional profile that may not be completely defined 
by morphological traits or the environment. Although a limitation of 
this study was a low number of unique clones (n = 4 clonal genotypes 
with 2 individuals each), we show using random subsets with varying 
and balanced sample sizes, that there is still a higher similarity in bac-
terial communities among individuals within each clone of E. brevipes 
compared to all unique genotypes of E. radiata. Genetic relatedness 
is thus strongly associated with microbial communities in kelps, but 
further research is needed to corroborate this finding. A deeper un-
derstanding of the mechanisms and processes that host genotype 
regulates within these systems will expand the knowledge of holobi-
onts within a constantly deteriorating environment, but also inform 
of the potential of specific genotypes on increasing the performance 
of macroalgae restoration (Qiu et al., 2019; Wood et al., 2021) or for 
commercial use.
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