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Abstract

In nature, organisms are exposed to variable environmental conditions that impact

their performance and fitness. Despite the ubiquity of environmental variability, sub-

stantial knowledge gaps in our understanding of organismal responses to noncon-

stant thermal regimes remain. In the present study, using zebrafish (Danio rerio) as a

model organism, we applied geometric morphometric methods to examine how chal-

lenging but ecologically realistic diel thermal fluctuations experienced during differ-

ent life stages influence adult body shape, size, and condition. Zebrafish were

exposed to either thermal fluctuations (22–32�C) or a static optimal temperature

(27�C) sharing the same thermal mean during an early period spanning embryonic

and larval ontogeny (days 0–30), a later period spanning juvenile and adult ontogeny

(days 31–210), or a combination of both. We found that body shape, size, and condi-

tion were affected by thermal variability, but these plasticity-mediated changes were

dependent on the timing of ontogenetic exposure. Notably, after experiencing fluctu-

ating temperatures during early ontogeny, females displayed a deeper abdomen while

males displayed an elongated caudal peduncle region. Moreover, males displayed

beneficial acclimation of body condition under lifelong fluctuating temperature expo-

sure, whereas females did not. The present study, using ecologically realistic thermal

regimes, provides insight into the timing of environmental experiences that generate

phenotypic variation in zebrafish.
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1 | INTRODUCTION

Genotype–environment interactions are ubiquitous among living

organisms and ultimately affect organismal form and function. Of the

various environmental factors that can affect phenotype, temperature

is one of the most influential (Angilletta & Michael, 2009; Johnston &

Bennett, 2008). Temperature has profound within-lifetime effects on

ectothermic organisms and can alter the physiology and life history of

individuals (Gunderson & Leal, 2016; Hutchings, 2021; Johnston

et al., 2006; Paaijmans et al., 2013). The mechanism by which these

changes occur is known as phenotypic plasticity, defined as the ability

of an organism to alter its phenotype in response to stimuli from its

environment (West-Eberhard, 2008). Phenotypic plasticity is a partic-

ularly important driver of phenotypic variation in teleost fish, which

are highly plastic in their morphology, life history, and physiology
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(Beaman et al., 2016; Jayasundara & Somero, 2013; Johnston

et al., 2006; West-Eberhard, 2008).

The size and shape of organisms represent important metrics for

understanding the phenotypic effects of plasticity to temperature in

ectotherms, given their role as fitness correlates (Cargnelli &

Gross, 1996; Dickerson et al., 2002; Hassell et al., 2012; Koops

et al., 2004). Numerous studies exposing developing fishes to con-

stant temperatures have illustrated plastic morphological responses.

For example, warm temperatures experienced during incubation have

been shown to decrease both vertebral number and body size

(Garside, 1966; Reyes, 2015). Indeed, warm constant temperatures

often lead to decreases in body size across ectothermic taxa, estab-

lishing the temperature–size rule whereby organisms mature at smal-

ler sizes under warmer thermal conditions (Atkinson, 1994; Forster &

Hirst, 2012). In contrast, cool temperatures experienced during incu-

bation have been shown to increase body size and number of verte-

brae, and can also decrease the number of muscle fibers (Galloway

et al., 1998; Hubbs, 1922; Johnston et al., 2006). However, the nature

of morphological changes varies depending on the species, tempera-

ture regime applied, and ontogenetic timing of exposure (Chown &

Terblanche, 2006; Scharf et al., 2015). Indeed, studies have occasion-

ally found opposing effects of early vs. later ontogenetic thermal

exposure to the same conditions, suggesting we must address the

timing-dependent effects of temperature on phenotypic variation (Ivy

et al., 2021; Kingsolver & Woods, 2016).

Notably, the vast majority of studies on plastically induced mor-

phological changes in ectotherms have been done under constant

thermal conditions (Massey & Hutchings, 2021; Noble et al., 2018).

This is not realistic, nor ecologically relevant, as thermal variability is

the norm in nature (Shine et al., 1997). In turn, this means that our

knowledge of the effects of temperature on organisms is difficult to

apply to realistic scenarios (Massey & Hutchings, 2021; Morash

et al., 2018). Moreover, as anthropogenic climate change continues,

much of the world will experience greater thermal variability in addi-

tion to higher mean temperatures (Hansen et al., 2006). Although its

effects are largely underappreciated, thermal variability has the poten-

tial to significantly impact organismal performance in ways that we

currently cannot anticipate (Marshall et al., 2021; Schulte et al., 2011;

Slein et al., 2023).

In the present experiment, we quantify variation in body shape,

body length, and body condition in response to thermal variability

imposed during different life stages, in comparison with a constant

temperature regime sharing the same thermal mean. Our factorial

experimental design is based on the “strong inference approach” laid

out by Huey et al. (1999), in which the effects of early life exposure,

later life exposure, and their interaction in response to thermal

regimes are compared. Possible interactions indicate the existence of

beneficial or detrimental acclimation to early developmental condi-

tions (Huey et al., 1999). We expect to see differences in body size

and morphometry between the thermal treatment groups depending

on the timing of exposure. However, given the remarkable morpho-

logical variation in response to temperature demonstrated in fish taxa

thus far (Hubbs, 1922; Noble et al., 2018; Ramler et al., 2014; Vasseur

et al., 2014) and the paucity of existing morphological studies using

thermal variability (Massey & Hutchings, 2021), we make no predic-

tions regarding the direction or magnitude of these effects.

Here, we also examine sex-specific effects of thermally variable

conditions, as many ectotherms, including zebrafish, display different

acclimation capacities and physiological requirements that interact

with sex (dos Santos et al., 2021; Hoey et al., 2007; Pottier

et al., 2021; Vossen et al., 2022). Furthermore, zebrafish have an

environmental sex determination (ESD) system, in which tempera-

tures experienced during larval development influence the outcome

of sex, such that warmer incubation temperatures increase the pro-

portion of males in a clutch (Ospina-Álvarez & Piferrer, 2008; Uchida

et al., 2002). Because thermal ESD is associated with sex-specific

phenotypes and life-history patterns, we assumed that thermal vari-

ability may differentially affect male and female body shape and size.

With this information, we empirically address a crucial knowledge

gap in our understanding of the fundamental morphological changes

that occur under ecologically realistic temperature regimes.

2 | METHODS AND MATERIALS

2.1 | Natural history and experimental design

Zebrafish were chosen for this experiment for several reasons. Nota-

bly, zebrafish are a model species in biology and are well-suited to

studies of thermal variability, as they experience large daily tempera-

ture fluctuations of at least �5�C and have been known to survive

temperatures as low as 6�C and as high as 38�C (Spence et al., 2008).

Thus, because they experience thermal variability in their natural habi-

tats, they may have adapted the capacity to plastically respond to

highly variable temperature regimes (Johnston et al., 2006). Zebrafish

are also short-lived organisms, with lifespans in the wild rarely reach-

ing 2 years (Spence et al., 2008); it therefore follows that their thermal

environment during early development may serve as a reliable cue for

later conditions, a requisite for adaptive plasticity (Taborsky, 2017).

F IGURE 1 Position of 16 landmarks placed on zebrafish (Danio
rerio) for use in geometric morphometric analysis: 1, anterior tip of the
jaw; 2, anterior margin of the eye; 3, posterior margin of the eye;

4, top of the cranium anterior to the dorsal hump; 5, anterior base of
the dorsal fin; 6, posterior base of the dorsal fin; 7, upper base of the
caudal fin; 8, base of the central caudal ray; 9, lower base of the
caudal fin; 10, posterior base of the anal fin; 11, anterior base of the
anal fin; 12, base of the pelvic fin; 13, distal tip of the angular
articular; 14, ventral tip of the gill cover; 15, posterior tip of the gill
cover; 16, upper base of the left pectoral fin.
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In the present experiment, we selected two thermal treatments:

constant (C; 27�C, static) and fluctuating (F; 22–32�C, sinusoidal diel

fluctuating). The diel fluctuating range of temperatures was selected

to represent the maximum range of temperatures under which zebra-

fish can normally develop, and are thus considered a challenging but

ecologically relevant level of thermal variability (Spence et al., 2008).

We used a factorial experimental design to contrast the contribu-

tions of “early” fluctuating temperature exposure, “later” fluctuating

temperature exposure, and their interaction towards variation in body

shape and size (Huey et al., 1999; Massey et al., 2022). Briefly, we

split clutches of fish during embryonic and larval stages, placing them

in either C or F early temperature treatments until the approximate

juvenile stage was reached (30 days post-fertilization [dpf]). At 30 dpf,

each group was split once more into C or F for the remainder of their

juvenile and adult ontogeny (until �180 dpf) to isolate later tempera-

ture effects.

We used 30 dpf to define the early ontogenetic period because it

is largely recognized as the onset of the juvenile period, at which adult

characteristics are defined in the absence of sexual maturity, reflect-

ing a natural widely used timepoint for investigating early develop-

mental effects (Bradford et al., 2022; Parichy & Kaplan, 1995).

Because it is a recognized standard, this timepoint allows for compari-

sons with other experimental studies (e.g., Massey et al., 2022).

Although there appears to be natural variation in timing

of zebrafish juvenile maturity between individuals (Singleman &

Holtzman, 2014), in this study it was not logistically feasible to test

every individual such that they entered their later treatment at the

same maturity stage. However, given that the latency period between

the end of our early treatment period and measurement time was a

significant portion of the experiment (5 months, >80%) and zebrafish

lifespan, we expect that slight differences in maturity on treatment-

switching will not have significantly biased our results.

2.2 | Fish rearing

In February 2021, four clutches of 0–1 h post-fertilization (hpf)

wildtype-AB zebrafish eggs from different non-sibling fish pairings

(“families”) were collected from the Dalhousie Zebrafish Core Facility.

Within 4 h of oviposition, eggs from each clutch were randomly and

equally divided between the early C and F temperature treatments at

a density of 40 individuals/2.8-L tank, distributed into six replicate

TABLE 1 Anatomical descriptions of the positions of 15 whole-
body landmarks placed on adult zebrafish (Danio rerio) for use in
geometric morphometric analysis

Landmark Description

1 Anterior tip of the jaw

2 Anterior margin of the eye

3 Posterior margin of the eye

4 Top of the cranium anterior to

the dorsal hump

5 Anterior base of the dorsal fin

6 Posterior base of the dorsal fin

7 Upper base of the caudal fin

8 Base of the central caudal ray

9 Lower base of the caudal fin

10 Posterior base of the anal fin

11 Anterior base of the anal fin

12 Base of the pelvic fin

13 Distal tip of the angular articular

14 Ventral tip of the gill cover

15 Posterior tip of the gill cover

16 Upper base of the left pectoral fin

TABLE 2 Multiple analysis of variance describing the effects of predictors of body shape coordinates across 16 landmarks in zebrafish (Danio
rerio) exposed to either constant (27�C) or fluctuating (22–32�C, diel) thermal regimes during early temperature exposure (0–30 days post-
fertilization) and later temperature exposure (30–210 days post-fertilization)

Df SS MS Rsq F Z P

Log (centroid size) 1 0.00749 0.007487 0.01172 3.2623 2.5863 0.004

Early temperature 1 0.00313 0.003128 0.0049 1.3628 0.8667 0.204

Late temperature 1 0.0129 0.012901 0.0202 5.6215 3.6391 0.001

Sex 1 0.07723 0.077225 0.1209 33.6504 7.2112 0.001

Family-level effects 3 0.05388 0.017961 0.08435 7.8264 6.5329 0.001

Early: later temperature 1 0.00276 0.002757 0.00432 1.2012 0.6094 0.267

Early temperature: sex 1 0.0038 0.0038 0.00595 1.656 1.2756 0.095

Later temperature: sex 1 0.00292 0.00292 0.00457 1.2722 0.749 0.231

Early:later temperature: sex 1 0.00214 0.002143 0.00336 0.9338 0.0731 0.477

Residuals 191 0.43833 0.002295 0.68621

Note: Numbers in bold indicate significant shape variation associated with each predictor, and centroid size can be interpreted as a measure of overall body

size (N = 203).

Abbreviations: Df, degrees of freedom; F, f-score; MS, mean squares; P, p-value; Rsq, r-squared; SS, sum of squares; Z, z-score.
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tanks per treatment (total = 24 tanks). Fish were fed twice daily with

commercial feed (Gemma Micro 150; Skretting).

The eggs and larvae were reared in these treatments until they

entered the juvenile period (30 dpf). After this point, the two treat-

ment groups were once again divided into later C or F temperature

treatments and placed in tanks at a density of 12–15 per 2.8-L tank.

Ultimately, each tank experienced a combination of early temperature

treatment (C or F) and later temperature treatment (C or F).

2.3 | Data collection

In August 2021, when the fish were approximately 6 months old, up

to 10 fish per tank were randomly selected from each of the six repli-

cate tanks (49–53 fish per factorial combination) and anesthetized

using tricaine methanesulfonate (MS-222) at a concentration of

80 mg/L to assess morphology. The fish were weighed, measured,

and photographed with a digital camera (OMD-Mark III; Olympus)

using best-practice photography methods after Muir et al. (2012).

Briefly, the left side of each fish was photographed under soft light

with a scale bar in each image and straightened along their axis of

alignment prior to photographing. All images used a fixed focal length

of 45 mm and an aperture of f/8, and care was taken to ensure the

focal plane of the camera was horizontal with respect to the fish.

In cases where a large body depth caused the head and/or tail to

bend downwards, a thin wedge of foam was placed underneath the

anterior and/or posterior end of the fish to reduce distortion (Muir

et al., 2012). Fish were sexed at the time of photographing by experi-

enced zebrafish researchers (M. Massey and M. K. Fredericks) based

on established dimorphic external characteristics commonly used in

zebrafish laboratories (Schilling, 2002; Spence et al., 2008). Fish were

classified as male if they presented yellow coloration on the tail fin

and/or abdominal underside, presented relatively dark blue stripes,

lacked obvious gravidity, and lacked visible genital papillae

(Schilling, 2002; Spence et al., 2008; Yossa et al., 2013). We measured

standard length using Image J software with a transparent standard

ruler for calibration (Schneider et al., 2012).

2.4 | Statistical analysis

Photographs were used to perform a geometric morphometric

analysis of body shape variation among treatment groups. The

“geomorph” package (Adams et al., 2020) in the R Statistical

Environment (v4.2.3) was implemented to perform analyses. A total of

16 anatomical fixed landmarks were selected based on those used in

previous morphometric studies of zebrafish (Figure 1 and Table 1;

Georga & Koumoundouros, 2010). We also estimated body condition

using Fulton's K, which is based on the body length (anterior tip of the

jaw to the tail fork) to weight ratio (K = 100 � mass � length-3; Nash

et al., 2006).

After cataloguing anatomical landmarks on each specimen, we

used a generalized Procrustes analysis (GPA) to standardize shape

data (Dryden & Mardia, 2016). GPA is a standardization method that

uses the first image in the data set as the reference image on which all

others will be optimally superimposed to facilitate direct comparison.

This requires a process that translates each specimen to the central

origin, scales each to a unit centroid size, and optimally rotates them

until corresponding landmark points are as closely aligned as possible

(Mitteroecker et al., 2013; Zelditch et al., 2004).

F IGURE 2 Warp meshes depicting the minimum and maximum

landmark values detected in zebrafish (Danio rerio) exposed to either
constant (27�C) or fluctuating (22–32�C on a diel basis) thermal
treatments during early ontogeny (0–30 days post-fertilization) or
later ontogeny (30+ days post-fertilization). (a) Minimum and
maximum values for principal component (PC) 1, summarized by
reductions in abdominal depth. (b) Minimum and maximum values for
PC2, summarized by lengthening of the caudal peduncle.
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We performed a principal components analysis (PCA) on shape

(Procrustes coordinates) to visualize the major aspects of body

shape variation, using the “gm.prcomp” function in geomorph (Adams

et al., 2020). A multivariate analysis of variance (MANOVA) was used

to examine the influence of treatment (early temperature treatment,

later temperature treatment, and their interaction), centroid size, sex,

and family on multivariate shape variation using the “procD.lm” func-
tion in the “geomorph” package, implementing the type II (hierarchi-

cal) sum of squares (Adams & Collyer, 2018). Body size was

represented by the centroid size of each specimen, calculated as the

square root of the sum of squared distances of each landmark from

the origin, or centroid, position (Zelditch et al., 2004). Family was

included in MANOVA analyses to account for variation between dif-

ferent lineages of fish, assumed to be due to genetic differences

and/or parental effects from stock fish, as we started the experiment

with four clutches of fish from different nonsibling fish pairings.

We implemented Bayesian univariate generalized linear mixed

models using the “brms” package in the R Statistical Environment

(v4.2.3) to estimate the effects of early temperature, later tempera-

ture, sex, and their interactions on principal components (PCs) 1–5, as

well as standard length and body condition. To account for correlation

between tankmates within treatment groups (pseudoreplication), we

included “tank” as a random intercept in all univariate models

(Harrison et al., 2018). All models used Gaussian distributions with

identity link functions. Weakly informative default priors were used to

provide moderate regularization.

2.5 | Animal use

The fish photographed in this experiment were originally part of a

larger study using the long-term experimental treatments described

herein (Massey et al., 2022) in order to ethically increase the scientific

value of their use. All 2021 studies on this colony were approved by

the Dalhousie University Committee on Laboratory Animals (Protocol

19-105).

F IGURE 3 Principal component analysis of the first two principal components (PCs) of body shape variation in zebrafish (Danio rerio) exposed
to either constant (27�C) or fluctuating (22–32�C on a diel basis) thermal treatments during early ontogeny (0–30 days post-fertilization) or later
ontogeny (30+ days post-fertilization). PC1 is associated with abdominal depth, explaining 25.07% of variation in overall body shape. An
increasing PC1 score is indicative of decreasing abdominal depth. PC2 is associated with caudal peduncle length, explaining 21.67% of variation in
body shape. An increasing PC2 score is indicative of decreasing caudal peduncle length. Data points are separated by sex (females: a, b; males: c,
d) and exposure period (early temperature: a, c; later temperature: b, d). Ellipses denote clusters of individuals that experienced the constant (blue)
or fluctuating (orange) temperature regime during early or later exposure periods.
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3 | RESULTS

3.1 | Plasticity in overall body shape and individual
PCs of shape

We detected significant differences in overall body shape between

groups (Table 2) caused by the later temperature treatment

(F(1,202) = 5.62, p = 0.001), centroid size (F(1,202) = 3.26, p = 0.004), sex

(F(1,202) = 33.65, p = 0.001), family-level effects (F(3,202) = 7.83,

p = 0.001), and the interaction between early temperature and sex (mar-

ginally significant; F(3,202) = 1.66, p = 0.095). There were no significant

differences in any other interactions or predictor variables (Table 2).

Our PCA revealed 46.74% of overall variance in body shape could

be explained by the first two PCs, which we focus on here (additional

PCs are detailed in Figures S1 and S2, and Tables S3 and S4). Positive

scores along PC1 were largely associated with decreased abdominal

depth (Figure 2a), whereas positive PC2 scores were largely associ-

ated with increased caudal peduncle length (Figure 2b). Variation

along PC1 and PC2, separated by sex, early temperature, and later

temperature is illustrated in Figure 3.

We detected complex effects of early temperature, later temperature,

sex, and their interactions on variation in abdominal depth (PC1) using a

Bayesian generalized linear mixed model (Table 3). Because Bayesian ana-

lyses make no claims of “significance,” for ease of interpretation we

describe effects as “significant” if 90% uncertainty intervals (UIs) do not

overlap zero, and “marginally significant” if 50% UIs do not overlap zero.

First, the early fluctuating temperature treatment had a significant,

positive effect on abdominal depth (negative effect on PC1 scores) in

females (Table 3; β = �0.0150, 90% UIs [�0.0277, �0.0019]), but the

opposite effect in males (Figure 3c and Table 3; β = 0.0.0117, 90% UIs

[0.0010, 0.0230]). There was a further, marginally significant positive

interaction between early temperature and later temperature in

response to fluctuating temperatures, positively affecting PC1 scores

(shallower abdominal depth) in both sexes (Table 3; β = 0.0125, 50%

UIs [�0.0190, �0.0059]). Sex also significantly influenced PC1 scores,

with males having shallower abdominal regions (Table 3; β = 0.0346,

90% UIs [0.0270, 0.0425]); this was the strongest fixed effect of all pre-

dictors. We also detected a small, positive effect of later fluctuating

temperature on abdominal depth, but there was low certainty on this

estimate (Table 3; β = 0.0012, 50% UIs [�0.0040, 0.0063]).

We detected complex effects of early temperature, later tempera-

ture, sex, and their interactions with caudal peduncle length (PC2;

Table 3). Early fluctuating temperature had a marginally significant,

negative effect on caudal peduncle length in females (Table 3;

TABLE 3 Fixed-effect posterior mean estimates, and 50% and 90% uncertainty intervals (UIs) from Bayesian generalized linear mixed models
explaining effects of predictors on abdominal depth decreases (principal component 1) and increases in the length of the caudal peduncle
(principal component 2) in zebrafish (Danio rerio)

Predictor
Posterior mean
effect size estimate 5% UI 95% UI 25% UI 75% UI

Principal component 1 (decrease in abdominal depth)

Intercept �0.021 �0.0302 �0.0123 �0.0245 �0.0174

Early fluctuating temperaturea �0.015 �0.0277 �0.0019 �0.0202 �0.0101

Later fluctuating temperature 0.0012 �0.0112 0.0142 �0.0040 0.0063

Male sexa 0.0346 0.0270 0.0425 0.0314 0.0378

Early:later fluctuating temperatureb 0.0138 �0.0050 0.0330 0.0064 0.0210

Early fluctuating temperature: malea 0.0117 0.0010 0.0230 0.0072 0.0161

Later fluctuating temperature: maleb 0.0068 �0.0039 0.0173 0.0023 0.0113

Early:later fluctuating temperature: maleb �0.0125 �0.0290 0.0035 �0.0190 �0.0059

Principal component 2 (increase in length of caudal peduncle)

Intercept �0.0011 �0.0151 0.0129 �0.0069 0.0048

Early fluctuating temperatureb �0.0137 �0.0333 0.0061 �0.0217 �0.0056

Later fluctuating temperatureb �0.0125 �0.0321 0.0080 �0.0207 �0.0043

Malea 0.0151 0.0053 0.0245 0.0112 0.0190

Early:later fluctuating temperatureb 0.0133 �0.0157 0.0412 0.0022 0.0245

Early fluctuating temperature: malea 0.0166 0.0031 0.0304 0.0112 0.0219

Later fluctuating temperature: male �0.0021 �0.0160 0.0111 �0.0076 0.0036

Early:later fluctuating temperature: maleb �0.016 �0.0354 0.0038 �0.0242 �0.0078

Note: Fixed predictors are early fluctuating temperature, later fluctuating temperature, male, and their interaction. Reference categories are constant

temperature and female. Posterior mean effect size estimates can be interpreted analogously to frequentist coefficient estimates. UIs can be interpreted

analogously to frequentist confidence intervals; nonoverlap of zero indicates higher confidence in effect size estimates (N = 203).
aImplies certainty at the 90% level.
bImplies certainty at the 50% level.
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β = �0.0137, 50% UIs [�0.0217, �0.0056]), but this effect was reversed

in males (Table 3; β = 0.0166, 90% UIs [0.0031; 0.0304]). Likewise, later

fluctuating temperature also had a marginally significant negative effect

on caudal peduncle length in both sexes (Table 3; β = �0.0125, 50% UIs

[�0.0207, �0.0043]). Sex overall significantly affected caudal peduncle

length, such that males had longer caudal peduncles (Table 3; β = 0.0151,

90% UIs [0.0053, 0.0245]). No other covariates or interactions explained

significant variation in caudal peduncle length (Table 3).

3.2 | Plastic effects on standard length and body
condition

Early fluctuating temperature had a significant and positive effect on

standard length on females (Figure 4a and Table 4; β = 1.1159, 90%

UIs [0.0272, 2.2466]), but both early and later fluctuating temperature

treatments negatively interacted with male sex (Table 4; β = �0.5654

and �0.6317, 50% UIs [�0.9959, �0.1113], [�1.0625, �0.2055],

respectively). Later fluctuating temperature significantly and nega-

tively impacted standard length (Table 4; β = �1;2289, 90% UIs

[�2.3016, �0.1028]). Likewise, males had lower standard length (mar-

ginally significant; Table 4; β = �0.3169, 90% UIs [�0.6189,

�0.0155]). Females that experienced both early and later fluctuating

temperatures had lower standard length (Table 4; β = �1.2975, 50%

UIs [�1.9409, �0.6475]), but this pattern was reversed for males

(Table 4; β = 1.4117, 50% UIs [0.7755, 2.0735]).

We also detected sex-specific effects of early temperature treat-

ment, later temperature treatment, and their interactions on body

condition, measured as Fulton's K (Figure 4b and Table 5). For

females, both early and later fluctuating temperatures had a

TABLE 4 Fixed-effect coefficient estimates, and 50% and 90% uncertainty intervals (UIs) from Bayesian generalized linear mixed models
explaining effects of predictors on standard length in zebrafish (Danio rerio)

Predictor

Posterior mean effect

size estimate 5% UI 95% UI 25% UI 75% UI

Intercepta 28.1726 27.3427 28.9861 27.8519 28.5151

Early fluctuating temperaturea 1.1159 0.0272 2.2466 0.6657 1.5763

Later fluctuating temperaturea �1.2289 �2.3016 �0.1028 �1.6715 �0.7915

Maleb �0.3169 �1.0715 0.4155 �0.6189 �0.0155

Early:later fluctuating temperatureb �1.2975 �2.9512 0.3316 �1.9409 �0.6475

Early fluctuating temperature: maleb �0.5654 �1.6551 0.4776 �0.9959 �0.1113

Later fluctuating temperature: maleb �0.6317 �1.6939 0.4180 �1.0625 �0.2055

Early:later fluctuating temperature:

maleb
1.4117 �0.1975 2.9942 0.7755 2.0735

Note: Fixed predictors are early fluctuating temperature, later fluctuating temperature, male, and their interaction. Reference categories are constant

temperature and female. Posterior mean effect size estimates can be interpreted analogously to frequentist coefficient estimates. UIs can be interpreted

analogously to frequentist confidence intervals; nonoverlap of zero indicates higher confidence in effect size estimates (N = 203).
aImplies certainty at the 90% level.
bImplies certainty at the 50% level.

F IGURE 4 Box plots depicting variation in standard length (a) and body condition (Fulton's K; b) in zebrafish (Danio rerio) exposed to constant
(C, 27�C) or fluctuating (F, 22–32�C on a diel basis) thermal treatments during early ontogeny (0–30 days post-fertilization) or later ontogeny
(30+ days post-fertilization). Data are categorized by early temperature treatment (x axis) and further split into later temperature treatments,
where blue represents constant and orange represents fluctuating. Each data point represents one individual sampled, N = 203.
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significant, positive effect on body condition (Table 5; β = 0.0026,

90% UIs [0.0008, 0.0044] for both predictors), but the positive effect

disappeared if females were reared in fluctuating temperature condi-

tions for both ontogenetic periods (Table 5; β = �0.0040, 90% UIs

[�0.0040, �0.0067]). This trend was reversed for males, who experi-

enced benefits to body condition when reared in fluctuating tempera-

tures throughout ontogeny (Table 5; β = 0.0045, 90% UIs [0.0010,

0.0079]). Males had overall lower average body condition compared

to females (Table 5; β = �0.0052, 90% UIs [�0.0069, �0.0035]).

4 | DISCUSSION

Thermal variability is pervasive in nature and can have important con-

sequences for organisms (Massey & Hutchings, 2021), but its plastic

effects on fish morphology are largely unknown. In this study, we

examined the relationship between overall body morphology and

thermal variability during different periods of ontogeny, allowing us to

isolate the effects of early (embryonic and larval), later (juvenile and

adult), and lifelong exposure to fluctuating temperatures. Although

our constant and fluctuating thermal regimes shared the same mean

temperature, we found several differences in body shape and size

owing to thermal variability that were driven by early thermal treat-

ments, later thermal treatments, or a combination thereof.

A notable result of our study is that differences in body shape

and size owing to early thermal exposures were largely sex-specific in

nature. Here, both abdominal depth and caudal peduncle length were

influenced through early life exposure to fluctuating temperatures,

such that females had deeper abdomens and shorter caudal

peduncles, while males displayed shallower abdomens and longer

caudal peduncles. Interestingly, these two traits are associated with

the reproductive biology of zebrafish. For example, the abdominal

girth of female fish is often positively associated with fecundity

(Ghaflemarammazi et al., 1998; Narejo et al., 1998). Indeed, in a recent

sister study using the same experimental rearing protocol, Massey

et al. (2022) found early developmental exposure to thermal variability

had an enhancing effect on fecundity. Given these data, it is likely

that under thermal variability, female abdominal depth increased as

a result of preferentially reallocating resources towards gonadal devel-

opment and reproduction (Guderley & Pörtner, 2010; Jasper &

Evenson, 2006). Previous studies have also found that male fish have

longer caudal peduncles on average, and consequently faster swim-

ming speeds (Ackerly & Ward, 2016; Conradsen & McGuigan, 2015).

These findings suggest that, for both sexes, thermal variability experi-

enced during early life may enhance traits associated with reproduc-

tive success. It is possible that any benefits to reproduction may

represent a life-history trade-off, especially given that long-term rear-

ing in fluctuating thermal conditions can impose constraints on body

size (Massey et al., 2022).

Sex-specific effects were also notable when the interactive

effects between ontogenetic treatments were compared. We found

that females who experience fluctuating thermal treatments during

both early and later ontogeny had a shallower abdomen and lower

body condition score than those who experienced only one fluctuat-

ing thermal treatment throughout their lifetime. Males, on the other

hand, benefited in terms of their body condition when reared in the

same conditions throughout their lifetime, regardless of the thermal

regime experienced. These results suggest that under long-term ther-

mal variability, there may be sexually dimorphic metabolic costs asso-

ciated with coping, and in this species, males appear to benefit from

environmental stability, regardless of the environmental conditions

(Missionário et al., 2022; Øverli et al., 2006; Whitney et al., 2016).

Furthermore, these sex-specific effects represent a case of sexual

dimorphism in “beneficial acclimation” (Leroi et al., 1994), or the

capacity of an organism to perform better in conditions previously

experienced. Empirical examples of beneficial acclimation are

rare in the literature (Angilletta & Michael, 2009; Wilson &

Franklin, 2002), but to our knowledge, this phenomenon has not

TABLE 5 Fixed-effect coefficient estimates, and 50% and 90% uncertainty intervals (UIs) from Bayesian generalized linear mixed models
explaining effects of predictors on body condition (Fulton's K) in zebrafish (Danio rerio)

Predictor

Posterior mean effect

size estimate 5% UI 95% UI 25% UI 75% UI

Intercepta 0.0267 0.0254 0.0279 0.0262 0.0272

Early fluctuating temperaturea 0.0026 0.0008 0.0044 0.0019 0.0033

Later fluctuating temperaturea 0.0026 0.0008 0.0044 0.0018 0.0033

Malea �0.0052 �0.0069 �0.0035 �0.0059 �0.0045

Early:later fluctuating temperaturea �0.0040 �0.0067 �0.0013 �0.0051 �0.0029

Early fluctuating temperature: malea �0.0034 �0.0058 �0.0009 �0.0043 �0.0024

Later fluctuating temperature: malea �0.0024 �0.0047 0.0000 �0.0034 �0.0014

Early:later fluctuating temperature:

malea
0.0045 0.0010 0.0079 0.0032 0.0059

Note: Fixed predictors are early fluctuating temperature, later fluctuating temperature, male, and their interaction. Reference categories are constant

temperature and female. Posterior mean effect size estimates can be interpreted analogously to frequentist coefficient estimates. UIs can be interpreted

analogously to frequentist confidence intervals; nonoverlap of zero indicates higher confidence in effect size estimates (N = 203).
aImplies certainty at the 90% level.
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yet been addressed through the lens of sex-specificity. Thus, incor-

porating treatment interactions with sex in future studies examin-

ing beneficial acclimation is warranted, especially in species

displaying sexual dimorphism.

There also appeared to be constraints imposed by long-term

later life exposure to fluctuating temperatures in later ontogeny.

We found that exposure during laterontogeny to thermal variability

led to decreases in both the length of the caudal peduncle and

standard length, and that these effects were not sex-specific. One

explanation for these changes may be the “temperature-size rule

(TSR)” (Atkinson, 1994), which suggests that experiencing warmer

temperatures during early ontogeny generally decreases adult body

size in ectotherms. This process is believed to occur due to differen-

tial temperature-dependent rates of somatic growth and differentia-

tion (i.e., maturity), such that differentiation occurs more rapidly at

high temperatures (Huey & Kingsolver, 1989; Van der Have & De

Jong, 1996). Consequently, maturity in our later fluctuating temper-

ature group, which repeatedly experienced warm temperatures,

may have been achieved at smaller body sizes (Van der Have & De

Jong, 1996), although a metric of age at maturity would be needed

to unequivocally confirm this. Although the TSR typically refers to

thermal conditions experienced during early life (Atkinson, 1994), in

the present experiment we found that these reductions in body size

were associated significantly with thermal experience during the juve-

nile and adult life stages, emphasizing the importance of long-term

experiments that extend beyond embryonic and larval conditions

(Massey & Hutchings, 2021). Ultimately these changes may have eco-

logical ramifications, as body size is correlated with both swimming

speed and predator avoidance (Conradsen & McGuigan, 2015; James &

Johnston, 1998).

There were several limitations to our study that open doors for

future work. First, the morphological changes we saw implied that

reproductive success, life history, and locomotion may also be

impacted. However, it was beyond the scope of this study to investi-

gate these consequences directly. Future studies on factors such as

mating behaviors and sexual competition, age at maturity, and physi-

ology of movement would address these remaining questions. Second,

in this study we compared two of an infinite number of possible ther-

mal scenarios. In nature, temperatures change on daily, seasonal, and

stochastic bases, in elaboration of the predictable diurnal cycle we

simulated. Continued empirical exploration of ecologically informed

temperature ranges, including seasonal variation and thermal stochas-

ticity, will benefit future studies, especially those investigating wild

organisms (Chevin et al., 2010).

Overall, we found that thermal variability has significant influ-

ence on the morphology of zebrafish through early ontogenetic

exposure, later ontogenetic exposure, and their interaction, and

these changes appear to be sex-specific. Moreover, differences

emerged even when mean temperatures were shared between

treatment groups, suggesting that our current reliance on empirical

data from constant temperature studies can bias our understanding

of organismal responses to realistic temperatures (Massey &

Hutchings, 2021). The morphological differences detected herein

have significant fitness implications related to reproduction, predator

avoidance, locomotion, and life history (Ackerly & Ward, 2016;

Hassell et al., 2012; Slein et al., 2023). Adapting life-history patterns

through plasticity may represent avenues for zebrafish and physio-

logically similar species to contend with the changing climactic con-

ditions observed worldwide, although these responses will be

dependent on when climate change stressors are experienced, rela-

tive to organismal ontogeny (Chevin et al., 2010; Seebacher

et al., 2015; Shama et al., 2014).
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