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Differences in nutrient and
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concentrations in Maurolicus
muelleri across the Bay of
Biscay, Norwegian fjords,
and the North Sea

Yiou Zhu1*, Atabak Mahjour Azad1, Marian Kjellevold1,
Carlos Bald2, Bruno Iñarra2, Paula Alvarez3, Guillermo Boyra3,
Marc Berntssen1, Lise Madsen1,4 and Martin Wiech1
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Clinical Medicine, University of Bergen, Bergen, Norway
Introduction: We are having pressing issues of global food insecurity and

malnutrition. Mesopelagic communities in the North Atlantic have been

estimated to have high biomasses of organisms. Some of these low-trophic

organisms are known to be nutrient-dense and may thus contribute to food

security and nutrition. Here, we aim to understand the variation in nutrient and

undesirable substance concentrations in a common mesopelagic species,

Maurolicus muelleri in the North Atlantic Ocean.

Methods: We sampled the M. muelleri from the Bay of Biscay (BB), Norwegian

fjords (NF), and the North Sea (NS). The concentrations of micro- and

macronutrients, undesirable metals, and persistent organic pollutants (POPs)

were measured in composite whole fish samples.

Results: We found no difference across the sampling areas in the selected

micronutrients except that the NF and NS samples had higher vitamin A1

concentrations than the BB samples. The NF samples had higher

concentrations of fat, fatty acids, and POPs but lower concentrations of

cadmium than the BB and NS samples; the differences in fat and fatty acids

were only marginal in the NF-BB pair. The BB samples had lower arsenic

concentrations than the NS samples, and lower concentrations of erucic acid

and mercury than the NF and NS samples. Comparing the measured values

against existing EU regulation values for nutrients and undesirable substances for

human consumption, we found that the samples from NS and BB may cause

food safety concerns due to their high cadmium concentrations, while the

M. muelleri from all the sampling areas are qualified as good sources of iron,

selenium, vitamin A1, and w-3 fatty acids.

Discussion: This study confirms that M. muelleri from the North Atlantic Ocean

may play an important role in food security and nutrition. However, potential

variations in nutrient and undesirable substance concentrations related to
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seasonality, fish body size, and maturity level shall be taken into consideration prior

to exploiting such a marine resource. Further understanding of trophic ecology, life

cycles, and productivity of M. muelleri is essential to investigate the drivers behind

the observed variation in nutrient and undesirable substance concentrations.
KEYWORDS

mesopelagic, food security, food safety and quality, nutrient, contaminant,
marine resource
Introduction

Global food security remains under challenge to date (FAO,

2022; Abay et al., 2023; Alabi and Ngwenyama, 2023), and

malnutrition is one of the most pressing issues (FAO, 2022;

Stevens et al., 2022), particularly in sub-Saharan Africa, southern

Asia and the Caribbean (Zurayk, 2020; FAO, 2022). Approximately

one in two children under five years of age suffer from deficiencies

in vitamins and other essential nutrients globally (UNICEF, 2019).

Deficiencies in certain essential nutrients may cause certain

diseases. Iron deficiency-induced anaemia (Camaschella, 2015;

Stevens et al., 2022), iodine deficiency disorders (Pearce and

Zimmermann, 2023), and vitamin A deficiency-induced eye

diseases (Rice et al., 2004; Zhao et al., 2022) are still prevalent

globally or regionally.

Aquatic foods are recognised as one of the key solutions to

combat global hunger and malnutrition (Smith et al., 2010; Tacon

and Metian, 2013; Hicks et al., 2019; Costello et al., 2020; Golden

et al., 2021; Cai and Leung, 2022). However, current aquatic food

systems are challenged by multiple global and regional threats,

including policies (e.g. trade policies, Chan et al., 2019), trade

(Smith et al., 2010), climate change (Tanentzap et al., 2020;

Tigchelaar et al., 2021), pollution (Hallgren et al., 2014),

overfishing (Jackson et al., 2001; Scheffer et al., 2005) and post-

harvest loss (Ahmed, 2008; Aulakh et al., 2013). Generating

knowledge of aquatic foods may help address some of these

challenges. Nevertheless, new marine resources of high quality

and quantity can contribute to combating global hunger

and malnutrition.

Mesopelagic communities are one of the least studied marine

systems compared to others with commercial interests. However, it

is suggested that they may play an important role in food security

and nutrition (FSN) (Standal and Grimaldo, 2020; Kourantidou and

Jin, 2022; Fjeld et al., 2023). Mesopelagic fishes are often low in

trophic level and diverse (Eduardo et al., 2022) and are estimated to

contain more than ten billion tons of biomass globally (Irigoien

et al., 2014; Standal and Grimaldo, 2021). In addition, some

mesopelagic species have been found to be dense in essential

nutrients such as iodine, selenium, vitamin A1 and w-3 fatty acids

(e.g. Alvheim et al., 2020; Grimaldo et al., 2020; Voronin et al.,

2023). Aquatic foods are a better source of a range of micronutrients

than other common animal-based foods, and an increase in the

intake of aquatic foods has been shown to have a major impact on
02
public health (Golden et al., 2021). This evidently points to the

potential of utilising mesopelagic species as feed and for human

consumption (Fjeld et al., 2023). However, nutrient concentrations

in wild-caught seafood often vary greatly geographically (Hicks

et al., 2019), and relevant data for mesopelagic species are lacking.

This may have implications for potential utilisation of

mesopelagic species.

Undesirable substances in aquatic food are yet a concern (e.g.

Garcıá et al., 2000; Bank et al., 2020) because they can cause human

health issues (Qin et al., 2010; WHO, 2010; Ruzzin, 2012; Shi et al.,

2019). These undesirable substances include microplastic (Lusher

et al., 2016; Barboza et al., 2018), metals and metalloids (e.g.

mercury, arsenic, and lead), and persistent organic pollutants

(POPs) such as po lych lor ina ted b ipheny l s (PCBs) ,

polybrominated flame-retardants (PBDEs), dioxins and furans

(Corsolini et al., 2005; Panseri et al., 2019; Wiech et al., 2020).

Some mesopelagic species have been shown to have relatively low

undesirable substance concentrations (Wiech et al., 2020; Berntssen

et al., 2021). Yet, potential differences in undesirable substance

concentrations have been observed among some mesopelagic

species (e.g. Wiech et al., 2020). This may intrinsically result from

the differences in the basal undesirable substance concentrations

(Islam and Tanaka, 2004; Beiras, 2018). Thus, further investigation

to infer the risks and benefits of exploiting mesopelagic species for

FSN is required.

The North Atlantic Ocean provides valuable fishing grounds for

many countries to nourish regional and global populations (Pauly

and Maclean, 2003). While most of the local fisheries focus on the

traditional and/or commercial species (Rose, 2007), mesopelagic

species remain as an opportunity to increase the productivity of

aquatic food (Grimaldo et al., 2020). Maurolicus muelleri is one of

the most abundant mesopelagic species in the North Atlantic Ocean

(Salvanes and Stockley, 1996; Salvanes and Kristoffersen, 2001; Rees

et al., 2020). Its biomass estimation in Southern Norway and West

of the British Isles was conducted in 1971–1976 with both

echosounders and trawls, which resulted in a stock size of

between 20,000 and 1,600,000 tons (Gjøsæter, 1986). Recently,

several trial fisheries also suggested the high biomass of M.

muelleri in Iceland (46,000 and 18,000 tons in 2009 and 2010,

respectively; Standal and Grimaldo, 2021), the North Sea (1,500

tons of mostlyM. muelleri; Bjordal and Thorvaldsen, 2020), and the

Bay of Biscay (70,000 to 160,000 tons in 2014-2017; Sobradillo et al.,

2019). To assess the potential of fisheries of M. muelleri to
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contribute to FSN, it is essential to understand their quality

(nutrients against undesirable substances) and how this may vary

within the North Atlantic Ocean.

In this study, we aimed to investigate the concentrations of

nutrients and undesirable substances in M. muelleri from different

sampling areas in the North Atlantic Ocean to examine potential

geographic variations. Specifically, we analysed the concentrations

of key nutrients and undesirable substances in theM. muelleri from

three sampling areas (Bay of Biscay, Norwegian fjords, and North

Sea); compared these concentrations with EU regulation values for

nutrients and undesirable substances in food; and detected any

differences in these values across the sampling areas.
Materials and methods

Sample collection

The Institute of Marine Research Norway (IMR) conducted

mesopelagic trawls in Norwegian fjords (NF, Figure 1; including

Bjørnafjorden, Boknafjorden, and Osterfjorden) during December

2018 (data published in Alvheim et al., 2020, and Wiech et al.,

2020), March 2020 and May 2020, and in the North Sea (NS,

Figure 1) during March 2020. Two pelagic otter trawls with equal-

sized mesh, one 35 m2 and one 350 m2 openings were deployed

(Table 1). AZTI conducted mesopelagic trawls in the Bay of Biscay

(BB, Figure 1) during September 2019 and September 2020 using a

Gloria HOD 352 pelagic trawl (Table 1). After landing, M. muelleri

individuals were identified, and a subsample of the catch

(approximately 100 individuals in BB and at least 50 in NF and

NS) was used to estimate the size distribution of the catch by

measuring the standard length. All samples were then frozen on

board at -18 °C and kept in the dark to avoid potential degradation

of light-sensitive compounds (e.g. vitamins).
Substance analyses

From each trawl, we made one or two composite sample(s) by

selecting and homogenising at least 25 whole M. muelleri individuals.

We analysed important substances (including both nutrients and

undesirable substances) based on existing relevant studies (i.e.

Alvheim et al., 2020; Wiech et al., 2020) and EU regulations on

nutrients and undesirable substances (for all analysed substances, see

Appendix 1) with analytical methods (Table 2) which are accredited

according to NS-EN ISO/IEC 17025 (2017) or are holding the status of

National Reference Laboratory (NRL).
Data analysis

We first screened the data. For nutrients with less than 25% of

measured values below the limit of quantification (hereafter<LOQ)

for all the sampling areas, we chose the upper bound (UB) values for

the data analysis, i.e. the LOQ value. Otherwise, we excluded the

substance with more than 25% of values<LOQ for at least one
Frontiers in Marine Science 03
sampling area (e.g. vitamin A2 and vitamin D3). For all undesirable

substances with measured values<LOQ, we used the UB values. The

data collected in NF were from three different months (Table 1),

they were pooled together due to no statistically significant

difference found across the sampling months except for arsenic

(Appendix 2).

To decide whether the measured nutrient concentrations could

be defined as a source of a given nutrient, we compared them with

existing EU regulation values (i.e. thresholds). For minerals and

vitamins, we adopted EU Regulation 1169/2011 (https://eur-

l e x . e u r o p a . e u / L e xU r i S e r v / L e xU r i S e r v . d o ? u r i =O J :

L:2011:304:0018:0063:en:PDF). The threshold for a significant

source of a given micronutrient refers to whether the product

contains 15% or more of the nutrient reference values (NRVs)

per 100 g. Here, we calculated these thresholds to concentrations by

15%�NRV ÷ 100g. For macronutrients, which only included fatty

acids (FAs) in this study, we compared the total w-3 FAs (expressed
as the sum of eicosapentaenoic acid [EPA] and docosahexaenoic

acid [DHA]) with the EU Nutrition Claim in EU Regulation 1047/

2012 (https://food.ec.europa.eu/safety/labelling-and-nutrition/

nutrition-and-health-claims/nutrition-claims_en), which included

a threshold for a source of w-3 FAs, and a threshold that the food

item contains high w-3 FAs.

To decide whether the measured concentration of an

undesirable substance was low/high risk to human consumers for

a given undesirable substance, we compared them with the maximal

levels (MLs) for food established in EU Regulation 1881/2006

(https://faolex.fao.org/docs/pdf/eur68134.pdf).

To categorise the measured substance values from each

sampling area, we compared the 25th and 75th quantiles with the

thresholds and interpreted the categorisation accordingly (Table 3).

Because the sample size of substance values for each sampling area

was relatively low, we did not assume a normal distribution of the

substance values. Thus, to detect differences across sampling areas

for each substance, we compared the substance values using the

non-parametric Wilcoxon test in Rstudio 1.4.1106 (Team, 2009).

The difference between a pair of sampling areas was considered

significant if p-value was below 0.05; and such a difference was

considered marginal if p-value was not below 0.05 and the median

value of one sampling area was outside of the 25th or 75th quantile of

another sampling area (i.e. the box in the boxplot, Figure 2).
Results

We conducted four mesopelagic trawls in the Bay of Biscay

(BB), nine in Norwegian fjords (NF), and eight in the North Sea

(NS) (Table 1). In total, we collected four composite samples from

BB, and ten from NF and NS (nBay of Biscay = 4, nNorwegian fjord = 10,

and nNorth Sea = 10). The M. muelleri collected in BB had standard

lengths (SLs) ranging from 25.19 ± 4.87 to 32.37 ± 3.56 mm; those

collected in NF had SLs ranging from 23.57 ± 2.63 to 51.17 ±

11.47 mm; and those collected in NS had SLs ranging from 28.40 ±

7.90 to 50.60 ± 7.30 mm.

In total, we analysed three gross proximate, ten essential

elements, three vitamins, 37 individual FAs, six hazardous metals
frontiersin.org
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and metalloids, 43 POPs, and the sum of all fatty alcohols

(Appendix 1). We selected 22 substances while excluding two

important nutrients, vitamin A2 and vitamin D3, from the

analyses due to high percentages of values<LOQ (Table 4,

Figure 2, Appendix 1).

In terms of gross proximate, theM. muelleri from NF had a dry

matter content (31.89 ± 1.90%) statistically significantly higher than
Frontiers in Marine Science 04
that from NS (24.36 ± 1.10%); and that from NS was similar to that

from BB (25.78 ± 1.92%; Table 4, Figure 2). Similar trends were

found in fat content (NF, NS, and BB: 16.16 ± 2.03%, 6.48 ± 1.34%,

and 6.40 ± 1.82%, respectively; Table 4, Figure 2), while completely

opposite trends were found in protein concentration (10.83 ±

1.39%, 16.32 ± 0.62%, and 16.50 ± 0.59%, respectively;

Table 4, Figure 2).
FIGURE 1

Map of sampling sites for each sampling area in the Bay of Biscay, Norwegian fjords, and the North Sea. Each dot represents the centre of the trawl transect.
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Micronutrients

There were statistically significant differences in the vitamin A1

concentrations. The NF and NS samples had higher vitamin A1

concentrations (1082.86 ± 133.84, and 900.00 ± 167.33 mg/100g
[NF, and NS, respectively]; Table 4, Figure 2) than the BB samples

(132.50 ± 37.50 mg/100g; Table 4, Figure 2), while no difference was
observed in the other micronutrients across the sample areas

(Table 4, Figure 2). Compared with relevant EU regulation values,

the M. muelleri from all the sampling areas were shown to be

significant sources of selenium/Se (51.00 ± 7.01, 50.10 ± 2.90, 62.10

± 3.48, and 8.25 mg/100g [BB, NF, NS, and the regulation value,

respectively]) and vitamin A1 (132.50 ± 37.50, 1082.86 ± 133.84,

900.00 ± 167.33, and 120 mg/100g [BB, NF, NS, and the regulation

value, respectively]); and the M. muelleri from BB and NS was a

significant source of iron/Fe (2.13 ± 0.57, 3.84 ± 1.16, and 2.1 mg/

100g [BB, NS, and the regulation value, respectively];

Table 4, Figure 2).
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TheM. muelleri from NF had higher FA concentrations (e.g. EPA

+DHA = 15.98 ± 2.02 mg/g; Table 4, Figure 2) than those from NS

(statistically significant; e.g. EPA+DHA = 6.57 ± 0.61 mg/g) and BB

(marginal; e.g. EPA+DHA = 10.17 ± 2.20 mg/g). TheM. muelleri from

all the sampling areas had EPA+DHA concentrations surpassing the

relevant EU regulation value for ‘source of w-3 FAs’ (0.8 mg/g;

Table 4, Figure 2).
Undesirable substances

In wet weight, the M. muelleri from NF had statistically

significantly higher concentrations of all selected POPs (e.g. PCDD/F

= 0.93 ± 0.13 WHO-TEQ pg/g; Table 4, Figure 2) but lower

concentrations of cadmium/Cd (0.03 ± 0.00 mg/kg) than those from

BB (e.g. PCDD/F = 0.13 ± 0.02WHO-TEQ pg/g, and Cd = 0.08 ± 0.01
TABLE 1 Mesopelagic sampling information of materials collected in this study, including sampling area, sampling period (month & year), the number
of trawls for each period (n), net description, the depth, speed and duration of trawls.

Sampling
area

Month &
Year (n)

Net description Depth (m) (mean
± SD)

Speed
(knot)

Duration
(minute)

Bay of Biscay
Sep. 2019 (2) Gloria HOD 352 pelagic trawl with 15-m of vertical opening with a 10-mm

mesh size (bar length) at the codend
145 ± 48 ~3.8 ~47

Sep. 2020 (2) 121 ± 100 ~3.6 ~42

Norwegian
fjords

Dec. 2018 (4) Two pelagic otter trawls: a 35-m2 (3x3 mm2 mesh) and a 350-m2 aperture
(7x7 mm2 mesh) nets

Depends on the
occurrence of fish

~2-3 ~30-180
Mar. 2020 (2)

May 2020 (3)

North Sea Mar. 2020 (8)
fr
TABLE 2 List of substance groups and analytical methods.

Substance Analytical method References to analytical
method

Outcome expression

Trace metals and alkaline metals Inductively Coupled
Plasma-Mass Spectrometry
(ICP-MS)

Julshamn et al. (2007); Alvheim
et al. (2020); Reksten et al. (2020);
Wiech et al. (2020).

Concentration (mg/kg)

Vitamin A & D High-performance liquid
chromatography (HPLC)

CEN (1999); de Normalisation
(2009); Alvheim et al. (2020);
Reksten et al. (2020).

Concentration (mg/kg)

Dry matter Alvheim et al. (2020). Concentration (%)

Protein content (crude protein) Biancarosa et al. (2017); Reksten
et al. (2020).

Concentration (%) of protein was derived from the measured
nitrogen content by multiplying it with the N-to-protein
conversion factor 6.25 (Kjeldahl, 1883).

Fat content (crude fat) Reksten et al. (2020). Concentration (%)

Fatty acids FS-direct 465, and FS
SAMM 041

Meier et al. (2006); Alvheim et al.
(2020).

Concentration (mg/g)

Dioxins, Furans, Polychlorinated
Biphenyls, and Polybrominated
Flame-Retardants

High-resolution gas
chromatography/mass
spectrometry (HRGC/MS)

Berntssen et al. (2021). Dioxins and dl-PCBs: WHO-TEQ/g (using WHO-TEF 2005).
The measured values were also corrected by fat content using:

POPcorrected =
POPmeasured

Fat   content
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mg/kg) andNS (e.g. PCDD/F = 0.46 ± 0.08WHO-TEQ pg/g, and Cd =

0.08 ± 0.01 mg/kg). The samples fromNS had higher concentrations of

PCDD/F, dioxin+dl-PCB (0.70 ± 0.13 WHO-TEQ pg/g; Table 4,

Figure 2), PBDE7 (0.25 ± 0.04 ng/g), and arsenic/As (4.09 ± 0.19

mg/kg) than those from BB (dioxin+dl-PCB = 0.29 ± 0.06 WHO-TEQ

pg/g, PBDE7 = 0.07 ± 0.02 ng/g, As = 2.25 ± 0.35 mg/kg). The M.

muelleri from NF and NS had higher mercury/Hg (0.03 ± 0.00 mg/kg,

and 0.02 ± 0.00, respectively; Table 4, Figure 2) and erucic acid

concentrations (0.81 ± 0.05 mg/g, and 0.84 ± 0.03 mg/g, respectively)

than those from BB (Hg = 0.01 ± 0.00 mg/kg, erucic acid = 0.08 ± 0.03

mg/g). After fat correction, the PCDD/F, dioxin+dl-PCB, and PBDE7
levels were statistically significantly higher in the samples from NF (e.g.

➤PCDD/F = 0.06 ± 0.01 WHO-TEQ pg/g; Table 4, Figure 2) and NS

(e.g. ➤PCDD/F = 0.07 ± 0.01 WHO-TEQ pg/g) than those from

BB (e.g. ➤PCDD/F = 0.02 ± 0.00 WHO-TEQ pg/g), while no

difference was detected in PCB6 (1.01 ± 0.38, 0.36 ± 0.02, and 0.38 ±

0.08 ng/g [NF, NS, and BB, respectively]) and PCB7 levels (1.16 ± 0.44,

0.41 ± 0.02, and 0.42 ± 0.08 ng/g) across the sampling areas

(Table 4, Figure 2).

Considering the established maximum levels (MLs), the M.

muelleri from all the sampling areas had PCDD/F, dioxin+dl-PCB

(0.29 ± 0.06, 1.73 ± 0.23, and 0.70 ± 0.13 WHO-TEQ pg/g [BB, NF,

and NS, respectively]; Table 4, Figure 2), Hg, and lead/Pb

concentrations (0.02 ± 0.00, 0.05 ± 0.03, and 0.03 ± 0.01 mg/kg)

below the MLs for human consumption (Table 4, Figure 2).

However, the Cd concentrations measured in the BB and NS

samples exceeded the ML for human consumption (0.05 mg/kg;

Table 4, Figure 2), assuming that the M. muelleri will be consumed

whole due to its small size as a convention similar to other small

fishes (Roos et al., 2007; Longley et al., 2014; Kolding et al., 2019).
Discussion

Our study confirmed the potential roles of Maurolicus muelleri

from the North Atlantic Ocean for food security and nutrition by

proving a novel nutrient-dense and low-risk aquatic food. However,

there were statistically significant differences in the concentrations of

several nutrients and undesirable substances across the sampling areas,

which may influence the utilisation of this new marine resource.
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Roles in nutrition provision

The M. muelleri from all the sampling areas in the North

Atlantic Ocean were found to have several benefits. According to

relevant EU regulations, they were qualified as significant sources of

Se and vitamin A1 and contained high w-3 FAs; and those from BB

and NS were qualified as a significant source of Fe.

Compared with other mesopelagic species in BB (Chouvelon

et al., 2022) and assuming the dry matter content of M. muelleri is

25% (units are in dm, otherwise in ww), the M. muelleri from BB

were rather low in the concentrations of Fe (FeBB = 85.20, FeOthers =

47.9-333.3 mg/kg dm), Se (SeBB = 2.04, SeOthers = 1.68-2.91 mg/kg

dm), and Zn (ZnBB = 51.20, ZnOthers = 24.5-103.7 mg/kg dm). This

is the case for the M. muelleri from NF and NS, except that the Se

concentration in the NS samples was rather high (SeNS = 2.48 mg/

kg dm).

Compared with other animal food products, the M. muelleri

from all the sampling areas had higher concentrations of vitamin A1

and DHA than whole Sardina pilchardus (vitamin A1 = 115 ± 32.7

mg/100g and DHA = 0.87 ± 0.15 g/100g; Aakre et al., 2020), a higher

concentration of Se than whole Engraulis encrasicolus (Se = 38.2 ±

2.1 mg/100g; Aakre et al., 2020), filet of commercial fishes (e.g.

SeSalmo salar = 17 and SeGadus morhua = 25 mg/100g; Alvheim et al.,

2020) and other animal products (e.g. Sepork/beef = 6 and Sechicken =

12 mg/100g; Alvheim et al., 2020). These comparisons may involve

multiple tissue types, and data from whole fish samples may contain

greater variability than that from a single tissue type. Such

variability is likely due to different accumulation mechanisms

among substances in tissues/organs (Landrier et al., 2012; Shukla

et al., 2018), and possibly gut contents of individual whole fish.

While this variability may have made the comparisons across tissue

types less robust, it nevertheless highlights the possible range in the

substance yields from the consumer’s perspective.

Vitamin D3 is another important micronutrient (Holick, 2007;

Amrein et al., 2020) which can be obtained from seafood (Lund,

2013). In our study, most of the measured vitamin D3

concentrations were<LOQ (LOQ = 0.01 mg/kg) except in two

instances (0.01 [from BB] and 0.02 mg/kg [from NS]; Appendix

1). According to the EU Regulation No 1169/2011, a food item that

provides 15% of 5 mg/100 g vitamin D3 (or 0.0075 mg/kg in
frontiersin.o
TABLE 3 Categorisation based on substance values against established relevant EU regulation values (i.e. threshold).

Measured values against
thresholds

Categorisation

Nutrients Undesirable sub-
stances

25th quantile below the threshold Not a sufficient source of the nutrient Low risk

The threshold between 25th and 75th

quantile
A significant source of a given micronutrient/a source of w-3 fatty acids/contains high w-3
fatty acids

Concerning level of risk

75th quantile above the threshold High risk
Note that the wording of categorisation for nutrients differs among nutrients.
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FIGURE 2

Non-parametric comparison of gross proximate ▬, nutrient (micro- ▬ and macro- ▬) and undesirable substance concentrations (persistent organic
pollutants ▬, metals & metalloids ▬, and others ▬) of the Maurolicus muelleri in wet weight from the Bay of Biscay, Norwegian fjords, and the
North Sea. Blue long-dashed line indicates the concentration for a significant source of a micronutrient; green dashed line indicates the
concentration for a source of omega-3 fatty acids (w-3 FAs; the lower line) or it contains high w-3 FAs (the higher line); red long-dashed line
indicates the maximum level (ML) for an undesirable substance; for mercury, the ML is annotated. ➤: the fat-corrected values. Statistical significance
(non-significance not shown) using Wilcox test: padjusted*< 0.05 and **< 0.01. EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PUFA,
polyunsaturated FA; PCDD/F, total dioxin including PCDD (polychlorinated dibenzodioxin) and PCDF (polychlorinated dibenzofuran);
PBDE, polybrominated diphenyl ether; PCB, polychlorinated biphenyl; and dl-PCB, dioxin-like PCB.
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concentration) can be qualified as a significant source of vitamin D3.

Because the LOQ of our method was higher than the regulation

value, we cannot confirm whether the M. muelleri collected in this

study is a significant source of vitamin D3.

Malnutrition might be exacerbated due to the pandemic, food

shortage (Workie et al., 2020; Zurayk, 2020), and climate change

(Gomez-Zavaglia et al., 2020), while the global population is

projected to increase. Thus, alternative productive and nutritious

foods such as M. muelleri are important to help combat

malnutrition, for example, reducing the risk of iron deficiency-
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induced anaemia (Aikawa et al., 2006; Beck et al., 2014) which is

prevalent globally (Stevens et al., 2022). Its high Se concentration

may help provide a protective effect against cardiovascular diseases

(Mozaffarian, 2009) and Hg poisoning (Gochfeld and Burger, 2021).
Food safety

TheM. muelleri from all the sampling areas were found to have

low risk. All the examined undesirable substances had low
TABLE 4 Summary of standard length and important substance values (mean ± S.E.; in wet weight) measured for Maurolicus muelleri composite
samples of whole fish individuals collected from the Bay of Biscay, Norwegian fjords (Bjørnafjorden, Boknafjorden, and Osterfjorden) and the North
Sea.

Substance [EU regulation values] Sampling area

Bay of Biscay
(n = 4)

Norwegian fjords
(n = 10)

North Sea
(n = 10)

Standard length (mm) 28.98 ± 5.78 41.08 ± 8.91 40.93 ± 8.62

Gross proximate (%)

Total dry matter 25.78 ± 1.92 31.89 ± 1.90 24.36 ± 1.10

Total protein 16.50 ± 0.59 (3) 10.83 ± 1.39 (4) 16.32 ± 0.62

Total fat 6.40 ± 1.80 16.16 ± 2.03 (8) 6.48 ± 1.34 (6)

Micronutrients

Iron [2.1] (mg/100g) 2.13 ± 0.57 1.78 ± 0.11 3.84 ± 1.16

Selenium [8.25] (mg/100g) 51.00 ± 7.01 50.10 ± 2.90 62.10 ± 3.48

Zinc [1.5] (mg/100g) 1.28 ± 0.18 1.20 ± 0.03 1.24 ± 0.04

Vitamin A1 [120] (mg/100g) 132.50 ± 37.50 1082.86 ± 133.84 (7) 900.00 ± 167.33 (5)

Macronutrients (mg/g) (n = 8) (n = 6)

SFA 45.35 ± 15.15 130.52 ± 18.58 41.04 ± 10.31

EPA 2.59 ± 0.71 5.62 ± 0.79 1.44 ± 0.21

DHA 7.58 ± 1.57 10.36 ± 1.25 5.13 ± 0.41

EPA+DHA [0.4 & 0.8] * 10.17 ± 2.20 15.98 ± 2.02 6.57 ± 0.61

SPUFA w-3 11.84 ± 2.72 22.46 ± 2.93 8.28 ± 1.09

Persistent organic pollutants (n = 8) (n = 6)

SPCDD/F (WHO-TEQ pg/g) [3.5] 0.13 ± 0.02 0.93 ± 0.13 0.46 ± 0.08

➤ 0.02 ± 0.00 ➤ 0.06 ± 0.01 ➤ 0.07 ± 0.01

Sdioxin+dl-PCB (WHO-TEQ pg/g) [6.5] 0.29 ± 0.06 1.73 ± 0.23 0.70 ± 0.13

➤ 0.05 ± 0.01 ➤ 0.12 ± 0.02 ➤ 0.11 ± 0.01

SPBDE7 (ng/g) 0.07 ± 0.02 0.89 ± 0.11 0.25 ± 0.04

➤ 0.01 ± 0.00 ➤ 0.07 ± 0.02 ➤ 0.04 ± 0.00

SPCB6 (ng/g) 2.10 ± 0.44 11.42 ± 2.47 2.28 ± 0.44

➤ 0.38 ± 0.08 ➤ 1.01 ± 0.38 ➤ 0.36 ± 0.02

SPCB7 (ng/g) 2.31 ± 0.48 13.14 ± 2.90 2.61 ± 0.50

➤ 0.42 ± 0.08 ➤ 1.16 ± 0.44 ➤ 0.41 ± 0.02

(Continued)
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concentrations except for the high Cd concentrations in the BB

and NS samples when compared the measured concentrations

against the MLs in relevant EU regulations. We further compared

the BB and NS Cd concentrations with the EU regulation on

undesirable substances in animal feed under EU Directive 2002/

32/EC (https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?

uri=CELEX:02002L0032-20191128&from=EN) and found that

they were below the ML (assuming an 88% dry weight). This

suggests their potential usage as a feed ingredient, similar to some

earlier findings (Berntssen et al., 2021).

The M. muelleri from our sampling areas had lower Cd

concentrations than those reported from the Mid Atlantic Ridge

(Grimaldo et al., 2020), and lower Hg concentrations than those

from the Azores (Monteiro et al., 1996).

Compared with other mesopelagic species from BB (Chouvelon

et al., 2022) and assuming the dry matter content of M. muelleri is

25%, theM. muelleri from BB were higher in As concentration than

these mesopelagic fishes (AsBB = 90.00, AsOthers = 3.83-53.60 mg/kg

dm); this is also the case for Cd (CdBB = 3.20, CdOthers = 0.03-2.43

mg/kg dm), and Pb (PbBB = 0.80, PbOthers = 0.03-0.18 mg/kg dm).

While the Hg concentrations in the M. muelleri from BB were

similar to these mesopelagic species (HgBB = 0.40, HgOthers = 0.090-

1.365 mg/kg dm). These differences persist when comparing theM.

muelleri from NF and NS with these mesopelagic species except that

the Cd concentration in the NF samples was rather low (CdNF = 1.2

mg/kg dm), and the Hg concentration in the NF samples was rather

high (HgNF = 1.2 mg/kg dm).

Compared with other mesopelagic species from NF (Wiech

et al., 2020), the M. muelleri from all the sampling areas had lower

concentrations of As, and Pb thanMeganyctiphanes norvegica (As =

28 ± 19, Pb = 0.086 ± 0.075 mg/kg), As, and Hg than Pasiphaea sp.

(As = 22 ± 19, Hg = 0.038 ± 0.02 mg/kg), As, and Pb than

Eusergestes arcticus(As = 9.5 ± 4.2, Pb = 0.01 ± 0.006 mg/kg), and

Pb than Benthosema glaciale (Pb = 0.016 ± 0.017 mg/kg). The M.

muelleri from NF and NS had higher concentrations of total fat and

erucic acid than the aforementioned mesopelagic species from NF;
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while those from BB and NS had lower concentrations of total

PCDD/F, PBDE7, PCB6, and PCB7 than these mesopelagic species

from NF.

There are other undesirable substances that were not included

in the present study. For example, wax esters may pose some health

hazards (e.g. keriorrhea) when consumed in large amounts (Schots

et al., 2020) and are commonly found among mesopelagic species

(Voronin et al., 2022, 2023). However, the wax ester concentrations

in the NF and NS samples were low (in both wet weight and % of

FA; Appendix 1), which is similar to some of the previous findings

(Wiech et al., 2020; Voronin et al., 2023).

Observed differences and possible drivers
Some of the analysed substances had great variation across the

sampling areas, and there are multiple possible drivers behind them.

The differences in the gross proximate across the sampling areas

indicate differential accumulation mechanisms for the M. muelleri.

Evidently, fishes from northern regions and/or collected during

colder seasons tended to have larger lipid reserves (Schultz and

Conover, 1997) and unsaturated FAs concentrations (Hazel, 1984)

than those from the south or collected during warmer seasons. This

matches with our data that the samples fromNF (colder) had higher

fat content than the samples from NS & BB samples (warmer).

Additionally, smaller-body sized fishes often have lower lipid

reserves than larger-sized ones (Schultz and Conover, 1997;

Toppe et al., 2007); this has been shown among M. muelleri

(Olsen et al., 2020). In our study, such a body size-fat correlation

was apparent between the BB and NF samples but not between the

NF and NS samples (Table 4). The body sizes of the NF and NS

samples were similar, yet the fat content of the NF samples was

statistically significantly higher than that of the NS samples

(Table 4). This was likely caused by the sampling during different

months/seasons (NF: March, May, and December; NS: March) and

high food availability in the fjords due to the seasonal algal

blooming (Cembella et al., 2005; Marquardt et al., 2016).

Moreover, biological activities such as spawning can lead to
TABLE 4 Continued

Substance [EU regulation values] Sampling area

Bay of Biscay
(n = 4)

Norwegian fjords
(n = 10)

North Sea
(n = 10)

Trace metals (mg/kg)

Arsenic 2.25 ± 0.35 4.23 ± 0.39 4.09 ± 0.19

Cadmium [0.05] 0.08 ± 0.01 0.03 ± 0.00 0.08 ± 0.01

Mercury [0.5] 0.01 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

Lead [0.3] 0.02 ± 0.00 0.05 ± 0.03 0.03 ± 0.01

Other undesirable substance

Erucic acid (C22:1 w-9) (mg/g) 0.08 ± 0.03 0.81 ± 0.05 (8) 0.84 ± 0.03 (6)
Relevant EU regulation values for individual substances (if available) are indicated. The guideline values for micronutrients are calculated from nutrient reference values (see methods section for
the calculation). Each composite sample contained approximately 25 individual fish. Sample size (n, the number of composite samples) is indicated in bracket for a substance group or an
individual substance if differs from that in the table header.
FA, fatty acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; PUFA, polyunsaturated FA; PCDD, polychlorinated dibenzodioxin; PCDF, polychlorinated dibenzofuran; PBDE,
polybrominated diphenyl ether; PCB, polychlorinated biphenyl; and dl-PCB, dioxin-like PCB.➤: the fat-corrected values. * EU guideline values for EPA+DHA: 40 mg/100 g (a source of w-3 FA),
and 80 mg/100g (contains high w-3 FA).
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transferring essential nutrients to the eggs and metabolising the

stored fat for reproduction, thus resulting in the loss of some

substances in a short period (Boran and Karaçam, 2011; Fuiman

and Faulk, 2013; Shadyeva et al., 2019). Although M. muelleri has a

protracted spawning season (Gjøsæter, 1981; d’Elbée et al., 2009),

the samples collected in BB were practically outside of the spawning

season (spawning season: at least between March and September;

Alvarez et al., 2023), while those in NF and NS partially or entirely

included spawning individuals (spawning season: March to

September; Gjøsæter, 1981). Thus, we could not examine the

effect of spawning here. Lastly, M. muelleri can have complex

population structures (Ikeda, 1994; Rasmussen et al., 2009) with

individuals of different life stages occurring in the same location,

potentially resulting in variability in the substance concentrations.

For the macronutrients, the trend in fat content (i.e. NF > NS

[statistically significant] and NF > BB [marginal]) was also observed

for total FAs and individual FAs/FA groups, possibly for similar

reasons such as the lower temperature and higher food availability

due to the seasonal algal blooming in NF than in BB and NS (e.g.

Donnelly et al., 1990; Zlatanos and Laskaridis, 2007; Boran and

Karaçam, 2011). Among the micronutrients, the only observed

difference across the sampling areas was the lower concentration

of vitamin A1 in the BB samples than in the NF and NS samples.

This was likely due to the seasonal variation in vitamin A1 which

has been observed among a few other fish species (Bridges, 1965;

Temple et al., 2006). Since our knowledge of vitamin A1 is rather

limited, we cannot disentangle the temporal effects from the spatial

effects based on our data.

The POP concentrations (in wet weight) showed similar

variation patterns across the sampling areas to those of fat/FAs

that higher POP concentrations were found in the NF samples than

in the BB and NS samples. Such a co-occurrence of fat/FAs and

POPs has been observed in other aquatic systems including the

Mediterranean pelagic fishes (Cembella et al., 2005; Romanić et al.,

2021) and the commercial fishes from the North East Atlantic

Ocean (Ho et al., 2021). This co-occurrence likely results from the

interaction between POPs and lipids (Elskus et al., 2005) that POPs

often accumulate in fatty tissues and their bioavailability may be

affected by the lipid composition. In contrast, the fat-corrected POP

levels showed different patterns across the sampling areas compared

with those from the uncorrected concentrations. The statistically

significant differences in POP concentrations between the NF and

NS samples were attenuated, and no statistically significant

difference across the sampling areas remained in PCB6 and PCB7
concentrations. Because the samples were collected during different

seasons, the anticipated variation in fat content across the sampling

areas may drive the variation in POP concentrations to some extent.

In addition, POP concentrations can be different at the base of the

food web geographically across the large sampling areas (Batool

et al., 2016), resulting from the grasshopper effect of POPs

(Fernández and Grimalt, 2003). This may have led to higher basal

POP in NF and NS than in BB. Besides, the samples collected from

one of the selected fjords, Osterfjorden (OF), had higher PBDE7,

PCB6, and PCB7 concentrations and the pertinent fat-corrected

levels than those from the other two fjords; this has also been

observed among a few other fish species (Frantzen andMåge, 2016).
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Because the fat content of the OF samples were lower than those

from the other two fjords (Appendix 3), the POP concentrations in

OF may not be fat-driven. We suspect that such an observation may

result from the high basal PBDE7, PCB6, and PCB7 concentrations

in OF. Overall, all the measured POP concentrations were

statistically significantly lower than the MLs, thus, the sampled

M. muelleri had low risks of POPs to human health.

The samples from both NF and NS had higher Hg

concentrations than those from BB. However, this trend is

opposite from what has been observed in different fish species

from the south to the north in the North East Atlantic Ocean (Azad

et al., 2019). Because Hg concentration correlates positively with

body size (Monteiro et al., 1996), our contradictive result suggests

that body size-dependent bioaccumulation may play a predominant

role here as the NF and NS samples had greater body size than the

BB samples (Table 4). On the other hand, the NS samples had Hg

concentrations marginally lower than the NF samples while both

had similar body sizes (Figure 2). This is in accordance with earlier

findings in several other fish species collected from NS and NF

(Azad et al., 2019).

The As concentrations, however, were lower in BB than in NF

and NS. It may likely result from different temperatures, which has

been observed in As concentrations globally (higher in polar regions

than in tropical regions; Fattorini et al., 2006), as well as the body

size-dependent bioaccumulation of As (Zhang et al., 2022).

Additionally, the higher As concentrations in the NF samples

than the NS samples may result from different temperatures or

fat contents during the sampling seasons (i.e. March, May, and

December vs. May, respectively; Appendix 2). There is no

authorised ML for arsenic in European legislation. To assess the

potential risk from As, the toxic forms must be considered. Earlier

work has shown that only a small fraction of the total arsenic in M.

Muelleri was present in the most toxic inorganic form (Wiech et al.,

2020). And a recent study performing As speciation found large

proportions of potentially toxic arseno-lipids (Tibon et al., 2022).

But as the toxicity of arseno-lipids depends on the present As

species, a complete analytical characterisation of present

compounds is needed to evaluate the risk connected to

arseno-lipids.

The higher Cd concentrations in the M. muelleri from BB and

NS than those from NF are consistent with earlier findings between

NF and offshore systems (Wiech et al., 2020) and with another

common mesopelagic species B. glaciale (Bjordal and Thorvaldsen,

2020; Wiech et al., 2020). One possible driver may be the Cd

distribution in seawater. Cadmium is known to behave similarly to

phosphate (de Baar et al., 1994), that it is depleted close to the

surface (where primary production takes place) and enriched in

deeper waters (where organic matter is decomposed). Thus, higher

concentrations of Cd are expected in BB and NS which receive

water from oceanic deep-water systems than in NF which receive a

mixture of oceanic water and fresh water.

Most of the examined undesirable substances had

concentrations lower than the relevant MLs, yet some had great

variation across the sampling areas. Also, POPs may have a

cumulative adverse effect on human health (Bank et al., 2020)

and other undesirable substances like Hg may mask the positive
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effects of essential nutrients on human health (Kris-Etherton et al.,

2002). Thus, it is crucial to monitor not only the mean values but

also the variation in concentrations to further influence their usage

(food or feed). One possible way to further reduce the POP

concentrations is to process the fish for fish oil and fish meals

through the established methods (Berntssen et al., 2021).
Other drivers

Both biological and environmental drivers are important in

determining the substance concentrations of the M. muelleri in the

present study. However, many drivers from these two dimensions

are entangled and may synergistically affect the substance

concentrations in fish. Apart from the discussed drivers, there are

others that may incorporate both dimensions. For example,

temporospatial variation in food availability (e.g. algal blooming

in NF) can affect the substance concentrations in fish (Boran and

Karaçam, 2011) as well as their feeding strategies. Since much of the

substances in fish come from their diet (Grimaldo et al., 2020), apart

from their geographic distribution (Batool et al., 2016), mesopelagic

food webs may be supported by multiple food sources (Ianiri and

McCarthy, 2023) with different basal substance compositions (e.g.

upwelling, offshore and nearshore phytoplankton, and terrestrial

runoff). While the prey specialisation is relatively low among

mesopelagic fishes (Bernal et al. , 2015), the substance

concentrations in fish are thus partially determined by the

contributions of prey from different basal food sources. Thus, it is

important to understand the nutrient flow in mesopelagic species,

which may nevertheless provide insights into the possible

environmental impacts and sustainability of potential fisheries.

For mesopelagic systems, these are particularly vital (Hidalgo and

Browman, 2019; Grimaldo et al., 2020; Standal and Grimaldo, 2021;

Fjeld et al., 2023) due to their trophic functions in nutrient cycling,

carbon fixation (Li et al., 2022; Schadeberg et al., 2023), and

mediating ocean health (Bank et al., 2020).
Limitations and future work

In this study, we chose nutrients and undesirable substances

based on relevant studies and EU regulations. However, there is no

EU regulation on a few important undesirable substances including

As, wax esters, and PBDE. As they may pose threats to human

health, it is important to develop regulations on them to further

ensure food safety of current and emerging aquatic foods.

We mentioned the importance of body size on the

concentrations of some nutrients and undesirable substances.

However, in the present study, only the body size of a group of

individuals for each catch was measured, which reduced the

resolution in variability to understand the effect of body size on

the substance concentrations. It is ideal to analyse the substance

concentrations at the individual level. Unfortunately, the current

methods require a higher mass of materials than one individual of a

small fish such as M. muelleri to analyse the full suite of nutrients
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and undesirable substances. Thus, future development of analytical

methods is essential to enable high-resolution individual-based

substance analyses of small mesopelagic fishes.

Nevertheless, we suggested that the season of collection and

spawning activities may have caused some uncertainty in the

analyses. The sampling of mesopelagic species at IMR and AZTI

takes into consideration of the cruise planning and financial

feasibility. Targeted sampling of mesopelagic species is

challenging, and cruise activity was limited. This led to sampling

at different seasons in different areas and varying size distributions.

As M. muelleri is known to spawn in batches over a protracted

spawning period and shows mixed schooling behaviours, it was not

possible to foresee their maturity levels prior to sampling. These

factors may have an influence on the substance concentrations.

However, our datasets nevertheless have important implications on

the geographic differences in the substance concentrations of theM.

muelleri in the North Atlantic Ocean, while pointing to important

future work to better inform the sampling design and improve the

resolution of such analyses by disentangling these potentially

confounding factors.
Conclusion

We confirmed the potential roles ofMaurolicus muelleri in food

security and nutrition. There are statistically significant differences

in the concentrations of several substances across the sampling

areas, including vitamin A1, dioxin, cadmium, and mercury. These

differences were probably related to differential basal substance

concentrations, body sizes/maturity levels of samples, and sampling

periods. One general trend we found is that the M. muelleri from

Norwegian fjords tended to contain higher concentrations of fat,

fatty acids, and lipophilic undesirable substances than those from

the Bay of Biscay and the North Sea, however, the drivers behind are

unclear. Overall, the M. muelleri from all the sampling areas are

good sources of several essential nutrients (e.g. Se and vitamin A1)

with low concentrations of undesirable substances (e.g. mercury)

according to available EU regulations for food. However, the

variability in some of these substances (e.g. cadmium) should be

closely monitored to provide important indications on the usages of

this marine resource (i.e. for food or feed).
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