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Abstract

Fixed underwater observatories (FUO), equipped with digital cameras and other sensors,

become more commonly used to record different kinds of time series data for marine habitat

monitoring. With increasing numbers of campaigns, numbers of sensors and campaign

time, the volume and heterogeneity of the data, ranging from simple temperature time series

to series of HD images or video call for new data science approaches to analyze the data.

While some works have been published on the analysis of data from one campaign, we

address the problem of analyzing time series data from two consecutive monitoring cam-

paigns (starting late 2017 and late 2018) in the same habitat. While the data from campaigns

in two separate years provide an interesting basis for marine biology research, it also pres-

ents new data science challenges, like the the marine image analysis in data form more

than one campaign. In this paper, we analyze the polyp activity of two Paragorgia arborea

cold water coral (CWC) colonies using FUO data collected from November 2017 to June

2018 and from December 2018 to April 2019. We successfully apply convolutional neural

networks (CNN) for the segmentation and classification of the coral and the polyp activities.

The result polyp activity data alone showed interesting temporal patterns with differences

and similarities between the two time periods. A one month “sleeping” period in spring with

almost no activity was observed in both coral colonies, but with a shift of approximately one

month. A time series prediction experiment allowed us to predict the polyp activity from the

non-image sensor data using recurrent neural networks (RNN). The results pave a way to a

new multi-sensor monitoring strategy for Paragorgia arborea behaviour.

1 Introduction

The cold water coral (CWC) Paragorgia arborea (common name “bubblegum coral”, in the

following referred to as Paragorgia) is a common species is the North Atlantic Ocean [1].
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Paragorgia forms colonies in the deep sea (below 200m) that are often fan-shaped. The colo-

nies grow slowly, and it might take hundreds of years until a colony reaches its maximum size

[2, 3]. A large colony (with a height of 4 m) has been reported to be 400 ± 100 years old [2]. As

of 2021, Paragorgia is classified as “Near Threatened” in the Norwegian Red List for Species,

based on a population reduction between 10% and 20% between 1960 and 2020 in Norway [4].

Human activities like fishing with bottom trawls threaten Paragorgia populations due to physi-

cal damage of colonies. Also, petroleum and aquaculture activities represent further potential

threats to this coral species [4–7]. As Paragorgia provides habitat for various invertebrates and

fish, either in the colonies themselves or between the colonies in colony aggregations (coral

gardens) [6], a loss of Paragorgia colonies would have a negative impact on those species as

well. To be able to distinguish between indirect impact, such as increased particle loads from

drilling operations, normal variations in behaviour due to changes in parameters in the corals

ambient environment is essential. Ocean current for example, is an important factor for food

supply to Paragorgia and thus influences the location and shape of the colonies [2]. The results

of a previous study on current-based organic matter transport at the LoVe observatory indicate

that currents in this area make food particles from more distant sources available to the corals

and also play an important role in the transport of organic matter down to the sea bottom [8].

Recent publications on Paragorgia and other CWCs indicate a strong relationship between

current and coral activity as well, also in the short term [9, 10]. Further, polyp activity is found

to be related to sensor data like chlorophyll, turbidity, depth (which can be used to obtain

information on the tides), and temperature [11]. All these observations motivate the applica-

tion of in situ marine imaging to record detailed digital photograph time series of coral colo-

nies together with other data to reduce the gap of knowledge about Paragorgia in terms of

behavior, spawning, and interactions with other species and to facilitate a sound species man-

agement. However, to investigate Paragorgia polyp behavior on this technical level, an efficient

visual monitoring strategy and a specific data science approach are needed.

Modern sensor technology offers many possibilities to collect marine data. High resolution

cameras can be used to record large amounts of image and video material while various other

sensors collect information on chemical and physical oceanographic parameters [12, 13].

Besides attaching sensors to mobile platforms, e.g. autonomous underwater vehicles [14] or

remotely operated vehicles [15], cameras and sensors can also be deployed in fixed underwater

observatories (FUO) [16–19]. Especially FUOs cabled from shore for power supply and data

transfer are well-suited for long-term in situ monitoring (i.e. weeks or months) of underwater

ecosystems as they can provide data with high frequency and time coverage. Including high-

resolution image and video data and acoustical, e.g. echo sounder data, these measurements

can easily accumulate up to 10–50 GB of multimodal data per day.

The Lofoten-Vesteralen Ocean Observatory (LoVe) [18] is a FUO in the northeast Atlantic.

Between November 2017 and April 2019, it has provided several thousand images showing a

part of an ecosystem with Paragorgia colonies, recorded by the two optical sensors of a stereo

camera mounted on a platform that allows for changing the viewing angle of the camera. In

addition, a large amount of data was recorded by various environmental sensors (in the follow-

ing referred to as non-image sensor data). Divided by a gap from July 2018 to December 2018,

the high frequency data cover two time intervals of about eight and four months, respectively.

Data from both the cameras and other sensors provide a valuable opportunity to compare

trends and patterns in the ecosystem’s data from two consecutive years but call for special

approaches in its analysis due the heterogeneity in the data.

The term data science describes the scientific area dedicated to the development of interdis-

ciplinary approaches integrating principles from computer science, statistics, and domain

knowledge to understand and analyze real phenomena using large data collections [20, 21].
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Multi-sensor data collections recorded with FUO (including images) are challenging as every

sensor has its individual range, noise level, missing value problem, variance, temporal resolu-

tion etc. The digital HD images are a very special case as these must be processed by sophisti-

cated algorithms in order to extract numerical data that represent valuable information about

the objects of interest, like size measurements or changes in morphology or status. Here, com-

puter vision methods, especially from the field of deep learning, offer high potential [22].

1.1 Computer vision for underwater observatory images

In one of the previous studies, Zuazo et al. [11] analyzed the polyp activity of a single Paragor-
gia colony at LoVe in an image time series recorded between February 2018 and June 2018.

Their neural network classifies image pixels into one of three polyp activity categories or a

background class with accuracies between 0.62 and 0.88 based on a small pixel neighborhood.

Osterloff et al. [9] analyzed the activity of the reef-building CWC Desmophyllum pertusum
(formerly Lophelia pertusa), applying a convolutional neural network (CNN). They used sin-

gle-polyp annotations for their approach, focusing on a small part of a reef recorded by a fixed

camera between 3 April 2015 and 10 November 2015. Also, longer term changes like tissue

color change have been investigated using computer vision [9]. However, a broader biological

interpretation of the results and observed trends is limited as the recorded data spans less than

a year, which makes it impossible to assess inter-annual variations. Other ML applications to

observatory image data considered either different species, like sponges [23] or much shorter

time periods [10] and none of the works addressed the problem of analyzing data from two

years, i.e. two campaigns. If data from two campaigns are to be analyzed, new questions to the

computational methods must be raised. A machine learning-based computer vision must for

instance be analyzed regarding its generalization performance. This addresses the question

how well a deep learning network that was trained with data from one campaign generalizes to

data recorded during the other campaign, i.e. its accuracy stays stable. If for instance the cam-

era and / or light source position changes between two campaigns, the visual properties of the

objects can change which would have an effect on the performance of the network. From a bio-

logical point of view, a good generalization performance is essential to avoid biases and data

gaps, so reliable data describing physiology / morphology and / or taxonomy can be collected.

Thus, it is essential as a prerequisite for a broad implementation and use of FUO. In case of the

LoVe data recorded between 2017 and 2019 which is considered in this work, images were

indeed recorded from different camera viewing angles and under varying illumination condi-

tions. While repeated changes of the camera viewing angle enable the monitoring of a larger

area, this creates a great challenge for computer vision as the polyps visual appearance is

impacted. Thus, one main contribution of this paper is the development and evaluation of a

new robust computer vision method to extract polyp activity values from images collected

under these challenging conditions.

1.2 Polyp activity prediction using environmental sensor data

After extracting the polyp activity time series from the two campaigns and a correlation analy-

sis with the sensor data, we address the question whether polyp activity can be predicted from

the non-image sensor data using ML-based time series analysis or not. If for instance the cam-

era is out of service due to errors or maintenance for some time, the gaps in image—derived

polyp activity could be completed with these modeled values. Previously, two approaches for

modeling Paragorgia polyp activity using non-image environmental sensor data as input have

been published. Zuazo et al. [11] used a multilayer perceptron to predict a binary activity state

from sensor data input. Like the images they used, the sensor data used by them represent a
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portion of the sensor data we use in the experiments presented in this paper. Johanson et al.

[10] modeled polyp activity as a 2-class problem as well, using logistic regression for classifica-

tion. They used a comparably small dataset of 258 polyp activity values manually determined

from images recorded between 5 June 2012 and 16 June 2012. Both approaches use single fea-

ture vectors, i.e. s set of measurements from one time point combined, as input. Johanson

et al. also consider features with various time lags of several hours.

In contrast to previous works, we propose to use regression for predicting polyp activity,

using non-image sensor data as input and the polyp activity at a given time point a(t) 2 [0: 1]

(derived from the image from time point t) as a target output. As we assume that the activity

state of a coral colony is affected by the development of the previous states of its environment

rather than only the present state or a single previous state, we propose using Long short-term

memory (LSTM) recurrent neural networks [24] for modeling the polyp activity. Furthermore,

we evaluate the approach using data from two different deployments in 2017 and 2018.

2 Data collection

Images and environmental data were acquired in the Lofoten-Vesteralen Ocean Observatory

(LoVe) Node 1, which is located 20 km from the coast of Norway, in a depth of about 258 m

[18]. A cable for power supply and data transfer connects the FUO with a land station. At the

time of data acquisition for this study, LoVe Node 1 consists of three platforms. The main plat-

form is equipped with two acoustic Doppler current profilers (ADCP) for measuring current

velocity and an echosounder. Furthermore, the observatory has two satellite platforms. Satellite
1 carries a camera, a hydrophone, and sensors for measuring depth (pressure), temperature,

chlorophyll, turbidity and conductivity. The Satellite 2 contains a stereo camera with an adjust-

able viewing angle to record high-resolution digital images of Paragorgias and a camera flash.

The list of sensors in the LoVe observatory can be found on the LoVe observatory website

(https://loveocean.no/about-love). The viewing angle of the stereo camera can be changed, so

that images from several perspectives can be recorded repeatedly. The two optical sensors of

the stereo camera will be referred to as K0 and K1 in the following.

Both satellite platforms are located higher than the main platform. The distances between

the main platform and Satellite 2 and between Satellites 1 and 2 are both about 100m. An over-

view and a map of this platform setup is given at the data portal website for LoVe observatory

Node 1, through that all data used in this work are available [25].

In our experiments, we investigate two Paragorgia colonies shown by images Ii = 0, . . .,29812

recorded at Satellite 2 between November 2017 and June 2019 [26, 27], a red one in the fore-

ground of the images and another colony in the background, which appears blue in the images.

For sake of simplicity we will refer to these colonies sometimes as the “red coral” Cr and the

“blue coral” Cb. Both coral colonies are shown in Fig 1. Whether Cb is present in an image

depends on the camera position (see Fig 2). The object-camera distance of the red coral Cr is

lower than the object-camera distance of Cb, such that more details of Cr are visible than of Cb.

While the camera flash illuminates Cr stronger in the upper parts of the colony, the illumina-

tion of Cb is uniformly low.

The images have a size of 2206 × 2752 pixels. We preprocessed all images using gamma cor-

rection with γ = 0.3 as a nonlinear image color transformation in order to increase visibility, in

particular for dark regions and the background of the images. For an example image with and

without gamma correction, see S1 Fig.

From July 2018 to November 2018, no images are available. Based on that, we divide the

data acquisition period into two intervals for separate analysis and comparison: Observation

interval Γ1 (from November 2017 to June 2018) and observation interval Γ2 (from December
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Fig 1. Example image and ground truth segmentation mask. A) Enhanced image (using gamma correction with γ = 0.3 for better visibility) and B)

segmentation mask generated from BIIGLE annotations for A). In A), Cb can be seen on the left, while Cr can be seen on the right of the image in the

foreground. In B), the annotated region for Cr is shown in red, the region for Cb is shown in blue, and the background is shown in gray. Biofouling in

front of Cr and the fish in front of Cb are assigned to the background.

https://doi.org/10.1371/journal.pone.0282723.g001

Fig 2. Example images recorded at the LoVe observatory from different camera viewing angles. Images A)—C) were recorded by stereo camera

sensor K0 and images D)—F) by sensor K1, all during time period Γ2. Images A) and D) are recorded from camera angle θ0, B) and E) from θ1, and

C) and F) from θ2. In images A) and D), Cb is not visible. In image B), only the rightmost part of Cb is visible on the left edge. All images shown were

enhanced using gamma correction with γ = 0.3 for better visibility.

https://doi.org/10.1371/journal.pone.0282723.g002
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2018 to June 2019). 15917 of the images were recorded during interval Γ1 and 13896 images

were recorded during interval Γ2.

One image is available per stereo camera optical sensor per hour until 20 February 2018.

After this date, the frequency is increased to two images, the camera switching between two

viewing angles every two images. After 13 June 2018 (13:00), three images are available per

hour for each stereo camera sensor, recorded from three different camera viewing angles that

are repeated hourly. From 13 June 2018 on, information on the present camera orientation is

available. The three different, hourly repeated camera angles used from that date on will be

denoted as θ0, θ1, and θ2 in the following.

The later part of Γ1, after 13 June 2018 (13:00), will be called G0
1

in the following. The cam-

era setup used during G0
1

was reused throughout Γ2. Example images recorded by stereo cam-

era sensor K0 during time period Γ2 can be seen in Fig 2.

The two ADCP sensors at LoVe Node 1 measure the current velocity along three directions

at different distances to the sea bottom [28]. We use the values measured nearest to the sea bot-

tom by the Nortek Continental ADCP (190 kHz version) for our experiments [29–34]. The

sensor starts measuring at a height of at least two meters above its position (blanking distance),

facing towards the sea surface [28, 35].

Current data recorded before 7 May 2018 have a frequency of one set of measurements

every ten minutes, i.e current measurements for the three directions and for each available dis-

tance to the sea bottom. In addition to the current data, we use temperature data and depth

data [36, 37]. These data are available with an hourly resolution.

3 Methods

First, we will describe the pipeline of computer vision pipeline developed for estimating the

average polyp activity in one Paragorgia colony at a time point t. The pipeline consists of three

steps for coral colony segmentation, patch-wise polyp activity classification and average polyp

activity estimation that are illustrated in Fig 3. Next, the result polyp activity time series will be

analyzed for correlations and a polyp activity prediction will be proposed, based in non-image

sensor data.

3.1 Data preparation

From the images recorded during observation interval Γ1, we randomly select 60 images for

training our models (dataset I 1;train), another 20 images for validation (I 1;val), and another 20

images for testing (I 1;test). Analogously, we selected I 2;ftrain;val;testg from images recorded during

Fig 3. Flow chart: Each image is processed in three steps to extract values describing the polyp activity in a coral. First, A U-Net is used for

coral segmentation. Second, image patches covering the coral region are classified as showing active or inactive polyps. Third, the patches’

activities are weighted according the patches overlap with the coral segmentation. From all computed activity values ai, a time series a(t) with

1h resolution is computed.

https://doi.org/10.1371/journal.pone.0282723.g003
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interval Γ2. In addition, we select a test dataset I 1;test0 containing five images recorded during

the special interval G0
1

to assess the effects of the setup change on 13 June 2018 (see Section 2)

on the performance of our models. To train a baseline model with training data from both

observation intervals, we define combined training and validation datasets

I ∗;train ¼ I 1;train [ I 2;train and I ∗;val ¼ I 1;val [ I 2;val. The shapes of the two Paragorgia colonies Cr

and Cb are described in all training, test, and validation images with the BIIGLE [38] software

using a free-hand polygon shape description tool. These descriptions are used as ground truth

segmentation masks Mi for images Ii as a basis for segmentation learning and accuracy assess-

ment. A mask image contains class labels at pixel positions as follows:

Miðx; yÞ ¼

LðCrÞ ¼ 1 for colony Cr

LðCbÞ ¼ 2 for colony Cb

0 else:

8
>>><

>>>:

ð1Þ

Objects in front of the corals (e.g. fish, biofouling on the camera housing in front of the

lens), larger, dark parts of the corals (e.g. branches shadowed by other branches) and back-

ground visible through the coral branches are also annotated as 0 and an example is shown in

Fig 1.

3.2 Coral colony segmentation

Semantic segmentation with deep neural networks assigns a class label to each pixel in an

image [39]. Here, we adapt the U-Net architecture [40] (implemented with [41]) for coral col-

ony segmentation by implementing zero padding in the upsampling path. This enables the

computation of an output mask M̂i that matches the size of the input images, i.e each mask

pixel M̂iðx; yÞ corresponds to its counterpart in the corresponding input image Ii. One U-Net

model is trained with each of the three training datasets I 1;train, I 2;train, and I ∗;train to obtain

three different segmentation models f1, f2, and f*. We test each model using I 1;test, I 2;test, and

I 1;test0 to assess model generalization across time periods. For segmentation, all images are

downscaled to a size of 551 × 688 to save memory and enable faster processing. Our training

strategy also includes evaluating the model after each epoch using the validation dataset and

keeping the best-performing model weights for testing and model application. Suitable hyper-

parameters are selected based on preliminary experiments (for details see S1 Text).

3.3 Patch-wise polyp activity classification

The polyp activity of an entire coral colony was computed as a weighted sum over the polyp

activities computed for a set of image patches Di
j, organized in a cartesian grid covering the

segmentation mask Mi of the coral in image Ii. Patch-wise polyp activity classification is

explained for the observation interval Γ2 data as this interval is not subdivided by different

camera settings as Γ1 (see Section 2). Again, individual models are trained for each coral and

for all coral image data combined as a baseline.

All images I 2;ftrain;val;testg are subdivided into image patches Di
j¼0;...;ni

with a size of 128 × 128

pixels, where ni is the number of patches extracted from image Ii. All patches Di
j are assigned a

coral portion pi
j 2 ½0; 1�, which is defined as the overlap between patch Di

j and the segmenta-

tion mask Mi. For more details on patch generation and filtering see S2 Text. Patches Di
j with a

coral portion pi
j < 0:1 are not included in the training, test, or validation dataset.
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To collect manual annotations for polyp activity, all patches in the training data are

assigned class labels k (with k = 1 for a patch showing active polyps and k = 0 otherwise)

according to the following rule

kðDi
jÞ ¼

1; if > 20% of Cr polyps shown in Di
j are extended ^ pi

j � 0:1;

0; else:

(

ð2Þ

In other words, if more than 10% of the patch pixels are covered with coral and at least 20%

of the visible polyps are extended, this patch is labelled as a positive example. The threshold of

20% is set based on the visual experience obtained in the annotation in order to increase the

confidence and reproducible class labels. An example showing coral surfaces with and without

polyps as well as extended and retracted polyps can be found in Fig 4. Manual labeling was

done by the author RvK who acquired knowledge about polyp activity classification in per-

sonal communication with the co-author PBM. Examples of annotated patches can be found

in Fig 5. A patch Di
j with coral portion pi

j � 0:1 is assigned to the classification training set

D2;train, validation set D2;val, or test set D2;test according to the assignment of its original image Ii

to I 2;ftrain;val;testg. Datasets D1;ftrain;val;test;test0g are collected analogously based on I 1;ftrain;val;test;test0g.

A 50-layer deep residual neural network (ResNet-50) [42] is used for learning the patch

classification task. ResNets are deep CNNs with residual blocks, that allow for building deep

CNNs that can achieve high accuracy in various computer vision tasks. ResNets are commonly

used, e.g. as a baseline in scientific studies, while improving them and their training methods

is a subject of current research [43, 44]. We use the ResNet-50 code provided by PyTorch [41],

initialized with weights pre-trained on the ImageNet dataset [45]. Instead of only adjusting a

few final layers, we re-train all layers, which is called fine-tuning [46].

We train classification models, gτ, τ 2 {1, 2, *}, referring to data from different time intervals

{Γ1, Γ2, * = Γ1 [ Γ2} using dataset Dt;train. The Γ in the index of gτ is omitted for the sake of

compactness. The models gτ are applied to classify each patch Di
j with pi

j � 0:1 as retracted pol-

yps (gtðDi
jÞ ¼ 0) or extended polyps (gtðDi

jÞ ¼ 1) and evaluated using the test datasets D1;test,

D2;test and D1;test0 .

Fig 4. Patch of Cr with different polyp states. Left image: Original patch. Right image: Polyp-bearing regions with

retracted polyps marked red, non-polyp-bearing regions marked blue. In the unmarked regions, extended polyps can

be seen (not fully extended).

https://doi.org/10.1371/journal.pone.0282723.g004
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3.4 Coral polyp activity computation

In the next step we compute coral polyp activity values a(t) from the segmentation and patch

classification results. A value a(t) represents the average polyp activity in one colony at time

point t, with a temporal resolution of one hour.

First, a segmentation model fτ(τ 2 {1, 2, *}) is applied to the images to compute coral masks

M̂i in images Ii first (see Section 3.2). The :̂ symbol is used to mark values, that have been com-

puted by trained networks and are not directly derived from manual annotations. We generate

image patches D̂i
j showing parts of Cr with coral portions p̂i

j, based on Ii and M̂i. For further

details on patch selection and coral portion computation, see S2 Text.

Next, a trained classification CNN model gτ(τ 2 {1, 2, *}) is applied to assign each patch to a

polyp activity class k̂ðD̂i
jÞ 2 f0; 1g. For each image Ii, a polyp activity state âi 2 ½0; 1� is com-

puted as a weighted average of the patch labels k̂ðD̂i
jÞ for one colony:

âi ¼
1

Pni
j¼0

p̂i
j½p̂i

j � 0:1�

Xni

j¼0

p̂i
jk̂ðD̂

i
jÞ½p̂

i
j � 0:1�: ð3Þ

By setting p̂i
j ¼ 0 and p̂i

jk̂ðD̂
i
jÞ ¼ 0 if p̂i

j < 0:1, we ensure that patches Di
j with p̂i

j < 0:1 are

not considered for computation of âi. In other words, for each patch with more than 10%

coral pixels the polyp activity class (i.e. 0 (inactive) or 1 (active)) is determined. Those with a

positive result contribute the overall activity sum, weighted according to their patch weight.

the overall sum is normalized by the sum of all patch weights for a final weighted sum of coral

colony activity.

For evaluation, the described segmentation and classification pipeline is applied to the test

sets (results are given below). Ground truth data for the activity values per image ai are gener-

ated analogously, using manually generated segmentation masks Mi and patch labels kðDi
jÞ as

well as patches Di
j with pi

j generated based on masks Mi.

Fig 5. Example patches of Cr. The patches shown are extracted from various images in the datasets D1;train and D2;train. The top row

shows patches annotated as extended polyps (label 1), while patches in the bottom row are annotated as retracted polyps (label 0). The

pixels annotated as background are set to (0,0,0), i.e. black pixels (see S2 Text).

https://doi.org/10.1371/journal.pone.0282723.g005
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The final time series of activity values a(t) has a temporal resolution of one hour. The a(t)
are computed as the average of the activity values âi describing the polyp activity of Cr in

images Ii in a one hour time window. Since the temporal resolution of imaging is not homoge-

neous during the campaigns this has to be done in a flexible way. For a given hour t, this

includes all âi for Ii recorded at any time point ~t with t � 30 minutes � ~t < t þ 30 minutes
(recorded by both optical sensors of the stereo camera). Only images recorded before 7 April

2019 are used for computing the activity time series as images are only sparsely available after

that date.

To provide most accurate time series of polyp activities per time intervals Γ(1,2) and corals

C(r, b), we use the models achieving the lowest MAE in this task (see Section 4.3). We generate

the final time series as combinations of polyp activity data estimated by separate model combi-

nations for the three time intervals G1 G
0

1
, G0

1
, and Γ2. Input images for each hour t were

selected as described in Section 3.4.

3.4.1 Polyp activity estimation for the blue coral Cb. Since the cameras are positioned to

take good images of the “red” coral in the front, the blue coral Cb is not visible in a subset of

the images. As a consequence these images had be filtered out, which is described in detail in

the supporting information (see S3 Text).

3.4.2 Ground truth data and evaluation method for activity computation. To assess the

accuracy of our approach we compare the activity values per image âi computed with our

approach with the manually obtained ground truth activity values ai. As a performance mea-

sure, we use the mean absolute error (MAE). If a coral is present in an image for which no

activity value is estimated (i.e. the coral was not found by segmentation model fτ), or if an esti-

mated value is returned although the given coral in fact is not present in the image (i.e not

annotated in the ground truth), the absolute error for this image is set to 1.

3.5 Evaluation metrics for segmentation and classification

The segmentation models f are evaluated using the Jaccard score J [47]. For evaluation of the

classification models g, we use the F1-score (also called F-measure), which is based on the pre-

cision (P) and recall (R) measures [48, 49].

To assess the overall performance of a segmentation or classification model, we use the

macro-average of the performance measures introduced above. The macro-averaged perfor-

mance measures �J and �F1 are unweighted average values of the performance measures of all

classes [50–52]. A more detailed description of the performance scores and the macro average

is given in S4 Text.

3.6 Polyp activity prediction using LSTM

To predict time series of hourly polyp activity values based on non-image sensor data, we use

LSTMs (Long short-term memory). LSTMs are a special kind of recurrent neural networks

and able to store past information in an internal state. Although first published in 1997 [24],

LSTMs are still considered state of the art [53] in processing sequential data like sensor time

series. We used the LSTM implementation from the PyTorch program library [41] to imple-

ment our polyp activity prediction models.

As a ground truth for LSTM training, we use time series a(t) previously computed using

our image-based approach described above. As input for the LSTMs, we define a sensor data

time series s(t) that contains one vector of input features per hour t. Each feature vector s(t) is

composed of the temperature T(t), depth d(t), and the current components v1(t), v2(t), and
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v3(t):

sðtÞ ¼ ðTðtÞ; dðtÞ; v1ðtÞ; v2ðtÞ; v3ðtÞÞ: ð4Þ

The current velocities are brought to an hourly resolution, assigning all values recorded at a

time point ~t with

t � 30 minutes � ~t < t þ 30 minutes ð5Þ

to hour t. This is done in two steps: First, all values with a resolution of one second are brought

to a resolution of 10 minutes, this way adjusting the resolution to the data recorded before 7

May 2018. Doing so, the time intervals

½t � 30 minutes; t þ 30 minutesÞ ð6Þ

are subdivided into 10-minute intervals and the medians of the current data recorded within

each of these intervals are computed. Second, one value per hour t of the now fully 10-minute-

resolved dataset is computed as the median of all data associated the one hour time window

around t. For further details on the input features see Table 1. All input features are standard-

ized to zero mean and unit variance.

To predict one activity value âðtÞ, we use a sliding window approach, i.e. a subseries

St = (s(t − η + 1), . . ., s(t)) of the sensor data series s(t) with a window length of η hours as

input for the LSTM. All values in St and their ordering can influence the output value âðtÞ due

to the recurrence of the LSTM. LSTM models ht0 are used to predict one week of hourly coral

activity, where t0 is the first hour of the week to predict the data from. Each ht0 is trained using

data recorded during the eight weeks before t0. To predict the activity for the subsequent week,

the window of eight weeks is shifted by one week and a new model is trained. This is repeated

until all âðtÞ, for which input series St are available, are computed. As the range of the output

time series âðtÞ is known to be [0, 1], the LSTM outputs are clipped to this range at test time.

For the principles of feature and parameter selection of the LSTM, see S5 Text. For further

details on data preprocessing, which includes the handling of gaps in the time series s(t), e.g.

caused by sensor malfunctions, see S6 Text.

We apply polyp activity prediction using LSTM just for the front coral Cr due to the large

number of gaps in the Cb polyp activity time series (for further details and the results for Cb see

S8 Text). We evaluate our LSTM approach using sets of polyp activity data a(t) of coral Cr as

Table 1. Features used as input for LSTM-based activity prediction.

Data type Variable Resolution Unit Averaging

Temperature T(t) 1 hour−1 ˚C None

Depth d(t) 1 hour−1 m None

Current velocity, first component v1(t) (10 min)−1, 1 s−1 m
s Median

Current velocity, first component v2(t) (10 min)−1, 1 s−1 m
s Median

Current velocity, first component v3(t) (10 min)−1, 1 s−1 m
s Median

Resolution refers to the resolution of the data downloaded from love.equinor.com. Averaging refers to the method used to change data resolution to 1 hour−1. In case of

current data, the medians are computed after bringing the data to a uniform resolution, using median computation as well.

https://doi.org/10.1371/journal.pone.0282723.t001
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ground truth, recorded during two time intervals:

A1 ¼ faðxÞ j 12 April 2018; 15 : 00 � x < 28 June 2018g and ð6Þ

A2 ¼ faðxÞ j 8 February 2019; 19 : 00 � x < 7 April 2019g: ð7Þ

Activity values at earlier time points in Γ1 or Γ2 are excluded for model training as sensor

data were not available. Performance evaluation of the presented LSTM approach is done

using the MAE, which is 0.294 for A1 and 0.281 for A2.

3.7 Correlation analysis

Correlations are computed between the estimated polyp activity time series for corals Cr and

Cb and between polyp activity and the non-image sensor data. We compute the Spearman

rank correlation coefficient [54], which is applicable if the data can be ordered (ordinal vari-

ables). It is defined as follows [55]:

rSðX;YÞ ¼
PN

i¼1
ðrankðXiÞ � mðrankðXÞÞðrankðYiÞ � mðrankðYÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
ðrankðXiÞ � mðrankðXÞÞ

2PN
i¼1
ðrankðYiÞ � mðrankðYÞÞ

2

q ; ð8Þ

where X and Y are vectors of length N (in the following, these vectors will always be time series

ordered by time), rank(Xi) is the rank of Xi 2 X if X would be sorted by value, and μ(rank(X))

is the mean of all ranks of the elements in X. Only polyp activity and sensor data for time

points (i.e. hours) for which a predicted polyp activity value is available are used for calculating

correlations and, in case of current data, for standardization.

A two-sided t-test with the test statistic

t ¼ rS

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 2

1 � r2
S

s

ð10Þ

(t is used here due to conventions for naming t-distributed test statistics, but is a different t
than is used as a variable for time in the rest of this paper) is used to compute p-values for the

null hypothesis that X and Y are not correlated. The statistic is appropriate for larger samples

(> 30) [55]. Spearman rank correlation and p-values were computed using SciPy (version

1.5.4) [56].

4 Results

4.1 Segmentation

The validation and test results of the segmentation models can be found in Table 2. An exam-

ple segmentation result can be seen in Fig 6. The red Paragorgia Cr was segmented with Jac-

card scores greater than 0.88 in all test datasets. The blue Paragorgia Cb was segmented with

J� 0.87 if training and test dataset were from the same period (Γ1 or Γ2), except for test set

I 1;test0 . Model f*, trained using data from both time periods, achieved J> 0.88 for all datasets

and both corals except for Cb in I 1;test (J = 0.828).

The generalization performance of the U-Net was tested in cross-time interval segmenta-

tion experiments, i.e. f1 was applied to the I 2 and vice versa. In case of the “red” coral Cr the

generalization performance was very good, i.e. between 0.89 and 0.96. For the more distant Cb

the generalization was worse. In general, f2 performend better on I 1 than f1 on I 2.

The performance of f1 segmenting Cb in I 2;test is very low with a Jaccard score of 0.175
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which is caused by special visibility conditions affecting the more distant Cb that were not rep-

resented in the I 1. Jaccard scores for the validation datasets as well as recall, precision and F1

scores for the segmentation models can be found in S1 Table.

4.2 Patch-wise polyp activity classification

Test results of the classification models are listed in Table 3. ResNet50 classification models are

denoted as gτ,c, where τ 2 {1, 2, *} and c 2 {r, b} indicate time period Γτ and corals C(r, b),

Fig 6. Example result for image segmentation. A): Original image. B): Segmentation result. C): ground truth mask. The image shown is taken from

test set I 1;test. Note that the fish in the foreground is not segmented as part of the coral, and also not annotated in the ground truth mask. The mask B)

was generated using segmentation model f1.

https://doi.org/10.1371/journal.pone.0282723.g006

Table 3. Macro-averaged F1 scores ( �F1 ) per test set, classification model, and coral.

Model Coral Dc
1;test Dc

1;test0 Dc
2;test

g1,r Cr 0.963 0.979 0.936

g1,b Cb 0.957 0.944 0.895

g2,r Cr 0.952 0.990 0.963

g2,b Cb 0.905 0.923 0.952

g*,r Cr 0.968 0.990 0.960

g*,b Cb 0.957 0.929 0.951

https://doi.org/10.1371/journal.pone.0282723.t003

Table 2. Jaccard scores per segmentation model and test dataset.

Model Measure Class l I 1;test I 1;test0 I 2;test

f1 �J - 0.947 0.840 0.672

f2 �J - 0.880 0.953 0.932

f* �J - 0.925 0.961 0.939

f1 Jl L(Cr) 0.962 0.951 0.886

f2 Jl L(Cr) 0.949 0.956 0.941

f* Jl L(Cr) 0.964 0.960 0.943

f1 Jl L(Cb) 0.896 0.612 0.175

f2 Jl L(Cb) 0.718 0.922 0.870

f* Jl L(Cb) 0.828 0.939 0.888

For performance measures specific to a class label l, l is given in the column “Class l” (see also Eq (1)).

https://doi.org/10.1371/journal.pone.0282723.t002
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respectively, Γ and C being omitted for a shorter notation. Classification of test data selected

from the same time interval as the training data achieved high accuracy values �F1 > 0:94 for

all models gτ,{r, b}. Looking at the generalization performance across time intervals, we note the

lesser performances for the blue coral ( �F1 of 0.895 and 0.905). For the “red” coral we observe

higher cross interval generalization performances of 0.936 to 0.99. So called baseline models,

trained on data from both time intervals, i.e Γ1 and Γ2, achieved �F1 scores of at least 0.92 for all

test datasets. An example showing patch classifications for both corals can be seen in Fig 7.

4.3 Coral polyp activity computation

The results of the evaluation of the coral activity estimation for the entire colonies can be

found in Table 4. Again, for the red coral we observe very low error rates. The low generaliza-

tion performance for the blue coral in the back suffers from the low quality segmentation result

(see above). For the validation results, see S2 Table.

Fig 7. Example patch classification result for Cr and Cb. Frames of extracted patches are shown in dark yellow if the

patch was classified as showing extended polyps, while edges of patches classified as showing retracted polyps are

colored blue. Gamma correction with γ = 0.3 was applied to improve visibility of the corals. Patches were generated

based on masks segmented by model f1. Patch classification was done using models g1,r and g1,b for Cr and Cb,

respectively.

https://doi.org/10.1371/journal.pone.0282723.g007

Table 4. Mean Absolute Error (MAE) of computed coral polyp activity per image.

f g I 1;test I 0
1;test I 2;test

f1 g1,r 0.012 0.009 0.033

f2 g2,r 0.018 0.004 0.014

f* g*,r 0.015 0.004 0.021

f1 g1,b 0.017 0.074 0.870

f2 g2,b 0.161 0.023 0.039

f* g*,b 0.053 0.029 0.012

The table shows results for each test dataset and combination of segmentation and classification models (f and g).

https://doi.org/10.1371/journal.pone.0282723.t004
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4.4 Computation time

The computation time for segmentation was approximately 45 images per second with a NVI-

DIA Tesla V100 GPU since downscaled image versions were used (Downscaling speed was

1.45 images per second on an Intel Xeon processor). Polyp activity computation for the

(larger) foreground red Paragorgia took 1.4 seconds per (original-sized) image, which includes

generating patches and classifying them. For the blue Paragorgia, polyp activity computation

speed was 3–10 images per second as the blue Paragorgia regions are smaller and only partially

visible in some images, resulting in a smaller number of patches to be generated and

processed.

4.5 Polyp activity time series analysis

The result time series can be seen for both corals and both time intervals in Fig 8. In addition

to the hourly average activity values plotted in dots, we show a smoothed curve (Gaussian

smoothing with σ = 10) visualizing a longer-term development of polyp activity over the

months analyzed.

The plots show, that a large fraction of the computed polyp activity is either close to one or

close to zero. This means that the polyps in one coral show a rather synchronized activity.

Regarding the longer-term development of coral-specific polyp activity (smoothed curves),

both corals show similar activity patterns. During Γ1, the highest activity can be observed in

Fig 8. Estimated coral activity vs. time. For the smoothed curves, a Gaussian filter with σ = 10 was used. If no value is available for the next or previous

hour, values in the smoothed curves are marked with an “x”. For details on the handling of missing data before smoothing see S7 Text.

https://doi.org/10.1371/journal.pone.0282723.g008
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December and in May. After a short decrease in June, the activity increases again in July. Dur-

ing Γ2, active and inactive periods alternate until late February. In March, the activity of the

red coral Cr is higher than the activity of the blue coral Cb.

In both time periods, and for both corals, periods of very low polyp activity occur (i.e. at

most one single peak greater than 0.1 appears in the smoothed curve). For Cr, the low activity

period in Γ1 lasted from 22 January 2018 to 11 February 2018 (20 days). The low activity in Γ2

lasted from 1 March 2019 to 17 March 2019 (16 days), beginning 38 days later compared to Γ1.

For Cb, the low activity period in Γ1 lasted from 12 February 2018 to 20 February 2018 (8

days). The low activity period in Γ2 lasted from 21 February 2019 to 19 March 2019 (26 days),

beginning 9 days later compared to Γ1.

The spearman rank correlation between the coral polyp activities of Cr and Cb is rS = 0.585

(p = 0.0, N = 3728) for Γ1 and rS = 0.525 (p = 2.2�10−166, N = 2347) for Γ2. For the calculation

of correlations, only polyp activity values for hours t for which a value is given for both corals

(i.e. for each polyp activity value for Cr, a matching value for Cb has to be given with respect to

t, and vice versa). In S2 Fig we show plots of the polyp activity together with other sensor data

(e.g. current, water depth).

4.5.1 Influence factors for coral segmentation. Although the full pipeline for coral polyp

activity computation shows good performance values we investigated the effects of camera

angle and biofouling in the U-Net segmentation. Fig 9 shows plots of the coral segmentation

size (= number of pixels) for the blue coral Cb during Γ2 (the corresponding data for Cr during

Γ2 is shown in S3 Fig). From the figures it can be taken that the visible region size depends on

the camera angle. The region sizes in images in which the major part of the respective coral is

visible decreased during time period Γ2. Images showing both corals, recorded at different

time points during Γ2, and the respective segmentation masks are shown in Fig 10. In the

shown images, biofouling on the camera housing can be seen, which increases over time. The

Fig 9. Region size development of coral Cb. The plot shows the region size development of Cb during time period Γ2 in the images recorded by stereo

camera sensor K0. Coral sizes in images recorded from different camera angles are marked by different colors. Region Segmentation was done using

U-Net f*. The lower threshold applied to remove false positive Cb regions is shown as a red line.

https://doi.org/10.1371/journal.pone.0282723.g009
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shown segmentation masks show that the models remove spots with biofouling from the seg-

mented coral regions.

4.6 Polyp activity prediction using LSTM

The predicted polyp activity is compared to the polyp activity derived from the ground truth

for A1 and A2. Plots of the curves are displayed in Fig 11). The plots show that the predicted

time series basically follow the manually determined ground truth time series. For A1, it can

be seen that the predicted curve sometimes stays on a high or low level instead of following

short-term variations in the ground truth time series. For A2, the models reproduced the activ-

ity peak in the low activity interval in March 2019, however, two pairs of activity peaks were

wrongly predicted during this interval. Furthermore, the predicted amplitude of activity peaks

is often too low. Comparing the plots, the predicted and ground truth curves are more similar

for A1. Plots of unsmoothed results and ground truth data can be found in S4 Fig.

Spearman correlations of the polyp activity time series intervals the datasets Að1;2Þ, are com-

posed of with the predicted polyp activity and the sensor data time series used as LSTM input

can be found in Table 5. Except for v3 with A2, all p-values for current or temperature features

are lower than 10−11. For these features, the absolute values of the correlations are between 0.2

and 0.45. The computed correlation values for depth are near zero, while the correlation value

for v3 and A2 is 0.107.

5 Discussion

In the first step of our approach we presented a new polyp activity estimation method for Para-
gorgia using deep learning-based segmentation, image patch classification and a special patch

weighting scheme. We evaluated the method’s performance on data recorded at the LoVe

ocean observatory throughout two different deployments (i.e. time intervals) with different

specifications and camera viewing angles. Two coral colonies were processed, one (referred to

Fig 10. Images and segmentation masks visualizing the development of biofouling. The images are recorded at different time points

during Γ2 that are shown below each segmentation mask. The blurred spots in the images that are left out in the mask regions are

biofouling spots. In the images in the upper row, biofouling spots overlapping with the corals are marked with white circles. The

segmentation masks for each image were by generated by model f2.

https://doi.org/10.1371/journal.pone.0282723.g010
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with Cr) shown in the foreground with good contrast and details and another one (referred to

with Cb) in the background, shown with lower quality and details.

Our results for the red Paragorgia show that the method is able to estimate the polyp activity

with high accuracy, even when the system is trained with data from the first deployment

(November 2017—June 2018) and applied to the second deployment data (December 2018—

April 2019), and vice versa (Jaccard score greater than 0.88 in segmentation and F1 score

greater than 0.93 in classification, see Tables 2 and 3).

Fig 11. Result of polyp activity prediction for the red Paragorgia Cr using our LSTM approach. Plots A) and B) show the ground truth and the

results for A1 and A2, respectively. For better visibility, the original results are smoothed using a Gaussian filter with σ = 5. If no value is available for the

next or previous hour, values in the smoothed curve are marked with an “x”. For details on the handling of missing data before smoothing see S7 Text.

https://doi.org/10.1371/journal.pone.0282723.g011

Table 5. Spearman rank correlations and p-values.

Datatype A1 (N = 1392) A2 (N = 1070)

rS p rS p
Depth -0.049 0.066 0.020 0.505

Temperature -0.212 1.5�10−15 -0.338 4.5�10−30

Current velocity v1 -0.265 7.6�10−24 -0.203 2.1�10−11

Current velocity v2 0.291 1.5�10−28 0.438 2.8�10−51

Current velocity v3 -0.212 1.5�10−15 0.107 0.0005

Predicted activity 0.460 8.4�10−74 0.148 1.2�10−6

The table shows the correlations rS between the features used as input for the polyp activity prediction LSTM and the ground truth polyp activity of coral Cr in A1 and

A2. In addition, the correlation between predicted and the ground truth-derived polyp activity is also contained in the table. All correlations are accompanied by p-

values.

https://doi.org/10.1371/journal.pone.0282723.t005
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The segmentation accuracy for the blue Paragorgia is only slightly lower than for the red

Paragorgia if training and test sets were recorded during the same deployment. An exception

to this is the special case of a changed camera setup (see Table 2). Furthermore, in segmenta-

tion, the generalization performance between the two deployments was much lower for the

blue coral than for the red one. An explanation for this is the higher object-camera distance

and lower feature contrast due to lower illumination preventing the models from generalizing

well, in particular when camera orientation changes. Classification accuracy for the blue Para-
gorgia is only slightly lower than for the red one, and the classification models also generalize

well between deployments (F1 scores greater than 0.89).

The segmentation results show that the size of the segmented regions for both corals

decreased during the second deployment period (Fig 9, S3 Fig). Since we do not see a change

in the shape of the corals in the second period, this observation is more likely to be explained

by the FUO setup. Slight shifts of the camera occurred during deployment time, e.g. due to set-

tling of the satellite platform on the seafloor and/or currents. The changed alignment of cam-

era and flash can not only change the perspective but also reduce image brightness. Increasing

biofouling on the camera housing in front of the lens reduced image quality over time, creating

noisy spots in the field of view that occluded parts of both corals. The segmentation models

were trained to exclude biofouling spots (see Section 3.1) from the segmented regions, which

causes a decrease in size (i.e. number of pixels) of the segmented regions when biofouling

increases (see Fig 10). These experiences should be considered in future setups and FUO

designs if more than one colony is to be monitored. Of course, eliminating biofouling

completely during longterm deployment is hardly possible, but it is essential to take precau-

tions to avoid this as far as possible and to be aware of this problem when interpreting results.

And problems like biofouling can be avoided.

Regarding the aspect of efficiency we can report that our approach is able to process most

images in less than 2.5 seconds. Thus, it is faster than the approach of [11], who reported a pro-

cessing time of 75 seconds per image.

The polyp activities for both Paragorgia colonies are computed as time series a(t), which

approximate the degree of activity in a coral colony, based on many patches covering the Para-
gorgia segmentation. Using this approach, also a local polyp activity assessment (for instance

at the top or at the bottom of the coral) could be performed. In the majority of images, most of

the polyps within each of the two Paragorgia colonies had the same activity state (see time

series in Fig 8). However, one strength of our approach is that it could also be applied for mon-

itoring corals with polyps that are not synchronized, and show locally individual behavior i.e.

feeding activity. In this case, more care should be given to the illumination to capture as much

of the corals as possible in a way that the polyps can be recognized well.

The results of this image analysis were visualized as time series plots (see Fig 8). A striking

feature of the time series generated for both observation periods is an interval of very low

polyp activity during spring. This behavior appeared in both corals. Periods of inactivity lasted

between 8 and 26 days and occurred later in the second observation period (approximately 5.5

weeks for the red Paragorgia and approximately 1.5 weeks for the blue Paragorgia, see Section

4.5). The underlying biological mechanisms of this behavior need to be further investigated.

Also for the rest of the year, the activity of both coral colonies appears to be synchronized,

which is indicated by the Spearman rank correlation computed for the two polyp activity time

series (see Section 4.5).

Both time series appear synchronized although different classification models were used

and the two corals have different visual properties. This indicates that the presented approach

is capable of extracting information from lower quality data as well, here represented by the

blue colony with a higher object-camera distance.
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Polyp activity of the red Paragorgia from the time series intervals used for the LSTM regres-

sion experiments is slightly correlated with temperature and generally also shows a slight cor-

relation with current velocity. The results of the LSTM time series prediction look promising

and also indicate the relationship between current and polyp activity. However, the LSTM

application was limited by many gaps in the non-visual sensor data.

General knowledge of how change in environmental parameters are impacting the natural

behaviour of Paragorgia is a prerequisite to be able to monitor possible effects of human activi-

ties. As polypp activity is essential for feeding, it is regarded as an important parameter for

measuring possible impact on health and used in laboratory experiments for establishing

threshold values in risk assessment (include reference). As Paragorgia is hard to keep in aquar-

ium, experience from field on what parameters that impact the organism is important to pro-

vide an optimal artificial environment.

6 Conclusion

Fixed underwater observatories (FUO) are applied for monitoring underwater habitats in vari-

ous contexts. FUO equipped with cameras often record large amounts of image (and/or video)

data that require classification and quantification of the information in the data before statisti-

cal analysis can be applied or observations can be related to other sensor data (such as temper-

ature, current). We have demonstrated that our models can measure polyp activity from

various deployments, which represents an important progress compared to the work of Osterl-

off et al. [9] and Zuazo et al. [11] as it shows that analyzing long-term monitoring data is possi-

ble without training new models for each observation period.

This progress paves the way for the application of deep learning-based image analysis to

images collected with a group of FUO at different positions and/or in different time intervals

to study one coral species (like Paragorgia in this case) or substructures of a colony without the

need to collect manually annotated training data for each colony. It also indicates that transfer-

ring this approach to other CWC species has good chances of success. Monitoring at such a

broad scale makes it easier to verify findings about observed events, which is often not possible

if data from only one short observation period or location are available.

The statistical results correspond to observations published before hinting at a relationship

between polyp activity and currents (e.g [9, 10]). In future work, the relationship of polyp

activity time series to other parameters like the coral morphology or other environmental fac-

tors may be analyzed.

Using the polyp activity time series, we were able to train a LSTM to predict the polyp activ-

ity at a time point t without integrating the image information. One potential application of

such a prediction model could be filling in gaps in image-based activity time series, which is

important as even with well-maintained equipment, long-time deployments always experience

periods with camera failures, maintenance interruptions or biofouling. Such a prediction

method could pave the way for new opportunities and approaches for interpreting environ-

mental monitoring data.

Supporting information

S1 Fig. Example image with (A)) and without (B)) gamma correction with γ = 0.3. The

background of image B) is very dark, such that the corals, in particular Cb, cannot be visually

assessed well.

(PDF)
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S2 Fig. Plots of polyp activity and sensor data. The polyp activity time series a(t) is shown

together with the non-image sensor data used as LSTM input features (see Section 3.6).

(PDF)

S3 Fig. Region size development of the red Paragorgia. Size of the segmented Cr region in

the images recorded by stereo camera sensor K0 during time period Γ2 plotted against time.

Regions were segmented by U-Net f2. The sizes were plotted separately according to the cam-

era angle of the corresponding images.

(PNG)

S4 Fig. Unsmoothed LSTM result plot for the red Paragorgia. Plot of unsmoothed ground

truth and LSTM-predicted Cr activity time series.

(PNG)

S1 Text. Hyperparameter selection for segmentation and classification models. A descrip-

tion of the parameter selection scheme used for the segmentation and classification models.

(PDF)

S2 Text. Patch generation for polyp activity classification. A description of the method used

for generating image patches to be used as classification model input.

(PDF)

S3 Text. Polyp activity estimation for the blue coral Cb. A more detailed description of how

the blue coral was processed.

(PDF)

S4 Text. Detailed description of scores and performance measures. Jaccard scores, preci-

sion, recall, and F1 scores definition.

(PDF)

S5 Text. Hyperparameter and feature selection for LSTM. A description of parameter and

feature selection scheme for the LSTM models.

(PDF)

S6 Text. Preprocessing of sensor data in LSTM training and prediction. Additional details

of sensor data preprocessing, including a description how gaps in the sensor data time series

are handled during LSTM training and prediction.

(PDF)

S7 Text. Data smoothing for visualization. A description of the smoothing process applied to

polyp activity time series before visualization.

(PDF)

S8 Text. LSTM prediction results and correlations for the blue Paragorgia. LSTM predic-

tion and evaluation results and correlations of LSTM input sensor data and polyp activity for

the blue Paragorgia colony Cb.

(PDF)

S1 Table. Additional evaluation results for the segmentation models. Jaccard scores, preci-

sion, recall, and F1 scores for test and validation of the segmentation models.

(PDF)

S2 Table. Test and validation macro-averaged F1 scores ( �F1 ) of the classification models.

(PDF)
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S1 Data. Non-image sensor data and polyp activity time series. Time series of non-image

sensor data with an hourly resolution used in the experiments described in this paper and the

result time series of polyp activity estimation.

(XZ)

S2 Data. Annotations for the segmentation experiments. Pixel-wise annotations used to

generate ground truth segmentation masks for segmentation model training and evaluation.

(XZ)

S3 Data. Ground truth data for the classification experiments. Class labels for patches,

weights for patches computed from ground truth masks, imagewise ground truth polyp states,

patch extraction regions, and region sizes.

(XZ)

S4 Data. Data for figures. Non-image data that were used to generate figures shown in the

paper, if not already contained in S1–S3 Data.

(XZ)

Acknowledgments

We especially thank Geir Pedersen from the Institute of Marine Research, Bergen, Norway for

providing valuable information about the ADCP current sensor and the current data format

used at the LoVe observatory. The sensor data and images were downloaded from Equinor /

IMR Ocean Observatory Archive, http://love.statoil.com/ from the sources and time periods

listed in the Materials section and referenced in the Bibliography.

Author Contributions

Conceptualization: Ingunn Nilssen, Pål Buhl-Mortensen, Tim W. Nattkemper.

Formal analysis: Daniel Langenkämper, Pål Buhl-Mortensen.

Investigation: Daniel Langenkämper, Ingunn Nilssen, Pål Buhl-Mortensen.

Methodology: Robin van Kevelaer, Daniel Langenkämper, Ingunn Nilssen, Pål Buhl-Morten-

sen, Tim W. Nattkemper.

Project administration: Ingunn Nilssen, Tim W. Nattkemper.

Resources: Ingunn Nilssen.

Software: Robin van Kevelaer, Daniel Langenkämper.

Supervision: Ingunn Nilssen, Pål Buhl-Mortensen, Tim W. Nattkemper.

Validation: Robin van Kevelaer.

Visualization: Robin van Kevelaer, Tim W. Nattkemper.

Writing – original draft: Robin van Kevelaer, Tim W. Nattkemper.

Writing – review & editing: Robin van Kevelaer, Daniel Langenkämper, Ingunn Nilssen, Pål

Buhl-Mortensen, Tim W. Nattkemper.

References
1. Buhl-Mortensen L, Olafsdottir SH, Buhl-Mortensen P, Burgos JM, Ragnarsson SA. Distribution of nine

cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: effects of

PLOS ONE A data science approach for multi-sensor marine observatory data monitoring cold water corals

PLOS ONE | https://doi.org/10.1371/journal.pone.0282723 July 19, 2023 22 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0282723.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0282723.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0282723.s017
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0282723.s018
http://love.statoil.com/
https://doi.org/10.1371/journal.pone.0282723


bathymetry and hydrography. Hydrobiologia. 2015; 759:39–61. https://doi.org/10.1007/s10750-014-

2116-x

2. Buhl-Mortensen P, Buhl-Mortensen L. Morphology and growth of the deep-water gorgonians Primnoa

resedaeformis and Paragorgia arborea. Marine Biology. 2005; 147:775–788. https://doi.org/10.1007/

s00227-005-1604-y

3. Bennecke S, Kwasnitschka T, Metaxas A, Dullo WC. In situ growth rates of deep-water octocorals

determined from 3D photogrammetric reconstructions. Coral Reefs. 2016; 35(4):1227–1239. https://

doi.org/10.1007/s00338-016-1471-7

4. Tandberg AHS, Mortensen P. Koralldyr: Vurdering av sjøtre Paragorgia arborea for Norge [Coral Ani-

mals: Assessment of the Soft Coral Paragorgia arborea in Norway]; 24 November 2021. Rødlista for

arter 2021. Artsdatabanken (last accessed on 26 April 2022). Available from: https://www.

artsdatabanken.no/lister/rodlisteforarter/2021/1803.

5. Buhl-Mortensen L, Aglen A, Breen M, Buhl-Mortensen P, Ervik A, Husa V, et al. Impacts of fisheries

and aquaculture on sediments and benthic fauna: suggestions for new management approaches. vol.

2. Institute of Marine Research; 2013.

6. Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, et al. Biological

structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Marine

Ecology. 2010; 31(1):21–50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

7. Ragnarsson S, Burgos J, Kutti T, Beld I, Egilsdottir H, Arnaud-Haond S, et al. The Impact of Anthropo-

genic Activity on Cold-Water Corals. In: Rossi S, Bramanti L, Gori A, Orejas C, editors. Marine Animal

Forests. Cham: Springer; 2016. p. 1–35.

8. Van Engeland T, GodøOR, Johnsen E, Duineveld GCA, van Oevelen D. Cabled ocean observatory

data reveal food supply mechanisms to a cold-water coral reef. Progress in Oceanography. 2019;

172:51–64. https://doi.org/10.1016/j.pocean.2019.01.007

9. Osterloff J, Nilssen I, Van Engeland T, Buhl-Mortensen P, Järnegren J, Nattkemper T. Computer vision

enables short- and long-term analysis of Lophelia pertusa polyp behaviour and colour from an underwa-

ter observatory. Scientific Reports. 2019; 9. https://doi.org/10.1038/s41598-019-41275-1 PMID:

31036904
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