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Abstract
Metabarcoding is a rapidly developing tool in marine zooplankton ecology, although most zooplankton surveys continue to 
rely on visual identification for monitoring purposes. We attempted to resolve some of the biases associated with metabar-
coding by sequencing a 313-b.p. fragment of the COI gene in 34 “mock” samples from the North Sea which were pre-sorted 
to species level, with biomass and abundance estimates obtained for each species and taxonomic group. The samples were 
preserved either in 97% ethanol or dehydrated for 24 h in a drying oven at 65 °C (the routine way of preserving samples 
for dry weight measurements). The visual identification yielded a total of 59 unique holoplanktonic and 16 meroplanktonic 
species/taxa. Metabarcoding identified 86 holoplanktonic and 124 meroplanktonic species/taxa, which included all but 3 of 
the species identified visually as well as numerous species of hard-to-identify crustaceans, hydrozoan jellyfish, and larvae 
of benthic animals. On a sample-to-sample basis, typically 90–95% of visually registered species were recovered, but the 
number of false positives was also high. We demonstrate robust correlations of relative sequence abundances to relative 
biomass for most taxonomic groups and develop conversion factors for different taxa to account for sequencing biases. We 
then combine the adjusted sequencing data with a single bulk biomass measurement for the entire sample to produce a 
quantitative parameter akin to species biomass. When examined with multivariate statistics, this parameter, which we call 
BWSR (biomass-weighed sequence reads) showed very similar trends to species biomass and comparable patterns to spe-
cies abundance, highlighting the potential of metabarcoding not only for biodiversity estimation and mapping of presence/
absence of species but also for quantitative assessment of zooplankton communities.

Keywords Mesozooplankton monitoring · Biodiversity · COI · DNA barcoding · Molecular identification · Pelagic 
ecosystems

Introduction

Marine zooplankton play a crucial role in ocean ecosystems, 
linking primary producers to higher trophic levels and con-
tributing to the biogeochemical cycling of nutrients. They 

are also indicators of the health of marine environments and 
can provide valuable insights into the impacts of climate 
change, pollution, and other anthropogenic activities on the 
ocean (Ferdous and Muktadir 2009; Ndah et al. 2022; Yang 
and Zhang 2020). However, many of the ecologically signifi-
cant indicators, such as the presence or relative abundance 
of sensitive or invasive species, rely on accurate species-
level data, which remains a bottleneck in many zooplankton 
studies, given the time and taxonomic expertise required to 
manually sort and identify zooplankton samples.

Recent advances in molecular techniques have allowed to 
study marine biological communities at an unprecedented 
volume and taxonomic resolution and are rapidly becoming 
more and more affordable. More specifically, metabarcoding, 
or the simultaneous sequencing of a DNA barcode region of 
interest in all organisms in a community sample, permits the 
analysis of 100 s to 1000 s of samples simultaneously (Gaither 
et al. 2022). Metabarcoding avoids a lot of the limitations of 
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microscopic sorting and more modern visual-based identifica-
tion methods, since it can distinguish organisms of any stage 
of development, cryptic species, or those species that lose their 
distinguishing features in preservatives. Metabarcoding can 
also be more cost-effective than traditional methods, particu-
larly for large-scale monitoring studies, as it requires fewer 
trained personnel and can be to a large extent automated. How-
ever, there are still methodological challenges and limitations 
that must be properly addressed, including the choice of bar-
code, PCR biases, and incomplete reference libraries (Bucklin 
et al. 2016; Santoferrara 2019). Most importantly, despite a 
growing body of evidence that sequence numbers produced 
via metabarcoding are at least somewhat representative of the 
relative composition of the organisms in the environment, it 
remains a challenge to apply metabarcoding data for commu-
nity analysis in a quantitative way (Bucklin et al. 2016). The 
most common quantitative parameter in plankton ecology, 
abundance of organisms, is expectedly often poorly correlated 
to sequence numbers due to the enormous range in organism 
size and, thus, their DNA content. This can even include organ-
isms belonging to the same species—for example, a Calanus 
spp. individual will vary between 0.2 and 140 µg C, or 4 orders 
of magnitude, between an egg and its adult stage (i.e., Møller 
et al. 2016). Far better correlations have been observed for 
organism biomass, especially in certain groups such as cope-
pods (Ershova et al. 2021; Hirai et al. 2017; Lamb et al. 2019; 
Matthews et al. 2021), although typically these relationships 
remain far from perfect for most taxa, presumably due to PCR 
bias as well as different DNA density between taxonomic 
groups of similar weight.

In this study, we apply a mock sample approach to quantify 
and address the biases of metabarcoding both for recovering 
biodiversity and estimating relative contribution of species. 
We capitalize on the well-documented relationship between 
organism biomass and sequence numbers (Ershova et al. 2021; 
Hirai et al. 2017; Krehenwinkel et al. 2017; Schenk et al. 
2019) to introduce a direct framework to apply metabarcoding 
as a quantitative method in zooplankton monitoring studies. 
We sequenced a 313-base pair fragment (“Leray” fragment) 
of the COI barcoding gene, which has been shown to be suc-
cessful in recovering biodiversity at the species level in a wide 
range of marine invertebrates, including zooplankton (Antich 
et al. 2019; Ershova et al. 2021; Wangensteen et al. 2018). We 
attempt to correct for some of the PCR bias and other factors 
that result in uneven sequencing of various organisms, with 
the hypothesis that under- or overrepresentation of specific 
taxa in sequencing data is consistent and predictable. We do 
this by developing species- or taxa- specific conversion factors 
that are applied across the entire dataset and bring the rela-
tionship between organism biomass and sequence reads closer 
to unity. We then combine this data with a single bulk biomass 
measurement for the entire sample to produce a quantitative 
molecular variable akin to species biomass, which can then 

be used to map species distributions and densities, analyze 
community structure, and estimate a variety of ecosystem 
indicators. Additionally, we tested two different methods of 
preservation of zooplankton DNA to evaluate the impact of 
preservation method on the obtained results. We propose that 
the protocol described in this work can be a valuable tool 
for future studies on marine zooplankton communities and to 
help better understand the functioning of marine ecosystems.

Materials and methods

Collection and sample preparation

Sampling and mock sample preparation were done during 
the IMR North Sea Ecosystem Cruise onboard the RV Johan 
Hjort during April 2022 (Fig. 1, Supplementary Material 
1). Zooplankton was collected using a WP-II net (0.25-m2 
mouth opening, 180-µm mesh size), which was hauled verti-
cally from 5 m off the sea floor. At two of the stations (sta-
tions 418 and 423), samples were obtained using a Multinet 
MAMMOTH (Hydrobios) with a 180-µm mesh containing 
9 nets, hauled obliquely from 5 m above the sea floor while 
the boat was moving at a speed of 1 km. Additionally, at 
almost every station, supplementary samples were obtained 
using the GULF VII net with a mesh size of 280 µm which 
was also hauled obliquely from 100-m depth.

A small subsample (typically, 1/8 of the total sample) was 
obtained from the WP-II nets (16 stations) or the deepest net 
of the MultiNet MAMMOTH (2 stations). The animals were 
immobilized using a few drops of carbonated sea water then 
sorted under a stereomicroscope, and 200–500 animals were 
selected to create a “mock” sample. The sample was also sup-
plemented with larger and/or rarer animals from the GULF 
VII net from the corresponding station. Per this method, the 
diversity within the samples reflected the real environmental 
diversity at that location (i.e., only animals from a given station 
were used to create the sample), but their relative abundances 
were to a large degree artificial. The samples were created to 
maximize diversity and varying contribution of various taxo-
nomic groups in different samples. Organisms were identified 
to species level when possible, although for many organisms 
identification was done at the genus level or higher, especially 
at larval/juvenile stages. For example, copepods belonging to 
the genera Pseudocalanus and Paracalanus were identified 
as Pseudo/Paracalanus spp., and Calanus finmarchicus and 
C. helgolandicus were grouped as Calanus spp. All calanoid 
copepod nauplii were identified as Calanoida. Meroplankton 
was typically grouped at the phylum or class level. The body 
length of each animal was measured using the ZoopBiom digi-
tizing system (Roff and Hopcroft 1986), and its biomass was 
estimated using a length–weight regression relationship pub-
lished for the species or a similar species (see Ershova et al. 
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2015 for details). While this indirect method of biomass esti-
mation has an associated bias, especially for groups for which 
there is limited data on length–weight relationships, it allows to 
estimate species weight without the labor-intensive practice of 
weighing every group of organisms. Total sample biomass was 
estimated by summing all the individual dry weight values. 
Nitrile gloves were worn during sample preparation, and all 
dishes and sorting tools were rinsed with 10% bleach between 
samples to avoid contamination. At most locations, two sam-
ples were created for each station: one was preserved in 100% 
ethanol, and the other was rinsed with freshwater and placed 
on a pre-weighed aluminum tray, then dried at 65 °C for 24 h. 
These two samples per station were designed to be very similar 
in quantity and composition, but were not identical. In total, 
33 samples were prepared from 18 stations (17 preserved via 
drying, and 16 in ethanol).

DNA analysis

In the lab, the dry samples were re-constituted with a 
few drops of MilliQ water and ethanol was drained and 
replaced with MilliQ water. The samples were homog-
enized in 2-ml tubes containing ceramic beads using a 
2 × 150 Precellys machine. Three 100-µl replicates of 
the resulting homogenate were taken, and DNA was 
extracted from each replicate using the Qiagen Blood 
and Tissue Kit according the manufacturer’s protocol. 

PCR amplification was carried out using individually 
tagged Leray-XT primers for COI: forward primer 
mlCOIintF-XT 5'-GGW ACW RGW TGR ACWITITAY 
CCY CC-3 ' (Wangensteen et  al. 2018) and reverse 
pr imer jgHCO2198 5 '-TAIACYTCIGGRTGICCR 
AAR AAYCA-3' (Geller et al. 2013). The reagents and 
PCR protocol are described in detail in Ershova et al. 
2021. Two extraction blanks and two PCR blanks were 
sequenced with the samples as negative controls. The 
PCR products were visualized on a gel to ensure the 
absence of contamination, then purified using Mine-
lute PCR purification columns (www. qiagen. com) and 
pooled into a single library. The NextFlex PCR-free 
library preparation kit (Perkin-Elmer) was used to pre-
pare the Illumina library, which was then sequenced 
on an Illumina MiSeq using ½ of a V3 2 × 250-bp kit 
(Illumina).

Bioinformatics

The bioinformatics pipeline closely followed Ershova 
et al. 2021. Paired-end reads were aligned with illumina-
pairedend from OBITools v1.01.22 (Boyer et al. 2016), 
and reads with an alignment score < 40 were discarded. 
Primer sequences were removed, and reads were demul-
tiplexed and assigned to individual samples using ngsfil-
ter. Reads were selected for length (299–320 b.p.) using 

Fig. 1  Sampling locations. 
Black dots indicate stations 
sampled with a vertically towed 
WPII net, red dots indicate 
where obliquely-towed Multinet 
MAMMOTH nets were used to 
create the mock samples
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obigrep and dereplicated using obiuniq. The uchime_
denovo algorithm (Edgar et  al. 2011) implemented in 
vsearch v1.10.1 (Rognes et al. 2016) was then used to 
remove chimeric sequences. Singletons (sequences 
with abundance of 1 read) were removed, and step-by-
step clustering was performed in SWARM 3.0.0 (Mahé 
et al. 2021) using a distance value of d = 13, which is 
the optimal value for this marker (Antich et al. 2021), to 
cluster individual sequences into molecular operational 
taxonomic units (MOTUs). Taxonomic assignment of the 
representative sequences was then performed using eco-
tag (Boyer et al. 2016) against DUFA-Leray v.2020–06-
10, a custom reference database (publicly available from 
github.com/uit-metabarcoding/DUFA), which included 
sequences of the Leray fragment extracted from BOLD 
and Genbank, complemented with in-house generated 
sequences. This method uses a phylogenetic tree-based 
approach, and when a sequence fails to produce a perfect 
match, it identifies taxa which are at least as similar to 
the nearest hit as the sequence in question, and assigns it 
to its most recent common ancestor, usually resulting in a 
higher rank, such as genus, family, or order. In the cases 
when not enough related sequences were present in the 
database to perform this analysis, an artificial threshold 
was applied (95% similarity for genus, 90% for family, 
85% for order, and 75% for class). The resulting data-
set was curated for putative pseudogene sequences using 
LULU (Frøslev et al. 2017). The next refining steps con-
sisted of removing MOTUs assigned to prokaryotes and 
non-planktonic organisms (e.g., mammals) and a second 
manual taxonomy check of all MOTUs using BOLD (Bar-
code of Life Database, www. bolds ystems. org) using spe-
cies-level barcode records. A species-level identification 
was assigned with a minimum of 97% similarity. Several 
MOTU’s produced more than one species-level match and 
were dealt with on a case-to-case basis, with credibility of 
reference sources and known species distributions play-
ing the main role in the final assignment. After all the 
bioinformatics steps, the three extraction replicates were 
pooled for each sample.

Data analysis

All analyses were performed in R (R Development Core 
Team 2011). Pearson correlation coefficients (r) were 
calculated between relative biomass, abundance, and 
sequence reads of all taxa at the lowest common taxo-
nomic resolution both for the entire dataset and for each 
sample individually. Regression relationships between 
the proportion of abundance/biomass and the proportion 
of sequence reads were established for each species/taxa 

using simple linear regression. All variables were square-
root transformed to meet the assumption of homoskedas-
ticity. In order to maximize the comparability between 
biomass and sequence reads, for statistically significant 
(p < 0.05) and relatively strong (R2 > 0.3) relationships, 
where the slope was less than 0.6 or greater than 1.4, the 
slope of the line was used to introduce linear adjustment 
factors for each species/taxa across the entire dataset 
using the equation nadj =

s
2(Tn−n2)

T−s2n
 , where n is the number 

of sequence reads of the given species/taxa, s is the slope 
of the regression equation, and T is the total number of 
sequence reads within that sample. This formula adjusts 
the number of sequence reads of a given taxa to change 
its proportion in a sample of T reads by a linear factor 
of s. Because changing the number of reads of one spe-
cies will inevitably change the relative contribution of 
all other species in the sample, the adjustment factors 
were applied to each species or taxa in question one by 
one in descending order of maximum relative sequence 
read abundance (i.e., the taxa/species that had the great-
est impact on the relative number of reads were treated 
first), with T re-calculated again after each adjustment. 
Only species/taxa that were observed in a minimum of 
5 samples both via metabarcoding and microscopy were 
included in the analysis. The R code used to calculate 
and apply these conversion factors is available in Sup-
plementary Material 2.

The proportions of sequence reads belonging to each 
species/taxa were then multiplied by total sample bio-
mass (mg DW) to calculate biomass-weighed sequence 
reads (BWSR) for each species. Mock community analy-
sis using abundance, biomass, and BWSR data was car-
ried out using the package “vegan” (Oksanen et al. 2016). 
Additionally, in order to compare BWSR and biomass 
estimates directly, a “pooled” dataset was created, where 
each sample was represented twice, once by BWSR and 
once by microscopically estimated biomass data. For each 
dataset examined, non-metric multidimensional scaling 
(nMDS) was carried out on Bray–Curtis dissimilarities 
of fourth-root transformed data. The species significantly 
driving the ordination were identified using the function 
envfit at a significance level of p = 0.05 and visualized as 
biplots. Additionally, we performed hierarchical cluster 
analysis (average linkage method) of the resulting dis-
similarity matrices, and clusters (“assemblages”) were 
identified via the simprof tool (Clarke et al. 2008) with 
an alpha level of 0.05. Finally, the correlations between 
Bray–Curtis dissimilarity matrices of abundance, bio-
mass, and BWSR were examined using the Mantel per-
mutation test (Mantel and Valand 1970), which calculates 
the Pearson correlation coefficient between all entries in 

http://www.boldsystems.org
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the two matrices, while permuting the rows and columns 
of the matrix 9999 times to determine statistical signifi-
cance. Only taxa/species that contributed a minimum of 
3% of the transformed biomass, abundance, or BWSR 
values in at least one sample were used in the analyses. 
Because the relative composition of species within the 
samples was artificially modified, these analyses were 
done more as proof-of-concept for the method, rather to 
accurately describe the communities in this region.

Results

Sequencing summary

The sequencing run produced a total of 8,165,891 
sequences, with sequences per replicate ranging between 
15,000 and 182,000 reads (mean = 82,500) and per sam-
ple (across 3 replicates) between 70,700 and 457,101 
(mean 250,000). The extraction blanks produced 200–400 
reads and the PCR blanks 100–150 reads. There were no 
differences in recovered DNA concentration or sequenc-
ing depth between ethanol and dry samples, so hereafter 
both types of samples were used for all analyses (Fig. 2a 
and b). Rarefaction curves reached an asymptote in the 
vast majority of samples, suggesting that this sequencing 
depth was sufficient to recover all or most of the diversity 
(Supplementary Material 3).

Diversity

The visual identification yielded a total of 59 unique holo-
planktonic and 16 meroplanktonic species/taxa across all 
samples, with the typical number of taxa per sample ranging 

from 15 to 40. Metabarcoding identified 357 MOTU’s across 
the whole dataset, of which 228 were identified to species 
level, 19 to genus or family level, 43 to order or class, 10 
to higher taxonomic ranks, and 57 remained unassigned. 
Of these, 282 MOTU’s belonged to either holo- or mero-
planktonic (fish or benthic) organisms and corresponded to 
86 and 124 unique species/taxa of holo- and meroplankton, 
respectively (Supplementary Material 4). This list included 
all but 4 of the species identified visually (Microsetella nor-
vegica, two appendicularian species and one monstrilloid 
copepod). There were no differences in species richness 
between ethanol and dry samples (Fig. 2c). The additional 
species identified via sequencing included several hard-
to-identify crustaceans, hydrozoan jellyfish, and larvae of 
benthic animals. For example, the visually identified group 
Pseudo/Paracalanus spp. consisted of 5 different species 
found in varying proportions at different stations, of which 
Paracalanus parvus was the numerically dominant one.

On a sample-to-sample basis, typically 90–100% of regis-
tered species/taxa were recovered via metabarcoding (aver-
age 93%), with the number of “false negatives” (species 
not detected via metabarcoding) never exceeding 1–4 spe-
cies. However, the percentage of “false positives” (species 
that were identified via metabarcoding but were not detected 
visually, at the lowest common taxonomic resolution) was 
high, in many samples doubling or tripling the total diversity 
(Fig. 3a). When only species that contributed at least 0.01% of 
total reads in a sample were included, the percentage of false 
positives was reduced to less than 10% across all stations, but 
the percentage of false negatives rose, as some of the “real” 
species began to fall under that threshold (85% species recov-
ered, on average) (Fig. 3c). Dropping the detection threshold 
further to 0.1% of total reads, false positives were reduced to 
no more than 1–5 species per sample, but only 60% (on aver-
age) of the “true” species on average were recovered (Fig. 3d). 
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Regardless of the threshold limit applied, false positives typi-
cally made up a very small proportion of total reads. However, 
at 6 stations, they made up over 10% of total sequence reads, 
and at 3 stations over 25% (Fig. 4). These high contributions 
were typically caused by 1–2 species.

The visually observed species that were not detected via 
metabarcoding in all samples and/or frequently fell below 
the 0.01% detection limit included very small copepods 
such as Acartia spp., Detrichocoryceaus sp., and Oncaei-
dae, as well some meroplankton groups such as bivalve 
and gastropod larvae. Organisms frequently detected as 

“false positives,” on the other hand, include the large cope-
pod Calanus hyperboreus, several species of jellyfish, fish, 
cirripeds, gastropods, and the chaetognath Parasagitta 
elegans.

Quantitative correlations

At the lowest common taxonomic level, both relative abun-
dance and relative biomass of each species/taxa were cor-
related with relative sequence reads across the entire data-
set, with the correlation stronger for biomass (r = 0.57) than 
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abundance (r = 0.41). Within each individual samples, the 
correlations of relative biomass to sequence counts varied 
from 0.15 to 0.95 (Supplementary Material 5) and relative 
abundance to sequence counts from 0 to 0.92. When examin-
ing relative contributions of individual taxa across all sam-
ples using simple linear regression, statistically significant 
(p < 0.01) correlations were observed for almost all com-
monly encountered taxa, both between biomass and sequence 
counts (Fig. 5a and Table 1) and abundance and sequence 
counts (Table 1). The relationships to biomass were typi-
cally stronger, but for several species of copepods and ptero-
pods, abundance was the better correlated value to relative 
sequence reads (Table 1). The strongest relationships to bio-
mass were observed for several non-copepod crustacean taxa: 

euphausiids (R2 = 0.83), cirripeds (R2 = 0.88), ostracods (R 
2 = 0.89), and decapods (R2 = 0.64), as well as echinoderm lar-
vae (R2 = 0.74). Moderate relationships (R2 between 0.4 and 
0.6) to biomass were observed for most copepod species. The 
weakest correlations were observed for bivalve larvae and 
cnidarians (R2 = 0.31). The intercept was significantly differ-
ent from 0 only for Calanus helgolandicus/finmarchicus, but 
the slopes strongly deviated from 1 (less than 0.6 or greater 
than 1.4) in 22 of 40 species/taxa, indicating that they were 
consistently either over- or under-represented in the sequenc-
ing data relative to their estimated biomass contribution to the 
sample. This deviation was even stronger in the abundance 
data, with 29 of 40 species/taxa deviating strongly from 
1. After the introduction of species- or taxa-specific linear 
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Fig. 5  Regressions between square-root transformed proportion 
of biomass (estimated from microscopy) and square-root trans-
formed proportion sequence counts for selected taxa with; a orig-

inal data, and;  b data adjusted with species/taxa-specific linear 
conversion factors. For statistical summary and all species/taxa, 
see Table 1
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Table 1  Summary of regression 
relationships between square-
root transformed proportion 
dry weight (DW)/abundance 
and square-root transformed 
proportion sequence reads in 
original and adjusted (adj) data

Species/taxa p R2 b0 s padj R2
adj b0adj sadj

Amphipoda (pooled) DW *** 0.58 0.01 0.99 *** 0.68 0.01 0.71
Abund *** 0.43 0.02 0.21

Chaetognatha (pooled) DW *** 0.53 0.07 0.62
Abund *** 0.55 0.04 0.19

Sagitta elegans DW *** 0.76 0.003 0.71 *** 0.8  − 0.005 0.63
Abund *** 0.70 0.015 0.23

Eukrohnia hamata DW *** 0.49 0.03 1.42 *** 0.52 0.02 0.96
Abund *** 0.63 0.007 0.51

Evadne nordmanni DW *** 0.65 0.01 2.35 *** 0.57 0.01 0.6
Abund *** 0.43 0.02 1.55

Aglantha digitale DW *** 0.91 0.01 2.2 *** 0.91 0.01 0.81
Abund *** 0.81 0.02 1.11

Euphausiida DW *** 0.82  − 0.01 0.81 *** 0.84 -0.007 0.64
Abund *** 0.35 0.07 0.21

Ostracoda DW *** 0.89 0.005 0.41 *** 0.9 0.001 1.12
Abund *** 0.91 0.003 0.9

Calanus finm./helg DW *** 0.39 0.26 0.9 *** 0.48 0.19 0.96
Abund *** 0.67 0.16 1.1

Other copepoda (pooled) DW *** 0.57 0.14 0.65
Abund *** 0.57 0.45 0.5

Oithona similis DW *** 0.67 0.01 0.98 *** 0.67 0.02 0.68
Abund *** 0.59 0.14 2.04

Calanus hyperboreus DW *** 0.65 0.01 0.79 *** 0.7 0.001 0.77
Abund *** 0.73  < 0.001 0.18

Acartia spp. DW 0.06 0.05 0.7 * 0.09 0.05 0.59
Abund NS - - -

Aetideopsis armatus DW *** 0.85 0.003 0.56 *** 0.86 -0.005 1.16
Abund *** 0.93  − 0.003 0.37

Anomalocera patersoni DW *** 0.63 0.005 1.7 *** 0.67 0.001 0.83
Abund *** 0.39 0.005 1.22

Candacia armata DW *** 0.39 0.01 0.32 *** 0.43 0.005 0.72
Abund *** 0.57 0.004 0.28

Centropages spp. DW * 0.15 0.03 0.45 * 0.15 0.03 0.67
Abund * 0.13 0.01 0.57

Heterorhabdus norvegicus DW *** 0.69 0.005 2.8 *** 0.65 0.005 1.02
Abund *** 0.77 0.005 3.09

Metridia spp. DW ** 0.17 0.08 0.61 *** 0.38 0.05 0.88
Abund ** 0.23 0.08 0.83

Microcalanus spp. DW *** 0.65 0.005 0.42 *** 0.53 0.006 0.74
Abund *** 0.49 0.06 1.83

Paraechaeta norvegica DW *** 0.78 0.005 3.07 *** 0.81 -0.004 0.9
Abund *** 0.84 0.005 1.02

Pseudo/Paracalanus spp. DW *** 0.36 0.05 0.35 *** 0.67 0.02 1.05
Abund *** 0.35 0.23 0.44

Scolecithricella minor DW *** 0.51 0.002 1.18 *** 0.45 0.001 0.98
Abund *** 0.64  − 0.01 3.21

Spinocalanus spp. DW *** 0.83 0.001 1.39 *** 0.75 0.002 0.98
Abund *** 0.74 0.005 3.43

Temora longicornis DW *** 0.3 0.05 1.04 *** 0.46 0.04 0.97
Abund * 0.12 0.14 1.13
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conversion factors, all slopes fell into the range of 0.6–1.2 for 
biomass (Fig. 5b and Table 1). Because changing the number 
of reads of one species also affected the relative abundance 
of other species, this changed the strength of the relationship 
for several taxa (significance remained unchanged). For 12 
species/taxa, the R2 increased by 0.05 or more, and for 5 spe-
cies/taxa, it was reduced by 0.05 or more. The remainder of 
the relationships remained unchanged (Table 1). The overall 
Pearson correlation between relative biomass and sequence 
counts across the whole dataset improved from 0.57 to 0.77. 
Consistent with this high correlation, the spatial distribution 
of adjusted-BWSR (proportion of sequence reads multiplied 
by total sample biomass) showed very similar, although not 
identical, trends to biomass for all examined taxa (Fig. 6).

Mock community analysis

The Mantel test of associations between Bray–Curtis dis-
similarity matrices of abundance and biomass, abundance 
and BWSR, and biomass and BWSR produced r values of 

0.52, 0.54, and 0.73, respectively (significance p < 0.001), 
indicating moderate to high linear correlations between 
them. Accordingly, multivariate analysis of the three param-
eters (abundance, biomass, and adjusted BWSR) revealed 
slightly different, but highly complementary patterns for 
each of the datasets (Fig. 7). The separation of samples on 
all three nMDS ordinations were driven by 3 groups of spe-
cies, with some, although not all, species shared between the 
data types. Overall, the metabarcoding dataset contained a 
much longer list of species within each of the groups due to 
the higher taxonomic resolution. All three ordinations con-
tained a very distinct assemblage containing the two Multi-
Net stations (Group 1, light blue on Fig. 7), characterized by 
a variety of deep- and cold-water species that were absent 
in other samples. Similarly, all three datasets contained an 
assemblage associated with the southeast region (Group 2, 
pink and dark blue on Fig. 7), distinguished by Sagitta/Par-
asagitta spp. (all three datasets), Calanus finmarchicus/hel-
golandicus (biomass and BWSR), Aglantha digitale (abun-
dance and biomass), and Candacia armata (abundance and 

Table 1  (continued) Species/taxa p R2 b0 s padj R2
adj b0adj sadj

Tomopteris sp. DW *** 0.95  − 0.001 1.81 *** 0.93 -0.002 0.84

Abund *** 0.29 0.003 0.26
Pteropoda (pooled) DW *** 0.64 0.09 0.77

Abund *** 0.60 0.07 0.36
Clione limacina DW *** 0.46 0.01 0.49 *** 0.52 0.001 0.94

Abund *** 0.65 0.003 0.18
Limacina helicina DW *** 0.66 0.08 0.87 *** 0.71 0.06 0.83

Abund *** 0.75 0.05 0.47
Bivalvia DW *** 0.31 0.002 0.89 *** 0.31 0.003 0.67

Abund *** 0.33 0.015 3.15
Cirripeda DW *** 0.89  − 0.003 0.34 *** 0.84 0.005 0.68

Abund *** 0.86  − 0.006 0.67
Decapoda DW *** 0.64 0.05 0.99 *** 0.8 0.03 0.83

Abund * 0.12 0.03 0.12
Nemertea DW *** 0.34  < 0.001 0.23 *** 0.34 0.001 0.7

Abund ** 0.26 0.005 0.44
Polychaeta DW *** 0.31 0.03 0.45 *** 0.46 0.005 0.9

Abund *** 0.34 0.06 0.42
Echinodermata DW *** 0.74  − 0.004 0.44 *** 0.73  − 0.004 0.77

Abund 0.36 0.1 0.37
Bryozoa DW *** 0.45 0.006 0.17 *** 0.59 0.005 0.82

Abund *** 0.48 0.03 0.52

p: significance at ***0.01 level, **0.01 level, and *0.05 level;.: 0.1 level; bo: intercept of regression line; s: 
slope of regression line
Bold in bo column indicates values that are significantly different from 0
Bold in s column indicates values that are > 1.4 or < 0.6 where linear correction factors were applied
Bold underline in R2

adj column indicates R2 values that increased by 0.05 or more, italic underline indicates 
R2 values that were reduced by 0.05 or more
Bold categories in the species/taxa column indicate overall relationships for all species in that category 
(adjustment factors were applied individually to each species)
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BWSR). A northern/western group (Group 3, light and dark 
purple and dark green on Fig. 7) was driven by cirripeds (all 
three datasets, represented by 4 different species within the 
BWSR data), Acartia spp., (all three datasets, Acartia tonsa 
in the BWSR dataset), Pseudo/Paracalanus spp. (all three 
datasets, Pseudocalanus elongatus in the BWSR dataset), 
decapod larvae (abundance and BSWR, represented by 5 
species in the BWSR dataset), and polychaete larvae (abun-
dance and BSWR, represented by 4 species in the BWSR 
dataset). Cluster analysis of the pooled adjusted-BWSR/
biomass dataset at the lowest common taxonomic resolu-
tion identified 9 clusters (“assemblages”) via the simprof 
routine. In 30 out of 33 samples, the microscopically derived 
data points were placed within the same assemblages as 
their BWSR counterparts. Similarly, the ethanol/dry sam-
ples collected at the same station were placed within the 
same assemblages in all but two instances, as was expected 
given the similarity of the sub-samples. The nMDS ordina-
tion partially resolved the complexity (2D stress = 0.21), and 
somewhat supported the separation of the clusters, although 
some groups were more distinct than others. Similar to the 
previous analysis, the most distinct assemblage included 
the two stations collected with the deep MultiNet (gray on 
Fig. 8). Despite slight variation in placement, the BWSR/
biomass data points followed very similar patterns on the 
nMDS ordination.

Discussion

Metagenomic methods are increasingly being applied in marine 
ecosystem monitoring to provide deeper insights into communi-
ties of microbial organisms (Pawlowski et al. 2016; Santofer-
rara et al. 2020), phyto- and zooplankton (Bucklin et al. 2019; 
Coguiec et al. 2021; Ershova et al. 2019; Yoon et al. 2016), fish 
eggs and larvae (Lira et al. 2023), and zoobenthos (Klunder 
et al. 2022). These methods are efficient and cost-effective and 
offer a much higher level of taxonomic resolution compared 
to other approaches. However, despite increasingly coming of 
age, concerns remain about potential biases and errors associ-
ated with PCR-based metagenomic techniques which hinder 
the interpretation of the data, especially in a quantitative way. 
Santoferrara (2019) identified five of these potential sources of 
error in metabarcoding as false negatives, false positives, erro-
neous identifications, skewed relative abundances of different 
taxa, and artifactual sequences. The following sections address 
these potential issues in the context of our protocol and provide 
recommendations to address them.

Species richness detection and false positives/
negatives

Metabarcoding is an extremely sensitive tool and given 
enough sequencing depth can detect trace amounts of 
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DNA, including extracellular DNA, residual fragments of 
organisms left in the sample, and gut contents. This is an 
undeniable strength of the method, but this sensitivity can 
also vastly inflate diversity estimates, as seen in our results, 
where the number of “false positives” detected within a sam-
ple, at the lowest common taxonomic resolution, often was 
equal to or exceeded the number of species observed visu-
ally. It is important to note, however, that we cannot confirm 
that every “false positive” was truly absent from the sample. 
Although the samples in our study were to a large part artifi-
cially engineered, they still contained some individuals that 
we could not identify properly, such as early copepodites, 
nauplii, trochophore larvae, eggs, and small fragments of 
biological debris. For example, the presence of cnidarian or 
chaetognath DNA in a number of samples could have been 
due to these fragile gelatinous organisms breaking apart in 

the net haul, leaving behind fragments of their bodies. Chae-
tognaths are also known to regurgitate their gut contents 
when hauled by nets (Baier and Purcell 1997), which could 
result the presence of additional half-digested DNA, both 
their own and that of their prey. Nonetheless, regardless of 
whether they were truly absent or present in trace amounts, 
the total contribution of “false positives” was typically very 
low, 0.1% of total reads or lower. There were several sam-
ples, however, that fell outside of this range, and where reads 
belonging to false positives exceeded 5–10%, or in 3 samples 
even 25%, of total reads. Given the very small starting vol-
ume of the samples (300–500 individuals), it seems plausible 
that cross-sample contamination was a likely culprit in these 
cases. Alternatively, the presence of “false positive” species 
as early life stages, unidentifiable debris or inside the guts 
of other species in the sample, as described above, could 

Fig. 7  Results of nMDS ordination and cluster analysis for fourth-
root transformed; a abundance (estimated from microscopy); b bio-
mass (estimated from microscopy), and c BWSR (estimated from 
metabarcoding) data, and the spatial distribution of clusters in the 
North Sea. Colors represent clusters at ~ 30–40% dissimilarity, as 

identified by simprof. Blue dashed lines connect samples collected 
at the same station. Arrows indicate biplots of species significantly 
(p < 0.05) correlated with the ordination, with biplots close together 
in space grouped as groups 1–3. For better readability, the species 
representing the biplots within each group are listed below the plots
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potentially lead to similar results. Similar to the majority of 
other studies that used a mock sample approach (Santofer-
rara 2019), we found that metabarcoding recovered almost 
all of the observed diversity at the given sequencing depth, 
confirming that our choice of barcode and sequencing depth 
are appropriate for this region of the world ocean. Despite 
this, some of the smaller and rarer species within our data, 
such as the very small copepods or bivalve larvae, were not 
recovered in all samples, or were recovered only with a very 
low detection threshold, placing them within the detection 
range of the aforementioned “false positives.” Additionally, 

notably missing among the species list were appendicular-
ians, for which COI may be a poorly suited barcode region 
(Bucklin et al. 2021), but which can nevertheless be sig-
nificant contributors to plankton communities. Including 
an additional barcode, such as V4 or V9 regions of the 
18S rRNA gene could have alleviated this. Other studies 
that implemented multiple barcode regions found that this 
approach increased the recovered diversity and minimized 
false negatives (Zhang et al. 2018). However, the numerical 
treatment of multi-locus metabarcoding data to estimate spe-
cies relative read abundances remains a challenge.

Fig. 8  Results of nMDS ordination and cluster analysis for fourth-
root transformed biomass (estimated from microscopy) and BWSR 
data pooled at the lowest common taxonomic resolution, and the spa-
tial distribution of clusters in the North Sea. Colors represent clusters 

at ~ 30–40% dissimilarity, as identified by simprof. Blue dashed lines 
connect samples collected at the same station, and black solid lines 
connect BWSR/biomass data from the same sample. Arrows indicate 
biplots of species significantly (p < 0.05) correlated with the ordination
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Different approaches can be taken to minimize the effects 
of false positives and negatives when estimating biodiver-
sity, depending on the goals of the study. If a broad-scale 
community analysis is the aim, particularly, as is often the 
case, in the context of earlier efforts that may have used mor-
phological methods of identification, applying a conserva-
tive approach and setting an arbitrarily high read abundance 
threshold may be appropriate. Although this will exclude 
the rarer species, they are unlikely to be highly ecologically 
significant. If concurrent microscopic analysis reveals that 
some abundant/ecologically important species are being 
missed with the given metabarcoding protocol, additional 
genetic markers can be included, as was discussed in the 
section above; alternatively, these species can be screened 
for visually. On the other hand, if the goal is early detection 
of invasive species, then a very high sensitivity is neces-
sary that will allow to detect even a single larva in a dense 
tissue sample. One approach to ensure proper sensitivity 
in this case could be “spiking” the sample with a single 
individual of a taxonomically similar species that does not 
naturally occur in the studied environment (for example, in 
the case of marine crustaceans, a small freshwater crusta-
cean). This approach is commonly used in insect monitoring 
studies (i.e., Batovska et al. 2021). For simply recovering 
species richness, any number of approaches can be used. 
Our method of estimating diversity errs on the side of being 
overly conservative, counting only discreet identified species 
or taxonomic groups, and not MOTU’s. In most situations, 
not all MOTU’s can be identified to species level, but can 
often be identified to genus, family, or even higher ranks, and 
we collapsed all commonly identified MOTU’s into single 
categories. This removes a large part of the bias associated 
with clustering algorithms (i.e., van der Loos and Nijland 
2021), but it is likely to underestimate true diversity, as these 
pooled MOTU’s can in fact represent many discreet species 
that are just absent from reference databases. Regardless, 
any kind of diversity metrics will only be relevant within the 
context of a single protocol and are not comparable to other 
methods or even other sequencing runs using similar meth-
ods, unless properly rarified. They can, however, be very 
valuable for within-study comparisons, for example, to map 
spatial, temporal, or seasonal patterns in species diversity.

Quantification and community analysis

Quantitative interpretation of metabarcoding data remains a 
subject of ongoing debate, with the most common concerns 
being difficulty of developing truly universal primers, dif-
ferences in gene copy numbers between species, and the 
exponential nature of PCR (Bucklin et al. 2016; Santoferrara 
2019; van der Loos and Nijland 2021). New, non-PCR-based 
molecular methods of community analysis, such as detecting 
specific marker genes using shot-gun sequencing, may offer 

a promising alternative to metabarcoding as these technolo-
gies continue to develop (Pierella Karlusich et al. 2023). 
Yet, despite the known issues of PCR bias, in recent years, 
there has been increasing evidence of quantitative or semi-
quantitative potential of metabarcoding in a wide range of 
metazoan communities (Ershova et al. 2021; Krehenwinkel 
et al. 2017; Lamb et al. 2019; McLaren et al. 2019; Schenk 
et al. 2019; Thomas et al. 2016). One of the challenges of 
quantification is identifying an appropriate metric for com-
paring to sequence counts. With single cellular organisms, 
cell counts are typically used, but even then, read copy num-
bers can vary vastly between species (Wang et al. 2017). In 
metazoan communities, counts or abundance estimates are 
additionally confounded by the fact that different species are 
vastly different in size. Mesozooplankton, for example, even 
when captured by the same sampling gear, will vary from 
ca. 200 µm to several centimeters in length, which results 
in several orders of magnitude difference in weight. None-
theless, we found a surprisingly high correlation of relative 
abundances to relative sequence reads within our dataset, 
particularly for some taxa. However, biomass or carbon 
weight was found to be the better quantitative proxy. This is 
not surprising, as a large organism will expectedly contain 
more DNA than a small one. Although species abundance 
is a much commonly used metric than species biomass 
when describing zooplankton communities, this is more a 
methodological artifact due to the fact that species counts 
are traditionally much easier to obtain than species weights 
and does not necessarily reflect the fact that abundance is 
the more ecologically relevant measure. Indeed, in terms of 
grazing pressure, carbon and nutrient cycling, and availabil-
ity to higher trophic levels, species-specific biomass may be 
a much more important parameter to quantify.

Several previous studies have reported moderate to good 
correlations of relative read numbers to relative biomass 
in zooplankton for several genetic markers, including COI 
(Elbrecht and Leese 2015; Ershova et al. 2021; Matthews 
et al. 2021; Yang et al. 2017). These correlations were far 
better for some taxa than for others, and even the strong 
relationships were frequently very different from a 1: 1 ratio, 
which makes it challenging to infer one value from the other. 
We similarly found these correlations to be significant for 
almost all taxa for which sufficient observations were pre-
sent, and likewise, observed stronger correlations for some 
groups than for others. We go a step further, however, and 
introduce a new quantitative metric called BWSR (biomass-
weighed sequence reads). Unlike relative abundance, rela-
tive biomass can be much more easily transformed into 
a quantitative parameter by taking a single bulk biomass 
measurement, something that is already usually done as 
part of routine zooplankton analyses. This number is then 
multiplied by the proportion of reads belonging to a species 
or taxa. Furthermore, by applying species- or taxa-specific 
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conversion factors that bring the relationships between read 
counts and biomass closer to unity, we can additionally 
reduce some of the PCR-based bias and increase compara-
bility between these two measures. Conversion factors have 
been used in previous studies to improve quantification of 
microbial communities (McLaren et al. 2019), diatoms (Vas-
selon et al. 2018), fish (Thomas et al. 2016), and arthropods 
(Krehenwinkel et al. 2017), but to our knowledge, this is the 
first time this approach has been applied to marine zooplank-
ton communities. While BWSR is closely related to biomass 
and shares units with it, it should nonetheless not be reported 
as biomass or be used to compare to other biomass-based 
studies. Instead, it provides a framework for quantitatively 
monitoring relative species composition over time and space 
within a single study (as for example, in Coguiec et al. 2021) 
and allows for the use of standard community analysis tools 
such as multivariate statistics. It can further be used to cal-
culate a number of additional indicators, for example, the 
ratio of mero- to holoplankton, or copepod- to non-copepod 
taxa, or to estimate various indices of biogeographic affinity. 
For some taxa with a relatively small range in body weight 
(for example, small copepods such as Oithona spp.), BWSR 
values can be also used as a proxy for biomass to estimate 
species abundance, as is frequently done vice-versa in other 
studies. All three quantitative measures—abundance, bio-
mass, and BWSR revealed very similar, and when collapsed 
to a common taxonomic resolution, nearly identical commu-
nity patterns. The BWSR data, however, was able to provide 
much more detailed species-level information about which 
particular species were driving the community trends. For 
example, cirriped and decapod larvae, which were found to 
strongly drive the community structure in terms of all three 
examined parameters, were each represented by 4–5 distinct 
species which were not identifiable via morphology. These 
results strongly support the notion that metabarcoding data 
can be used not only for estimates of biodiversity or mapping 
of presence/absence of species but also to estimate relative 
densities of species and to quantitatively describe commu-
nity structure.

Gaps and errors in reference databases

When matching sequences to reference libraries, such as 
BOLD (Barcode of Life System, www. bolds ystems. org), three 
main error types are commonly encountered: (a) absence of the 
species in the database, (b) incorrect identification or annota-
tion of reference vouchers, and (c) insufficient, or excessive, 
divergence in the genetic marker of interest that will result in 
either multiple species-level matches, or absence of a species-
level match at the assigned threshold (usually 97%). The first 
error type will produce “unknowns” in the final species list, 
resulting in a higher proportion of “false negatives,” although 
frequently these MOTUs can be assigned to higher ranks 

(i.e., family or order). Within our dataset, only about 65% 
of MOTU’s were assigned to species, and 15% could not be 
matched even at a phylum level. The second error type, incor-
rect identifications, is particularly problematic because it can 
result in the presence of both false positives and false nega-
tives. With the more common species, it will typically result in 
several species level matches in the reference database, and the 
investigator must decide which of them are more reliable. We 
encountered this type of error with one of the Acartia species, 
which produced a species level match for both Acartia tonsa 
and Acartia hudsonica. After manually checking the primary 
sources and annotations of these vouchers, we concluded A. 
hudsonica to be the more likely correct identification. On the 
other hand, misidentification of rare species with only a sin-
gle barcoded voucher are much more difficult to recognize, 
and until more barcoding efforts take place, will have to be 
accepted on faith. Since the morphological identification of 
the specimen represents the quality control for the DNA bar-
code, ideally each barcode should be linked to a voucher speci-
men, and this should become standard practice going forward 
(Rimet et al. 2021). Multiple species level matches can also 
be a result of insufficient divergence in the chosen barcode to 
reliably discriminate between related species. Within our data, 
such an example was the chaetognath Eukrohnia sp., which 
matched to both E. hamata and E. bathyantarctica. Based 
on the known geographical distribution of these species, we 
concluded that E. hamata was the more likely correct identi-
fication. On the contrary, the chaetognath Parasagitta elegans 
has an exceptionally high divergence in the mitochonodrial 
genome, and a threshold as low as 90% similarity was used to 
assign this species (Marlétaz et al. 2017).

For marine metazoan zooplankton, significant efforts have 
been made in recent decades to create and quality control 
reliable DNA barcode reference libraries. Building barcode 
libraries and associated voucher collections have been a pri-
mary goal of several individual projects as well as national 
campaigns (see Bucklin et al. 2021; Weigand et al. 2019 and 
reference therein). Additional attempts to improve the qual-
ity of barcode libraries have also been made by implement-
ing QA measures in reference databases (Fontes et al. 2021). 
A major effort in curating marine barcode data was under-
taken in the Barcode of Life Data Systems (BOLD), including 
annotation of barcode records according to a ranking system 
for concordance (Radulovici et al. 2021). Moreover, a new 
tool for enhanced quality control of DNA barcodes of marine 
zooplankton (holo- and meroplankton) has been made acces-
sible through the MetaZooGene Barcode Atlas and Database 
(MZGdb) (Bucklin et al. 2021). Despite the aforementioned 
and other ongoing efforts, available open-access DNA refer-
ence libraries remain incomplete for some taxonomic groups 
and/or geographical regions (McGee et al. 2019). For example, 
only 22% of European marine invertebrate species had at least 
one barcode in BOLD in 2019 (Weigand et al. 2019). Reliable 

http://www.boldsystems.org
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barcode reference libraries are particularly important if meta-
barcoding is to be implemented in biomonitoring and reports 
of ecological status (e.g., EU Marine Strategy Framework 
Directive, MSFD). Thus, there is continued need to build com-
prehensive and reliable barcode reference databases, both by 
adding more taxa and by extending the geographical coverage.

Dry oven preservation as an alternative to ethanol

Fixing zooplankton samples with 80–100% ethanol is the most 
common way of preserving zooplankton for genetic use and is 
the recommended method in most barcoding or metabarcod-
ing protocols (Rey et al. 2020; van der Loos and Nijland 2021; 
Wiebe et al. 2017). Other, less common, preservation methods 
of zooplankton include freezing of whole samples or preserving 
in other fixatives, such as DESS or RNAlater (Creer et al. 2016; 
van der Loos and Nijland 2021). We suggest another alterna-
tive for zooplankton DNA preservation, which is dehydrating 
whole samples in a drying oven at 65 °C for 12–24 h. In our 
study, we expected absolute ethanol to be the superior preser-
vation method, but found no differences between ethanol and 
dry samples in recovered DNA quality or quantity, sequenc-
ing depth, or overall recovered biodiversity. There were also 
no differences in relative taxonomic composition, with read 
abundance in both preservation methods equally well corre-
lated to relative biomass for all taxa. Although ethanol preserva-
tion remains a “non-destructive” method, allowing for subse-
quent sub-sampling or screening for taxa/species of interest, it 
comes with a set of drawbacks. These include a higher reagent 
cost, additional HSE risks (fumes and fire hazard), logistical 
transport limitations, sample storage space, and longer/more 
complicated processing in the lab, since most DNA extrac-
tion methods are sensitive to ethanol and require its removal. 
These challenges contribute to the reluctance of many larger-
scale zooplankton monitoring efforts to adopt a metabarcoding 
component. On the other hand, many monitoring programs, like 
the one implemented at IMR, already collect dry samples for 
zooplankton biomass estimation. Simple additional steps can 
be taken to ensure the suitability of such samples for genetic 
use. This includes proper cleaning of sampling gear and lab 
tools between samples to prevent cross-sample contamination, 
prompt removal of samples from the drying oven once they 
are dry, and proper long-term storage. With this approach, it is 
recommended to keep the overall sample volume low (< 2 ml 
volume of wet animals with water removed) to ensure rapid and 
even drying. For larger samples, sub-sampling or splitting the 
sample onto several drying trays is recommended. The dried 
samples can be transported at room temperature but should be 
stored at − 20 °C for long-term storage. As an added benefit, 
measuring the dry weight of the sample prior to sequencing 
creates a simple path forward to convert relative sequence reads 
to BSWR, as described in this work.

Conclusion

In this work, we present a framework for recovering bio-
diversity and quantitative estimation of biomass of zoo-
plankton species from COI metabarcoding data, which we 
think is suitable for cost-effective large-scale monitoring. 
We successfully tested the suitability and accuracy of our 
methods using mock zooplankton samples from the North 
Sea. Although some biases remain, we conclude that the 
methods based on COI metabarcoding have currently 
reached a satisfactory degree of technology readiness, and 
their results are comparable and highly complementary to 
morphology-based zooplankton analysis methods. However, 
similar studies should be performed in other geographi-
cal regions, for which reference barcode databases might 
be not so complete as for European waters. Although our 
results highlight the strengths of metabarcoding, they also 
underline the value of an integrated taxonomic approach by 
applying combined morphological and molecular analyses, 
which has also been recommended by previous studies (Di 
Capua et al. 2021; Matthews et al. 2021; Pierella Karlusich 
et al. 2022).

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12526- 023- 01372-x.

Acknowledgements We thank Gayantonia Franzè, the North Sea Eco-
system program, and the captain and crew of the R/V Johan Hjort for 
providing cruise time and logistical support to collect and prepare the 
samples. We also thank Magnus Reeve and Gastón Aguirre for help 
with sample collection, processing, and specimen identification. We 
sincerely acknowledge Hanne Sannæs, Karen Martinez-Swatzon, and 
Ida Mellerud at the IMR Flødevigen Station for providing a warm 
and welcoming environment at the molecular laboratory facility and 
offering technical support at every step of the way. OW is a member 
of the research group 2021 SGR 01271 funded by the Generalitat de 
Catalunya (AGAUR).

Funding Open access funding provided by Institute Of Marine 
Research This work was financially supported by the Research Coun-
cil of Norway (Norges forskningsråd) through the CoastRisk initiative 
(NFR 299554/F40).

Declarations 

Conflict of interest The authors declare no conflict of interest.

Ethical approval No animal testing was performed during this study.

Sampling and field studies All necessary permits for sampling and 
observational field studies have been obtained by the authors from the 
competent authorities and are mentioned in the acknowledgements, if 
applicable.

Data availability The original data used to produce this manuscript can 
be downloaded from the Norwegian Marine Data Centre (NMDC) at 
https:// doi. org/ 10. 21335/ NMDC- 14899 6217. The raw sequencing data 
can be found at NCBI under BioProject PRJNA947953.

https://doi.org/10.1007/s12526-023-01372-x
https://doi.org/10.21335/NMDC-148996217


 Marine Biodiversity           (2023) 53:66 

1 3

   66  Page 16 of 18

Author contribution EE and TF conceived and designed the study. 
EE carried out the sample collection, sample analysis, and molecular 
laboratory work. EE and OW did the bioinformatics. EE analyzed the 
data and wrote the manuscript with contributions from OW and TF. 
All authors have read and approved the manuscript.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Antich A, Palacin C, Wangensteen OS, Turon X (2021) To denoise or 
to cluster, that is not the question: optimizing pipelines for COI 
metabarcoding and metaphylogeography. BMC Bioinformatics 
22(1):1–24. https:// doi. org/ 10. 1186/ S12859- 021- 04115-6/ FIGUR 
ES/7

Antich A, Palacín C, San Roman D, Wangensteen O, Turon X (2019) 
Metabarcoding the benthic boundary layer: the role of sampling 
method and marker characteristics in the DNA signatures obtained 
at the interface between benthos and plankton. Front Mar Sci, 6. 
https:// doi. org/ 10. 3389/ conf. fmars. 2019. 08. 00046

Baier CT, Purcell JE (1997) Effects of sampling and preservation on 
apparent feeding by chaetognaths. Mar Ecol Prog Ser 146(1–
3):37–42. https:// doi. org/ 10. 3354/ meps1 46037

Batovska J, Piper AM, Valenzuela I, Cunningham JP, Blacket MJ 
(2021) Developing a non-destructive metabarcoding protocol for 
detection of pest insects in bulk trap catches. Sci Rep 11(1):1–14. 
https:// doi. org/ 10. 1038/ s41598- 021- 85855-6

Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) 
Obitools: a Unix-inspired software package for DNA metabar-
coding. Mol Ecol Resour 16(1):176–182. https:// doi. org/ 10. 1111/ 
1755- 0998. 12428

Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, Albaina A, Lehti-
niemi M (2016) Metabarcoding of marine zooplankton: prospects, 
progress and pitfalls. J Plankton Res 38(3):393–400. https:// doi. 
org/ 10. 1093/ plankt/ fbw023

Bucklin A, Yeh HD, Questel JM, Richardson DE, Reese B, Copley 
NJ, Wiebe PH (2019) Time-series metabarcoding analysis of 
zooplankton diversity of the NW Atlantic continental shelf. 
ICES J Mar Sci 76(4):1162–1176. https:// doi. org/ 10. 1093/ icesj 
ms/ fsz021

Bucklin A, Peijnenburg KTCA, Kosobokova KN, O’Brien TD, Blanco-
Bercial L, Cornils A, Falkenhaug T, Hopcroft RR, Hosia A, Laak-
mann S, Li C, Martell L, Questel JM, Wall-Palmer D, Wang M, 
Wiebe PH, Weydmann-Zwolicka A (2021) Toward a global refer-
ence database of COI barcodes for marine zooplankton. Marine 
Biol, 168(6). https:// doi. org/ 10. 1007/ s00227- 021- 03887-y

Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypoth-
eses in exploratory community analyses: similarity profiles and 
biota-environment linkage. J Exp Mar Biol Ecol 366(1–2):56–69. 
https:// doi. org/ 10. 1016/J. JEMBE. 2008. 07. 009

Coguiec E, Ershova EA, Daase M, Vonnahme TR, Wangensteen OS, 
Gradinger R, Præbel K, Berge J (2021) Seasonal variability in 
the zooplankton community structure in a sub-Arctic Fjord as 
revealed by morphological and molecular approaches. Front Mar 
Sci, 8. https:// doi. org/ 10. 3389/ fmars. 2021. 705042

Creer S, Deiner K, Frey S, Porazinska D, Taberlet P, Thomas 
WK, Potter C, Bik HM (2016) The ecologist’s field guide to 
sequence-based identification of biodiversity. Methods Ecol Evol 
7(9):1008–1018. https:// doi. org/ 10. 1111/ 2041- 210X. 12574

Di Capua I, Piredda R, Mazzocchi MG, Zingone A (2021) Metazoan 
diversity and seasonality through eDNA metabarcoding at a 
Mediterranean long-term ecological research site. ICES J Mar Sci 
78(9):3303–3316. https:// doi. org/ 10. 1093/ ICESJ MS/ FSAB0 59

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) 
UCHIME improves sensitivity and speed of chimera detection. 
Bioinformatics 27(16):2194–2200. https:// doi. org/ 10. 1093/ bioin 
forma tics/ btr381

Elbrecht V, Leese F (2015) Can DNA-based ecosystem assessments 
quantify species abundance? Testing primer bias and biomass-
sequence relationships with an innovative metabarcoding protocol. 
PLoS ONE, 10(7). https:// doi. org/ 10. 1371/ journ al. pone. 01303 24

Ershova EA, Hopcroft RR, Kosobokova KN (2015) Inter-annual vari-
ability of summer mesozooplankton communities of the western 
Chukchi Sea: 2004–2012. Polar Biol 38(9):1461–1481. https:// 
doi. org/ 10. 1007/ s00300- 015- 1709-9

Ershova EA, Wangensteen OS, Descoteaux R, Barth-Jensen C, Præbel 
K (2021) Metabarcoding as a quantitative tool for estimating bio-
diversity and relative biomass of marine zooplankton. ICES J Mar 
Sci 78(9):3342–3355. https:// doi. org/ 10. 1093/ ICESJ MS/ FSAB1 71

Ershova E, Descoteaux R, Wangensteen O, Iken K, Hopcroft R, Smoot 
C, Grebmeier JM, Bluhm BA (2019) Diversity and distribution of 
meroplanktonic larvae in the Pacific Arctic and connectivity with 
adult benthic invertebrate communities. Front Mar Sci, 6. https:// 
doi. org/ 10. 3389/ fmars. 2019. 00490

Ferdous Z, Muktadir AKM (2009) A review: potentiality of zooplank-
ton as bioindicator. Am J Appl Sci 6(10):1815–1819. https:// doi. 
org/ 10. 3844/ AJASSP. 2009. 1815. 1819

Fontes JT, Vieira PE, Ekrem T, Soares P, Costa FO (2021) BAGS: an 
automated barcode, audit & grade system for DNA barcode refer-
ence libraries. Mol Ecol Resour 21(2):573–583. https:// doi. org/ 
10. 1111/ 1755- 0998. 13262

Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni 
C, Hansen AJ (2017) Algorithm for post-clustering curation of 
DNA amplicon data yields reliable biodiversity estimates. Nat 
Commun, 8(1). https:// doi. org/ 10. 1038/ s41467- 017- 01312-x

Gaither MR, DiBattista JD, Leray M, von der Heyden S (2022) Meta-
barcoding the marine environment: from single species to bio-
geographic patterns. Environmental DNA 4(1):3–8. https:// doi. 
org/ 10. 1002/ EDN3. 270

Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR prim-
ers for mitochondrial cytochrome c oxidase subunit I for marine 
invertebrates and application in all-taxa biotic surveys. Mol Ecol 
Resour 13(5):851–861. https:// doi. org/ 10. 1111/ 1755- 0998. 12138

Hirai J, Nagai S, Hidaka K (2017) Evaluation of metagenetic com-
munity analysis of planktonic copepods using Illumina MiSeq: 
comparisons with morphological classification and metagenetic 
analysis using Roche 454. PLoS ONE 12(7):e0181452. https:// 
doi. org/ 10. 1371/ journ al. pone. 01814 52

Klunder L, van Bleijswijk JDL, Kleine Schaars L, van der Veer HW, 
Luttikhuizen PC, Bijleveld AI (2022) Quantification of marine 
benthic communities with metabarcoding. Mol Ecol Resour 
22(3):1043. https:// doi. org/ 10. 1111/ 1755- 0998. 13536

Krehenwinkel H, Wolf M, Lim JY, Rominger AJ, Simison WB, 
Gillespie RG (2017) Estimating and mitigating amplification bias 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/S12859-021-04115-6/FIGURES/7
https://doi.org/10.1186/S12859-021-04115-6/FIGURES/7
https://doi.org/10.3389/conf.fmars.2019.08.00046
https://doi.org/10.3354/meps146037
https://doi.org/10.1038/s41598-021-85855-6
https://doi.org/10.1111/1755-0998.12428
https://doi.org/10.1111/1755-0998.12428
https://doi.org/10.1093/plankt/fbw023
https://doi.org/10.1093/plankt/fbw023
https://doi.org/10.1093/icesjms/fsz021
https://doi.org/10.1093/icesjms/fsz021
https://doi.org/10.1007/s00227-021-03887-y
https://doi.org/10.1016/J.JEMBE.2008.07.009
https://doi.org/10.3389/fmars.2021.705042
https://doi.org/10.1111/2041-210X.12574
https://doi.org/10.1093/ICESJMS/FSAB059
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1093/bioinformatics/btr381
https://doi.org/10.1371/journal.pone.0130324
https://doi.org/10.1007/s00300-015-1709-9
https://doi.org/10.1007/s00300-015-1709-9
https://doi.org/10.1093/ICESJMS/FSAB171
https://doi.org/10.3389/fmars.2019.00490
https://doi.org/10.3389/fmars.2019.00490
https://doi.org/10.3844/AJASSP.2009.1815.1819
https://doi.org/10.3844/AJASSP.2009.1815.1819
https://doi.org/10.1111/1755-0998.13262
https://doi.org/10.1111/1755-0998.13262
https://doi.org/10.1038/s41467-017-01312-x
https://doi.org/10.1002/EDN3.270
https://doi.org/10.1002/EDN3.270
https://doi.org/10.1111/1755-0998.12138
https://doi.org/10.1371/journal.pone.0181452
https://doi.org/10.1371/journal.pone.0181452
https://doi.org/10.1111/1755-0998.13536


Marine Biodiversity           (2023) 53:66  

1 3

Page 17 of 18    66 

in qualitative and quantitative arthropod metabarcoding. Sci Rep 
7(1):1–12. https:// doi. org/ 10. 1038/ s41598- 017- 17333-x

Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI (2019) 
How quantitative is metabarcoding: a meta-analytical approach. 
Mol Ecol 28(2):420–430. https:// doi. org/ 10. 1111/ mec. 14920

Lira NL, Tonello S, Lui RL, Traldi JB, Brandão H, Oliveira C, Blanco 
DR (2023) Identifying fish eggs and larvae: from classic method-
ologies to DNA metabarcoding. Mol Biol Rep 50(2):1713–1726. 
https:// doi. org/ 10. 1007/ s11033- 022- 08091-9

Mahé F, Czech L, Stamatakis A, Quince C, De Vargas C, Dunthorn 
M, Rognes T (2021) Swarm v3: towards tera-scale amplicon clus-
tering. Bioinformatics 38(1):267–269. https:// doi. org/ 10. 1093/ 
BIOIN FORMA TICS/ BTAB4 93

Mantel N, Valand RS (1970) A technique of nonparametric multivariate 
analysis. Biometrics 26(3):547. https:// doi. org/ 10. 2307/ 25291 08

Marlétaz F, Le Parco Y, Liu S, Peijnenburg KTCA (2017) Extreme 
mitogenomic variation in natural populations of chaetognaths. 
Genome Biol Evol 9(6):1374–1384. https:// doi. org/ 10. 1093/ gbe/ 
evx090

Matthews SA, Goetze E, Ohman MD (2021) Recommendations for 
interpreting zooplankton metabarcoding and integrating molec-
ular methods with morphological analyses. ICES J Mar Sci 
78(9):3387–3396. https:// doi. org/ 10. 1093/ ICESJ MS/ FSAB1 07

McGee KM, Robinson CV, Hajibabaei M (2019) Gaps in DNA-based 
biomonitoring across the globe. Front Ecol Evol 7:337. https:// 
doi. org/ 10. 3389/ fevo. 2019. 00337

McLaren MR, Willis AD, Callahan BJ (2019) Consistent and cor-
rectable bias in metagenomic sequencing experiments. ELife, 8. 
https:// doi. org/ 10. 7554/ eLife. 46923

Møller EF, Bohr M, Kjellerup S, Maar M, Møhl M, Swalethorp R, 
Nielsen TG (2016) Calanus finmarchicus egg production at its 
northern border. J Plankton Res 38(5):1206–1214. https:// doi. org/ 
10. 1093/ PLANKT/ FBW048

Ndah AB, Meunier CL, Kirstein IV, Göbel J, Rönn L, Boersma M (2022) 
A systematic study of zooplankton-based indices of marine ecologi-
cal change and water quality: application to the European marine 
strategy framework Directive (MSFD). Ecol Indic 135:108587. 
https:// doi. org/ 10. 1016/J. ECOLI ND. 2022. 108587

Oksanen J, Kindt R, Pierre L, O’Hara B, Simpson GL, Solymos P, 
Stevens MHHH, Wagner H, Blanchet FG, Kindt R, Legendre 
P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens 
MHHH, Wagner H (2016) vegan: community ecology package, 
R package version 2.4–0. R Package Version 2.2–1. http:// vegan.r- 
forge.r- proje ct. org

Pawlowski J, Lejzerowicz F, Apotheloz-Perret-Gentil L, Visco J, 
Esling P (2016) Protist metabarcoding and environmental bio-
monitoring: time for change. Eur J Protistol 55:12–25. https:// 
doi. org/ 10. 1016/J. EJOP. 2016. 02. 003

Pierella Karlusich JJ, Pelletier E, Zinger L, Lombard F, Zingone A, 
Colin S, Gasol JM, Dorrell RG, Henry N, Scalco E, Acinas SG, 
Wincker P, de Vargas C, Bowler C (2023) A robust approach to 
estimate relative phytoplankton cell abundances from metage-
nomes. Mol Ecol Resour 23(1):16–40. https:// doi. org/ 10. 1111/ 
1755- 0998. 13592

Pierella Karlusich JJ, Lombard F, Irisson JO, Bowler C, Foster RA 
(2022) Coupling imaging and omics in plankton surveys: state-
of-the-art, challenges, and future directions. Front Mar Sci, 9. 
https:// doi. org/ 10. 3389/ fmars. 2022. 878803

R Development Core Team, R. (2011). R: a language and environment 
for statistical computing. In R foundation for statistical computing 
(Vol. 1, Issue 2.11.1). https:// doi. org/ 10. 1007/ 978-3- 540- 74686-7

Radulovici AE, Vieira PE, Duarte S, Teixeira MAL, Borges LMS, Dea-
gle BE, Majaneva S, Redmond N, Schultz JA, Costa FO (2021) 
Revision and annotation of DNA barcode records for marine 
invertebrates: report of the 8th iBOL conference hackathon. 

Metabarcoding Metagenomics 5:207–217. https:// doi. org/ 10. 
3897/ mbmg.5. 67862

Rey A, Corell J, Rodriguez-Ezpeleta N (2020) Metabarcoding to study 
zooplankton diversity. Zooplankton Ecology, 252–263. https:// doi. 
org/ 10. 1201/ 97813 51021 821- 14

Rimet F, Aylagas E, Borja A, Bouchez A, Canino A, Chauvin C, 
Chonova T, Čiampor F, Costa FO, Ferrari BJD, Gastineau R, 
Goulon C, Gugger M, Holzmann M, Jahn R, Kahlert M, Kusber 
WH, Laplace-Treyture C, Leese F, … Ekrem T (2021) Metadata 
standards and practical guidelines for specimen and DNA cura-
tion when building barcode reference libraries for aquatic life. 
Metabarcoding and Metagenomics, 5, 17–33. https:// doi. org/ 10. 
3897/ mbmg.5. 58056

Roff JC, Hopcroft RR (1986) High precision microcomputer based 
measuring system for ecological research. Can J Fish Aquat Sci 
43(10):2044–2048. https:// doi. org/ 10. 1139/ f86- 251

Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: 
a versatile open source tool for metagenomics. PeerJ 4:e2584. 
https:// doi. org/ 10. 7717/ peerj. 2584

Santoferrara LF (2019) Current practice in plankton metabarcoding: 
optimization and error management. J Plankton Res 41(5):571–
582. https:// doi. org/ 10. 1093/ PLANKT/ FBZ041

Santoferrara LF, Burki F, Filker S, Logares R, Dunthorn M, McManus 
GB (2020) Perspectives from ten years of protist studies by high-
throughput metabarcoding. J Eukaryot Microbiol 67(5):612–622. 
https:// doi. org/ 10. 1111/ JEU. 12813

Schenk J, Geisen S, Kleinbölting N, Traunspurger W (2019) Metabar-
coding data allow for reliable biomass estimates in the most abun-
dant animals on earth. Metabarcoding Metagenomics 3:117–126. 
https:// doi. org/ 10. 3897/ mbmg.3. 46704

Thomas AC, Deagle BE, Eveson JP, Harsch CH, Trites AW (2016) 
Quantitative DNA metabarcoding: improved estimates of species 
proportional biomass using correction factors derived from con-
trol material. Mol Ecol Resour 16(3):714–726. https:// doi. org/ 10. 
1111/ 1755- 0998. 12490

van der Loos LM, Nijland R (2021) Biases in bulk: DNA metabarcod-
ing of marine communities and the methodology involved. Mol 
Ecol 30(13):3270–3288. https:// doi. org/ 10. 1111/ mec. 15592

Vasselon V, Bouchez A, Rimet F, Jacquet S, Trobajo R, Corniquel 
M, Tapolczai K, Domaizon I (2018) Avoiding quantification bias 
in metabarcoding: application of a cell biovolume correction 
factor in diatom molecular biomonitoring. Methods Ecol Evol 
9(4):1060–1069. https:// doi. org/ 10. 1111/ 2041- 210X. 12960

Wang C, Zhang T, Wang Y, Katz LA, Gao F, Song W (2017). Disen-
tangling sources of variation in SSU rDNA sequences from single 
cell analyses of ciliates: impact of copy number variation and 
experimental error. Proceedings of the Royal Society B: Biologi-
cal Sciences, 284(1859). https:// doi. org/ 10. 1098/ RSPB. 2017. 0425

Wangensteen OS, Palacín C, Guardiola M, Turon X (2018) DNA metabar-
coding of littoral hardbottom communities: high diversity and data-
base gaps revealed by two molecular markers. PeerJ, 2018(5). https:// 
doi. org/ 10. 7717/ peerj. 4705

Weigand H, Beermann AJ, Čiampor F, Costa FO, Csabai Z, Duarte S, 
Geiger MF, Grabowski M, Rimet F, Rulik B, Strand M, Szucsich 
N, Weigand AM, Willassen E, Wyler SA, Bouchez A, Borja A, 
Čiamporová-Zaťovičová Z, Ferreira S, … Ekrem T (2019). DNA 
barcode reference libraries for the monitoring of aquatic biota in 
Europe: gap-analysis and recommendations for future work. Sci 
Total Environ, 678, 499–524. https:// doi. org/ 10. 1016/J. SCITO 
TENV. 2019. 04. 247

Wiebe PH, Bucklin A, Benfield M (2017) Sampling, preservation and 
counting of samples: II. Zooplankton. In Marine plankton: a prac-
tical guide to ecology, methodology, and taxonomy (Vol. 1, pp. 
104–136). Oxford University Press. https:// doi. org/ 10. 1093/ OSO/ 
97801 99233 267. 003. 0010

https://doi.org/10.1038/s41598-017-17333-x
https://doi.org/10.1111/mec.14920
https://doi.org/10.1007/s11033-022-08091-9
https://doi.org/10.1093/BIOINFORMATICS/BTAB493
https://doi.org/10.1093/BIOINFORMATICS/BTAB493
https://doi.org/10.2307/2529108
https://doi.org/10.1093/gbe/evx090
https://doi.org/10.1093/gbe/evx090
https://doi.org/10.1093/ICESJMS/FSAB107
https://doi.org/10.3389/fevo.2019.00337
https://doi.org/10.3389/fevo.2019.00337
https://doi.org/10.7554/eLife.46923
https://doi.org/10.1093/PLANKT/FBW048
https://doi.org/10.1093/PLANKT/FBW048
https://doi.org/10.1016/J.ECOLIND.2022.108587
http://vegan.r-forge.r-project.org
http://vegan.r-forge.r-project.org
https://doi.org/10.1016/J.EJOP.2016.02.003
https://doi.org/10.1016/J.EJOP.2016.02.003
https://doi.org/10.1111/1755-0998.13592
https://doi.org/10.1111/1755-0998.13592
https://doi.org/10.3389/fmars.2022.878803
https://doi.org/10.1007/978-3-540-74686-7
https://doi.org/10.3897/mbmg.5.67862
https://doi.org/10.3897/mbmg.5.67862
https://doi.org/10.1201/9781351021821-14
https://doi.org/10.1201/9781351021821-14
https://doi.org/10.3897/mbmg.5.58056
https://doi.org/10.3897/mbmg.5.58056
https://doi.org/10.1139/f86-251
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1093/PLANKT/FBZ041
https://doi.org/10.1111/JEU.12813
https://doi.org/10.3897/mbmg.3.46704
https://doi.org/10.1111/1755-0998.12490
https://doi.org/10.1111/1755-0998.12490
https://doi.org/10.1111/mec.15592
https://doi.org/10.1111/2041-210X.12960
https://doi.org/10.1098/RSPB.2017.0425
https://doi.org/10.7717/peerj.4705
https://doi.org/10.7717/peerj.4705
https://doi.org/10.1016/J.SCITOTENV.2019.04.247
https://doi.org/10.1016/J.SCITOTENV.2019.04.247
https://doi.org/10.1093/OSO/9780199233267.003.0010
https://doi.org/10.1093/OSO/9780199233267.003.0010


 Marine Biodiversity           (2023) 53:66 

1 3

   66  Page 18 of 18

Yang J, Zhang X, Xie Y, Song C, Zhang Y, Yu H, Burton GA (2017) 
Zooplankton community profiling in a eutrophic freshwater 
ecosystem-lake tai basin by DNA metabarcoding. Sci Rep, 7(1). 
https:// doi. org/ 10. 1038/ s41598- 017- 01808-y

Yang J, Zhang X (2020) eDNA metabarcoding in zooplankton improves 
the ecological status assessment of aquatic ecosystems. Environ 
Int 134:105230. https:// doi. org/ 10. 1016/J. ENVINT. 2019. 105230

Yoon TH, Kang HE, Kang CK, Lee SH, Ahn DH, Park H, Kim HW 
(2016) Development of a cost-effective metabarcoding strategy 

for analysis of the marine phytoplankton community. PeerJ 
2016(6):e2115. https:// doi. org/ 10. 7717/ PEERJ. 2115/ SUPP-1

Zhang GK, Chain FJJ, Abbott CL, Cristescu ME (2018) Metabarcoding 
using multiplexed markers increases species detection in complex 
zooplankton communities. Evol Appl 11(10):1901–1914. https:// 
doi. org/ 10. 1111/ eva. 12694

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s41598-017-01808-y
https://doi.org/10.1016/J.ENVINT.2019.105230
https://doi.org/10.7717/PEERJ.2115/SUPP-1
https://doi.org/10.1111/eva.12694
https://doi.org/10.1111/eva.12694

	Mock samples resolve biases in diversity estimates and quantitative interpretation of zooplankton metabarcoding data
	Abstract
	Introduction
	Materials and methods
	Collection and sample preparation
	DNA analysis
	Bioinformatics
	Data analysis

	Results
	Sequencing summary
	Diversity
	Quantitative correlations
	Mock community analysis

	Discussion
	Species richness detection and false positivesnegatives
	Quantification and community analysis
	Gaps and errors in reference databases
	Dry oven preservation as an alternative to ethanol

	Conclusion
	Anchor 20
	Acknowledgements 
	References


