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Haematococcus pluvialis can be used as a green additive in aquafeeds due to it contains
rich astaxanthin and polyunsaturated fatty acid. In the present study, a newly strain of H.
pluvialis GXU-A23 with high concentration of astaxanthin was firstly isolated by a newly
culture strategy in our laboratory. In addition, H. pluvialis GXU-A23 was applied in the
Litopenaeus vannamei feed for determining whether it has positive effects on the growth
performance, antioxidant and anti-inflammatory status, metabolic capacity and mid-
intestine morphology of juvenile L. vannamei. Shrimp with 0.63 g approximately initial
body weight were fed diets supplementedwith/without 50 g/kgH. pluvialisGXU-A23. After
8 weeks feeding intervention, significantly higher growth performance of L. vannamei was
obtained in the H. pluvialis GXU-A23 treatment group compared to the control group (p <
0.05). At the same time, L. vannamei fed with H. pluvialis GXU-A23 acquired significantly
better antioxidant and anti-inflammatory status than the control group (p < 0.05). In
addition, higher RNA expression level of hepatopancreas digestive enzyme,
hepatopancreas lipid and glucose metabolic enzymes as well as better mid-intestine
morphology were found in the H. pluvialis GXU-A23 treatment group than the control
group (p < 0.05). These results indicated that 50 g/kgH. pluvialisGXU-A23was suitable for
the L. vannamei feed, which could improve the growth performance, antioxidant and anti-
inflammatory status, metabolic capacity and mid-intestine morphology of juvenile L.
vannamei.
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INTRODUCTION

The speedy development of aquaculture provided considerable
high-quality protein for human (Costello et al., 2020; Cottrell
et al., 2021). In fact, high production is attributed to high density
farming (Bostock et al., 2010). On the other hand, many
aquaculture environments were polluted due to the
improvement of human activities (Zhang et al., 2019).
However, these two factors might cause the growth of
pathogen microorganisms, such as white spot syndrome virus
(WSSV) (Verbruggen et al., 2016) and Vibrio parahaemolyticus
(Soto-Rodriguez et al., 2015), in water and thus inducing the low
survival rate of Litopenaeus vannamei, which severely limited the
development of the shrimp industry. In order to reduce adverse
effects of shrimp as caused by pathogen microorganisms,
antibiotics were widely used in recent 20 years (Romero et al.,
2012). However, limitations of antibiotic used in aquaculture are
antibiotic resistance and drug residues (Sørum, 2005; Santos and
Ramos, 2016). Therefore, to promote the development of
aquaculture industry, proper green additives must be exploited
for substituting the antibiotic used during the farming.

The flesh pigment is one of the essential factors which might
influence the shrimp price since customers generally regard the
optimal pigment as high quality (Diler and Gokoglu, 2004).
However, crustaceans are unable to biosynthesize carotenoids
de novo, while they can obtain and convert pigment from the feed
into carotenoids and then deposit in the flesh (Niu et al., 2009).
Therefore, optimization of the flesh pigment could be taken into
consideration when it comes to exploiting a shrimp additive.

Astaxanthin, one of the keto carotenoids, is mainly existing in
algae (like Haematococcus pluvialis, Chlorella zofingiensis),
bacteria (like Phaffia rhodozyma) and crustaceans (Johnson
and Lewis, 1979; Ip and Chen, 2005). The antioxidant
property of astaxanthin was demonstrated more 100–500 folds
than vitamin E to inhibit the lipid peroxidation in vitro (Ni et al.,
2015). Dietary supplementation of astaxanthin bring many
benefits to aquatic animals. For example, improving the
growth performance (Wang et al., 2018), reducing the interval
of molt cycle (Petit et al., 1997), enhancing the antioxidant and
anti-inflammatory capacity (Xie J. et al., 2020), optimization of
shrimp pigment (Ju et al., 2011).

Newly strain ofH. pluvialisGXU-A23 with high concentration
astaxanthin (33 g/kg) was isolated and cultured by a newly two-
step batch culture strategy in our laboratory (Wang et al., 2019).
In this method, modified Bold’s Basal medium (mBBM) (Wang
et al., 2019) with 9.0 mM urea was provided to culture the H.
pluvialis GXU-A23. Compared to the modified BG-11 medium
(mBG-11) (Gao et al., 2016), the H. pluvialis could obtain
remarkably higher astaxanthin content in the mBBM
(Domınguez-Bocanegra et al., 2004; Nahidian et al., 2018).
Apart from that, the H. pluvialis showed the better
astaxanthin accumulation property in the urea as nitrogen
source than NaNO3 and NH4HCO3 (Wang et al., 2019). In
our previous study, the two-step batch culture strategy was
used to successfully culture H. pluvialis JNU35, which
contained 31.70 g/kg astaxanthin (Zhao et al., 2021). Since
astaxanthin was mostly produced by nature H. pluvialis, the

newly strain of H. pluvialis GXU-A23 could remarkably
improve the production industry of astaxanthin as well as
reduce the product budget. In addition, this microalga also
could be used as a green additive in aquafeeds and beneficial
for sustainable development of aquaculture.

The present study aims to evaluate whether there are beneficial
effects of the newly isolated strain of H. pluvialis GXU-A23 on L.
vannamei. Therefore, an 8 weeks feeding experiment was
conducted to investigate effects of H. pluvialis GXU-A23 on
the growth performance, antioxidant and anti-inflammatory
status, metabolic capacity and mid-intestine morphology of
juvenile L. vannamei. These results might provide a reference
for feed formulation of L. vannamei.

MATERIALS AND METHODS

Haematococcus pluvialis GXU-A23 Culture
H. pluvialis GXU-A23 was obtained from Zixi Mountain of
Chuxiong (YunNan, China), and these microalgae were
bacteria-free cultured in our laboratory. The culture method of
H. pluvialis GXU-A23 was following the manuscript by Wang
et al. (2019). Briefly, H. pluvialis GXU-A23 was scale-up cultured
in a flat glass photobioreactor (length: 240 cm; height: 120 cm)
with 6 cm light paths. mBBM (9.0 mM urea), bubbled gas of 1%
CO2 (v/v) as well as 100 μmol/m2 s−1 continuous unilateral
lighting were provided to culture the H. pluvialis GXU-A23

TABLE 1 | Ingredients and proximate compositions of two experimental
diets (g/kg).

Ingredients D1 D2

Fish meal 250 250
Soybean meal 270 270
Peanut meal 120 120
Wheat flour 234 184
Beer yeast 30 30
Shrimp bran powder 30 30
Fish oil 10 10
Soybean lecithin 10 10
Soybean oil 10 10
Choline chloride (50%) 5 5
Vitamin C phosphate 1 1
Vitamin and mineral premixa 20 20
Monocalcium phosphate 10 10
Haematococcus pluvialis GXU-A23 b 0 50
Sum 1000 1000
Nutrient levelsc(%)
Moisture 7.45 7.63
Crude lipid 7.12 7.01
Crude protein 40.52 40.74
Ash 9.46 9.59
Astaxanthin – 0.16

aComposition of vitamin and mineral mixture (kg−1 of mixture): vitamin A, 250,000 IU;
riboflavin, 750 mg; pyridoxine HCL, 500 mg; cyanocobalamin, 1 mg; thiamin, 500 mg;
menadione, 250 mg; folic acid, 125 mg; biotin, 10 mg; a-tocopherol, 3750 mg; myo-
inositol, 2500 mg; calcium pantothenate, 1250 mg; nicotinic acid, 2000 mg; vitamin D3,
45,000 IU; vitamin C, 7000 mg, Zn, 4000 mg; K, 22.500 mg; I, 200 mg; NaCl, 2.6 g; Cu,
500 mg; Co., 50 mg; FeSO4, 200 mg; Mg, 3000 mg; Se, 10 mg.
bHaematococcus pluvialis GXU-A23: 33 g/kg astaxanthin (Dry matter).
cMeasured values (Dry matter).
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for 15 days. Afterward, H. pluvialis GXU-A23 was transferred
into the same sized photobioreactor with nitrogen-free medium,
3 cm light paths and continuous bilateral illumination of
400 μmol m−2 s−1 for 15 days to accumulate astaxanthin.
Afterward, red cells of H. pluvialis GXU-A23 were harvested
by auto-precipitation and freeze-dried using freezing dryer. The
freeze-drying biomass of H. pluvialis GXU-A23 contained
33 g/kg astaxanthin.

Diet Preparation
As shown in Table 1, two isonitrogen and isolipids experimental
diets were formulated with/withoutH. pluvialisGXU-A23 (D1: 0;
D2: 50 g/kg) respectively. Dietary ingredients were purchased
from Guangzhou Chengyi Company Ltd. (Guangzhou, China).
The level of H. pluvialis GXU-A23 used in the present study was
referred to our previous study (Zhao, et al., 2020), which was
normally the highest concentration of additive used in the
aquafeed.

Measured nutrition values of diets were 7% crude lipid and
40% protein approximately (Table 1). The method of diet
preparation was following the reported by Yu et al. (2016).
Briefly, all dried ingredients and oils were weighted following
table 1 and then completely homogeneous in the Hobart-type
mixer (A-200T Mixer, Canada). Then, deionized water
(250 ml/kg dried ingredients mixture) was added into the
above ingredient to thoroughly mix for 15 min. Then, diets
(1.2 mm diameters) were extruded using the pelletizer (South
China University of Technology, China). Then, diets were heated
in the 50°C ventilated oven for 120 min. Then, diets were stored at
−20°C and kept away from the light until the feeding trial.

Feeding Experiment
Juvenile L. vannamei were obtained and cultured at the
experimental station of the Chinese Academy of Fishery
Science (Lingshui, China). Before the trial, shrimp were
acclimated to the experimental environment by feeding with
D1 diet for 30 days 320 lively shrimp with an initial body
weight of 0.63 g approximately were distributed randomly into
the recirculating water system with eight cylindrical fiber tanks
(300 L). Each of diets was randomly allocated to quadruplicate
tanks. The feeding frequency was three times daily at 06:00, 12:00,
and 18:00 with 8% of total shrimp weight and lasted for 8 weeks.
During the period of feeding, environmental conditions were
maintained as follows: water temperature: 26.8–28.1°C; pH:
7.5–7.7; salinity: 29—32‰; dissolved oxygen: > 7.0 mg/L; total
ammonia nitrogen: < 0.1 mg/L; sulfide: < 0.05 mg/L. Natural
light-dark (12–12 h) cycle was used during the feeding trial.

Sample Collection
After 8 weeks feeding, L. vannamei were starved for 24 h. Then, all
shrimp from each tank were weighed, counted and then recorded.
Then, eight individuals from each tank were randomly collected
and anesthetized (MS-222, 98%, Sigma, United States) for
obtaining the blood sample. Then, hepatopancreas samples were
removed for analysis of antioxidant parameters and mRNA
expression; same sections of mid-intestine were removed and
fixed in 4% paraformaldehyde (Beyotime, China) for intestinal

histological examination. Blood samples were stored at the fridge
(4°C, 12 h) and then centrifuged (7,100 g, 10min, at 4°C) to obtain
hemolymph for antioxidant parameters analysis. All
hepatopancreas and hemolymph samples were separated rapidly
and then maintained at −80°C until examination.

Astaxanthin Analysis of Haematococcus
pluvialis GXU-A23 and Feeds
Astaxanthin contents of H. pluvialis GXU-A23 and feeds were
determined by spectrophotometrically as the description by Li,
et al. (2012).

Chemical Analysis of Feeds
Chemical compositions (moisture, crude lipid, crude protein and
ash) of feeds were determined according to standard methods of
AOAC (Horwitz, 2010). Briefly, moisture was analyzed by drying
in the ventilated oven at 105°C until constant weight; crude lipid
examination was performed following the Soxhlet extractor
method (Soxtec System HT6, Tecator, Sweden); crude protein
(N × 6.25) was measured following the Kjeldahl method
(1030—Autoanalyzer; Tecator, Höganäs, Sweden); ash was
analyzed using muffle furnace at 550°C until constant weight.

Quantification of Hepatopancreas and
Hemolymph Parameters Related to
Antioxidant Status
Hepatopancreas were homogenized and centrifuged according to
the description of Fang et al. (2021). Briefly, hepatopancreas were
homogenized (1:9) in phosphate buffer. Afterward, above
homogenates were centrifuged (10 min, 4°C, 1200 g) and then
supernatants were collected.

Enzyme activities of total superoxide dismutase (T-SOD)
(A001-1), total antioxidant capacity (T-AOC) (A015–2),
glutathione peroxidase (GSH-PX) (A005-1) as well as the
content of malondialdehyde (MDA) (A003-1) were measured
according to instructions of reagent (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) (Instructions of
reagent were shown in additional files).

Examination of Mid-intestine Histology
Mid-intestine sections were obtained and stained following the
manuscript of Zhao et al. (2020). Briefly, tissue sections were
stained using the hematoxylin and eosin (Beyotime, China), and
mid-intestine histology were observed using the microscope
(Olympus CKX41 microscope, Tokyo, Japan). The villus
height and the mucosal layer thickness are equating to the
average value of randomly selected eight villi and eight
mucosal per slide respectively (Chen et al., 2020).

mRNA Isolation and Expression
Quantification
Hepatopancreas total RNA isolation and mRNA expression
examination were performed following our previous
manuscript (Fang et al., 2019). Briefly, the total RNA was
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isolated using Trizol® reagent (Invitrogen, United States)
following the manufacturer’s instruction. 1% agarose gel
electrophoresis and spectrophotometer (NanoDrop 2000;
Thermo Fisher, United States) were used to ascertain RNA
quality and quantity, respectively. Afterward, cDNA was
synthesized using the PrimeScript TM RT Reagent kit (Takara,
Japan), following the manufacturer’s instruction. Real-time PCR
for the target genes were performed using SYBR® Premix Ex
TaqTM II (Takara, Japan) and quantified on the LightCycler 480
(Roche Applied Science, Basel, Switzerland).

Primers related to the present study were listed in table 2. The
elongation factor a (ef1a) was used as a housekeeping gene for
RNA expression analysis (Guzmán-Villanueva et al., 2020). The
relative mRNA expression of target genes was determined using
the 2−ΔΔCT method (Livak and Schmittgen, 2001).

Statistical Analysis
Experimental data in the present study are shown as means ±
standard error (SE). Data were checked for normality and
homogeneity of variance in the software of SPSS 22.0 (Chicago,
United States) and then analyzed by independent-sample t-test. p <
0.05 was regarded as the significant difference between groups.

RESULT

Growth Performance and Feed Utilization
As shown in Table 3, dietaryH. pluvialisGXU-A23 supplementation
significantly altered the growth performance of L. vannamei.
Significantly higher final body weight (FBW), weight gain rate
(WGR) and specific growth rate (SGR) of L. vannamei were found
in theD2 group than that of theD1 group (p< 0.05).However, dietary
H. pluvialisGXU-A23 supplementationwas unable to change the feed
conversion ratio (FCR) of L. vannamei (p > 0.05). After 8 weeks
feeding, survival rate (SR) of L. vannamei fed with/withoutH. pluvialis
GXU-A23 were 96% approximately (p > 0.05).

Oxidative Status Parameters
Antioxidant parameters of L. vannamei under different dietary
intervention were shown in Table 4. Results showed that enzyme
activities of hepatopancreas T-SOD, hepatopancreas GSH-PX as
well as hemolymph T-SOD were significantly decreased in the D2
group than that in the D1 group (p < 0.05). Meanwhile, relatively
lower hepatopancreas MDA content (p > 0.05) and remarkably
lower hemolymph MDA content (p < 0.05) were found in the
dietary H. pluvialis GXU-A23 supplementation group than the
control group. No statistical differences of hepatopancreas
T-AOC, hemolymph T-AOC and hemolymph GSH-PX were
obtained between two experimental groups (p > 0.05).

Hepatopancreas mRNA Expression Related
to Immunity
mRNA expression levels of genes related to antioxidation of L.
vannamei fed diet supplemented with/without H. pluvialis GXU-
A23 were shown in Figure 1. Compared to the control group, the

TABLE 2 | Sequences of primers used for real-time quantitative PCR.

Gene Primer Sequence (59-39) References

ef1a-F TGGCTGTGAACAAGATGGAC Xie et al. (2018)
ef1a-R AGATGGGGATGATTGGGACC
sod-F CCGTGCAGATTACGTGAAGG Duan et al. (2018)
sod-R GTCGCCACGAGAAGTCAATG
gsh-px F GGCACCAGGAGAACACTAC Xie et al. (2018)
gsh-px R CGACTTTGCCGAACATAAC
cat-F TACTGCAAGTTCCATTACAAGACG Xie et al. (2019)
cat-R GTAATTCTTTGGATTGCGGTCA
relish-F CTACATTCTGCCCTTGACTCTGG Xie et al. (2018)
relish-R GGCTGGCAAGTCGTTCTCG
rho-F GTGATGGTGCCTGTGGTAAA Xie et al. (2018)
rho-R GCCTCAATCTGTCATAGTCCTC
chymotrypsin-F GGCTCTCTTCATCGACG Xie J. et al. (2020)
chymotrypsin-R CGTGAGTGAAGAAGTCGG
trypsin-F TCCAAGATCATCCAACACGA Xie S. et al. (2020)
trypsin-R GACCCTGAGCGGGAATATC
hk-F AGTCGCAGCAACAGGAAGTT Yang et al. (2021)
hk-R CGCTCTTCTGGCACATGATA
fas-F GCGTGATAACTGGGTGTCCT Yang et al. (2021)
fas-R ACGTGTGGGTTATGGTGGAT

TABLE 3 | Growth performance and feed utilization of L. vannamei fed diet
supplemented with/without H. pluvialis GXU-A23 for 56 days.

D1 D2

IBW 0.64 ± 0.01 0.63 ± 0.01
FBW 5.98 ± 0.03 6.25 ± 0.01
WGR 828.31 ± 15.07 925.12 ± 14.84
SGR 3.98 ± 0.03 4.16 ± 0.03
FCR 1.24 ± 0.03 1.17 ± 0.01
SR 96.25 ± 1.25 96.88 ± 0.63

IBW (g per shrimp): initial body weight.
FBW (g per shrimp): final body weight.
Weight gain rate (WGR, %) = 100 * (final body weight—initial body weight)/initial body
weight.
Specific growth rate (SGR, % day−1): 100× (Ln final shrimp weight - Ln initial shrimp weight)/the
experimental duration in days.
Feed conversion ratio (FCR) = dry diet fed/wet weight gain.
Survival rate (SR) (%) = 100 * (final number of shrimp)/(initial number of shrimp).
Values are mean ± SE (n = 4). Means in the same row with different superscripts are
significantly different (p < 0.05).

TABLE 4 | Hepatopancreas and hemolymph antioxidant status parameters of L.
vannamei fed diet supplemented with/without H. pluvialis GXU-A23 for
56 days.

D1 D2

Hepatopancreas
T-SOD (U/mgprot) 10.4 ± 0.88a 5.61 ± 1.00b

T-AOC (U/mgprot) 0.27 ± 0.01 0.18 ± 0.03
GSH-PX (U/mg prot) 624.12 ± 49.36a 233.92 ± 56.78b

MDA (nmol/mgprot) 1.26 ± 0.03 1.1 ± 0.08
Hemolymph
T-SOD (U/mL) 273.75 ± 6.08a 239.53 ± 9.52b

T-AOC (U/mL) 3.7 ± 0.12 3.66 ± 0.23
GSH-PX (U/mL) 419.35 ± 54.11 380.65 ± 19.36
MDA (mmol/ml) 8.27 ± 1.04a 3.84 ± 0.21b

Values are mean ± SE (n = 4).
Means in the same row with different superscripts are significantly different (p < 0.05).
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dietary H. pluvialis GXU-A23 supplementation group obtained
significantly lower mRNA expression levels of sod, gsh-px and cat
(p < 0.05).

mRNA expression levels of anti-inflammatory genes of L.
vannamei fed diet supplemented with/without H. pluvialis GXU-
A23 were shown in Figure 2. Remarkably lower mRNA expression
level of relish was obtained in the D2 group compared to the control
group (p < 0.05). No statistical difference of the rho mRNA
expression level was observed between two groups (p > 0.05).

Hepatopancreas mRNA Expression Related
to Digestive and Metabolic Enzymes
mRNA expression levels of digestive enzymes of L. vannamei fed
diet supplemented with/without H. pluvialis GXU-A23 were
shown in Figure 3. The mRNA expression level of
chymotrypsin of L. vannamei was significantly increased after
dietary H. pluvialis GXU-A23 intervention (p < 0.05). However,
no statistical difference of trypsin mRNA expression level was
observed between two groups (p > 0.05).

Dietary H. pluvialis GXU-A23 supplementation significantly
altered the mRNA expression level of metabolic enzymes of L.
vannamei (Figure 4). mRNA expression levels of hexokinase (hk)
and fatty acid synthase (fas) were significantly higher in theH. pluvialis
GXU-A23 treatment group compared to the control group (p < 0.05).

Light Microscopy Observation of
Mid-intestine Morphology
Light microscopy of mid-intestine morphology of L. vannamei
exposed to different dietary treatment for 56 days was shown in
Figure 5. Results showed that the intestinal mucosal layer thickness
and villa height of L. vannamei fed withH. pluvialisGXU-A23 was
significantly higher than that of the control group (p < 0.05).

DISCUSSION

In recent years, microalgae had been gained widely attention in
aquafeeds due to it is the green additive with high nutrition (Roy

FIGURE 1 | Hepatopancreas mRNA levels of antioxidative genes of L. vannamei fed diet supplemented with/without H. pluvialis GXU-A23 for 56 days. Values are
mean ± SE (n = 4). The small letters indicated significant differences at p < 0.05.

FIGURE 2 | Hepatopancreas mRNA levels of anti-inflammatory genes of L. vannamei fed diet supplemented with/withoutH. pluvialisGXU-A23 for 56 days. Values
are mean ± SE (n = 4). The small letters indicated significant differences at p < 0.05.
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and Pal, 2015). Different microalgae might contain different
nutrients, such as high lipid and protein (Aaronson et al.,
1980; Webb, 1983), proper amino acid pattern (Becker, 2004),
polysaccharide (Chu et al., 1982; Lama et al., 1996), pigments
(Metting, 1996) and vitamins (Brown and Farmer, 1994).
Supplementation of microalgae in aquafeed can partly
substitute for minerals (Fabregas and Herrero, 1986), fishmeal
and fish oil (Shah et al., 2018). Microalgae as an aquafeed additive
for improving the growth performance and immunity of animals
was also widely reported (Cerezuela et al., 2012; Reyes-Becerril
et al., 2013, 2014).

In the present study, L. vannamei fed with the H. pluvialis
GXU-A23 diet obtained the better growth performance (WG and
SGR) compared to that of the control group. Similar results also
reported in Pseudosciaena crocea (Li et al., 2014), Trachinotus
ovatus (Zhao et al., 2021), L. vannamei (initial weight: ~ 1.0 g) (Ju

et al., 2012). H. pluvialis GXU-A23 contains astaxanthin with 3S-
3′S type which is the same structure in Salmo salar and other
aquatic animals (Higuera-Ciapara et al., 2006). The main reason
for astaxanthin could improve the growth performance of aquatic
animals is that this pigment could mediate intermediate
metabolism, resulting in enhancing nutrients utilization and
thus optimization of the growth performance of L. vannamei
(Han et al., 2018). However, H. pluvialis was unable to alter the
growth performance in post-larval L. vannamei (5 days after
metamorphosing of mysis stage) (Xie et al., 2018), L.
vannamei (initial weight: 0.94–0.99 g) (Ju et al., 2011) and
Cichlasoma citrinellum (Pan and Chien, 2009). These different
results might be attributed to the source and dose used of dietary
H. pluvialis, the growth stage of animals as well as the
experimental environment. Besides, the hepatopancreas mRNA
expression level of chymotrypsin was upregulated in the H.

FIGURE 3 | Hepatopancreas mRNA levels of digestive enzyme genes of L. vannamei fed diet supplemented with/without H. pluvialisGXU-A23 for 56 days. Values
are mean ± SE (n = 4). The small letters indicated significant differences at p < 0.05.

FIGURE 4 | Hepatopancreas mRNA levels of metabolic enzymes genes of L. vannamei fed diet supplemented with/without H. pluvialis GXU-A23 for 56 days.
Values are mean ± SE (n = 4). The small letters indicated significant differences at p < 0.05.
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pluvialis GXU-A23 feeding group than that of the control group.
High expression of protease could improve the digestion and
absorption of protein, and thus enhancing growth (Zokaeifar
et al., 2012). Apart from digestive enzyme, the intestine
morphology was strongly contributed to the growth of shrimp.
Higher intestinal villi height represented the larger contact
surface area between the intestine and nutrients (Emami et al.,
2012), and the increasing of intestinal mucosal layer thickness
meaning the improvement digestion and absorption ability of
shrimp (Chen et al., 2020). In the present study, remarkably
higher intestinal villi height and intestinal mucosal layer
thickness were found in the dietary H. pluvialis GXU-A23

treatment group compared to the control group, indicating
that H. pluvialis GXU-A23 has protective effect on mid-
intestine morphology of L. vannamei and thus improves the
growth performance of shrimp, which is consistent with the
present result.

Generally, aquatic animals have the poor glucose utilization
capacity because of the low level of insulin released (Chen et al.,
2020). However, glycolysis is the only pathway of glucose
metabolism in animals (Li et al., 2018). Among them, hepatic
HK was a fundamental limitation enzyme in the glycolysis
process (Lu et al., 2018). In the present study, the H. pluvialis
GXU-A23 feeding L. vannamei group obtained higher

FIGURE 5 | Light microscopy of mid-intestine morphology of L. vannamei fed diet supplemented with/without H. pluvialis GXU-A23 for 56 days. The scale bars of
picture (A,B)were 100 μm, while the scale bars of picture (C,D)were 25 μm respectively. Picture (E,F) represents the intestinal mucosal layer thickness and intestinal villi
height of L. vannamei respectively. Values are mean ± SE (n = 4). The small letters indicated significant differences at p < 0.05.
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hepatopancreas mRNA expression level of hk than the control
group, indicating that dietary H. pluvialis GXU-A23
supplementation could improve the utilization capacity of
blood glucose for satisfying higher energy requirement. Apart
from glucose metabolism, lipid metabolism also plays a major
role in health of aquatic animals. In particular, FAS plays an
essential role in lipogenesis by catalyzing the de novo biosynthesis
of fatty acids (Lu et al., 2018). In the present study, higher mRNA
expression level of fas in the L. vannamei fed with H. pluvialis
GXU-A23 group than that in the control group, indicating dietary
H. pluvialis GXU-A23 supplementation was beneficial for the
synthesis of hepatopancreas fatty acids.

When shrimp was subjected to environmental pressures, the
breathing burst would be occurred to produce reactive oxygen
species (ROS) for attacking invading microorganisms (Zhao
et al., 2020). However, overproduction ROS might attack
normal cells and then cause oxidative damages to shrimp. To
avoid the riskiness of ROS, cells have developed an antioxidant
system which involve various antioxidant enzymes, like SOD,
GSH-PX, CAT (Zhao et al., 2017). In the present study,
significantly lower antioxidant enzyme activities
(hepatopancreas T-SOD, hepatopancreas GSH-PX and
hemolymph T-SOD) as well as hepatopancreas mRNA
expression levels (sod, gsh-px and cat) were obtained in
dietary H. pluvialis GXU-A23 treatment group compared to
the control group. Lower antioxidant parameters in the D2
group was attributed to the astaxanthin in H. pluvialis GXU-
A23, which contains the ionone ring with hydroxyl and keto and
thus it could scavenge ROS in crustaceans (Ambati et al., 2014).
As a result, L. vannamei was unnecessary to produce more
antioxidant enzymes. MDA is a lipid peroxidation product
which is generally regarded as an essential parameter to
evaluate the oxidative damage of animals (Larbi Ayisi et al.,
2018). In the present study, L. vannamei fed with H. pluvialis
GXU-A23 diet obtained the remarkably lower hemolymph
MDA compared to the control group, indicating H. pluvialis
GXU-A23 could prohibit the lipid peroxidation of cells and
enhance the antioxidant capacity of L. vannamei.

Except for the antioxidant system, aquatic animals also
responses to environmental stresses by regulating
inflammatory responses (Fazelan et al., 2020). If subjected to
stress, inflammatory mediators (like cytokines or prostaglandins)
would be produced in cells for mediating the inflammatory
system to remove detrimental irritations (Boltana et al., 2018).
However, excessive inflammation response might lead to various
pathological diseases, such as fever (Evans et al., 2015), loss of
tissue function (Takeuchi and Akira, 2010). NF-κB signal
pathway is closely correlated with the pathogenesis of
inflammatory diseases (Yu et al., 2020). Among them, relish
was a key NF-κB family protein in L. vannamei (Qiu et al.,
2014). In the present study, the mRNA expression level of relish
in the dietary H. pluvialis GXU-A23 supplementation group was
significantly higher than that of the control group, indicating H.
pluvialis GXU-A23 have a positive effect on inhibiting the NF-κB

singal pathway. The prohibition of NF-κB pathway might narrow
the production of pro-inflammatory cytokines, resulting in
mitigating inflammatory responses (Xie et al., 2011).
Therefore, H. pluvialis GXU-A23 plays an important role in
alleviating inflammatory responses of L. vannamei.

CONCLUSION

Overall, our present study demonstrated that dietary H. pluvialis
GXU-A23 supplementation enhanced the growth performance of
L. vannamei by improving antioxidant and anti-inflammatory
status, metabolic metabolism and mid-intestine morphology.
Therefore, 50 g/kg H. pluvialis GXU-A23 was recommended
for the L. vannamei feed.
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