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Fishermen make repeated choices with respect to when, where, and how to catch their target species. While these targeting tactics—and the
factors shaping them—are known to fishers and some experts, knowledge about them is largely informal and not well utilized for management
purposes. To formalize information on targeting tactics, we propose a set of methods combining model-based classification of target species
with generalized linear models. We apply these methods to Norwegian coastal fishing vessels that caught Atlantic cod (Gadus morhua) as a
part of their catch portfolio in 2019. The data contains nearly 32000 fishing trips by 761 vessels. Gaussian mixture models identify eight latent
targeting tactics. Cod contributes significantly to three of the tactics. The Herfindahl–Hirschman Index, a measure of vessel-level diversity of
tactics, shows that one quarter of the vessels had a specialized strategy (targeting cod plus at most one additional tactic). While cod is often
studied as a single-species fishery, we show that cod-catching vessels can be engaged in relatively pure fisheries during some fishing trips but
switch to different, often more mixed targets during other trips. We term this as “sequential mixed fisheries”. This is both a challenge and an
opportunity for the fisheries management.
Keywords: cluster analysis, finite mixture model, fisher behaviour, fishing tactics, generalized linear model, métier choices, mixed fisheries management.

Introduction

Fish resource assessments and quota allocations are often
made at a high level of spatial aggregation, on a yearly ba-
sis, and separately for each main target species. Fishing pres-
sure and fishing impacts, however, have more granular distri-
butions across space and seasons but are affecting many tar-
get and bycatch species simultaneously. Thus, there are mis-
matches between fisheries management and fishing operations
in the degrees of spatial, temporal, and taxonomic resolu-
tion that could hamper the efficient implementation of fishing
regulations and policies. The implications of a lack of over-
sight on fleet dynamics and fishers’ behaviour could even be
more severe than a lack of knowledge on biological resources
(Hilborn, 1985, 2007).

From a management perspective, the incorporation of
fisher’s behaviour may reduce enforcement uncertainty (Lit-
tle et al., 2004) and improve the assessment of fisheries policy
(Andrews et al., 2021). For instance, models of marine reserves
often assume that fishing effort is spatially uniform and unre-
sponsive to economic incentives. Studies allowing a more re-
alistic depiction of fishers behaviour found that the effect of
marine reserves may be overstated by simplifying assumptions
that ignore economic behaviour (Smith and Wilen, 2003).
Fish stock assessment may also benefit from integrating fish-
ers’ knowledge. As fishers make repeated choices with respect
to when and where to catch which species, they learn from
their experiences and are likely to possess more knowledge
about local stock abundance than what is typically available
to researchers and managers. Information on fishers’ landings,

effort, and prices encountered has been used to assist resource
assessment in data-poor fisheries (Pilling et al., 2009).

It is common in ecosystem studies to treat fishers as a fixed
element, with fishing effort being exogenous to the operational
conditions and regulatory constraints they are in (Salas and
Gaertner, 2004). In practice, however, fishers constantly ad-
just their fishing strategies and tactics (e.g. in a given fishing
trip, which species to target and where and how to catch them)
to cope with natural and market variability and the manage-
ment itself (Smith and McKelvey, 1986; Hilborn and Walters,
1992). Scientists have called for modelling fishers’ responses to
regulations in order to understand their species and location
choices and the underlying behavioural drivers (Branch et al.,
2006; Fulton et al., 2011). Accordingly, there is a growing
emphasis on the collection of fishing footprint data through
logbooks, sales slips, the Vessel Monitoring System (VMS),
and Automatic Identification System (AIS) data (Kroodsma
et al., 2018). This development provides researchers with
new opportunities to analyse fishing patterns and behavioural
drivers in detail. However, analysing highly detailed fishing
footprint data is often hampered by serial and spatial depen-
dence between the observations (Elhorst, 2008; Thorson et al.,
2016).

This study aims to develop a tool to reveal targeting tac-
tics and their dynamics from a mixed-species perspective. We
achieve this by combining Gaussian mixture models (GMM)
for clustering analysis with generalized linear models (GLMs)
to reveal heterogeneous vessel effects. The specific objec-
tives of this study are threefold: (i) to identify latent species
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targeting patterns using trip-level fishing revenue, which we
interpret as targeting tactics; (ii) to reveal fishers’ species di-
versification strategy at the fleet level; (iii) to understand how
the identified tactics vary across vessel groups. Trip-level tar-
geting tactics may be known to fishermen and some experts,
but such knowledge remains largely informal and has not been
well utilized for management purposes.

Fishing patterns and tactics have previously been analysed
using the métier choice framework (Pelletier and Ferraris,
2000; Andersen et al., 2012). The approaches used in métier
studies follow three broad categories: input-based models that
rely on surveys or interviews of fishers, often in data-poor
situations (Tzanatos et al., 2006); output-based models that
use catch statistics and catch profiles from logbooks (Ulrich
and Andersen, 2004); or a combination of both (Marchal,
2008; Boonstra and Hentati-Sundberg, 2016). Our approach
is more similar to the second approach but differs from the
existing métier studies in several important ways. First, we
identify trip-level targeting tactics independently from spatial
or seasonal characteristics. Instead, these were inferred from a
posteriori, after trip-class memberships and probabilities were
determined purely based on catches. Second, we use revenue
rather than catch composition as input for determining the
targeting tactics. Fishers’ behavioural choices are probably
better predicted by expected revenues than catches. Indeed,
fishers’ decisions are typically modelled in the framework of
profit maximization, not catch maximization (Clark, 1974),
and fish supply by a coastal fleet has been found to be respon-
sive to both short- and long-run price changes (Jensen, 2002;
Liu et al., 2021). Third, we use GMM, a model-based method
for clustering analysis. Previous studies on métiers and fishing
tactics are primarily based on distance-based clustering meth-
ods (Pelletier and Ferraris, 2000; Cambiè et al., 2017), includ-
ing principal component analysis (PCA), multiple correspon-
dence analysis (MCA), K-means, and hierarchical clustering.
Model-based clustering is a more flexible technique because
(a) it gives “soft classification”—assigning the posterior prob-
ability of each observation belonging to a latent cluster—and
(b) it allows different assumptions about variance and covari-
ance structures. Mixture models have previously been used
for predicting the bycatch rate (Roberson and Wilcox, 2022),
the abundance index for the targeted species (Okamura et al.,
2018), and fish discard mortality (Morfin et al., 2017).

We demonstrate our method using data from Norwegian
coastal fishing vessels <28 m in length using conventional fish-
ing gears. Specifically, we will focus on the total fishing activity
of the vessels that landed Atlantic cod (Gadus morhua, here-
after simply referred to as cod) as the main species at least once
in 2019. We term this fleet segment the CaPoP fleet (“cod as a
part of the catch portfolio”). Cod is the single most important
fishery species in terms of landed value in Norway and among
the top fishery species globally. The Atlantic cod fishery has
been extensively studied both by biologists and economists
(e.g. Eide et al., 2003; Opdal, 2010; Sogn-Grundvåg et al.,
2022). Reflecting its dominant position in Norwegian fish-
eries, it has often been treated as if it were a single-species
fishery. Here, we take a mixed-species perspective by focus-
ing on cod-catching vessels but studying their full catch pro-
files throughout one year. Our analysis suggests eight targeting
tactics for the CaPoP fleet, three of which include significant
contributions from Atlantic cod. Our findings illustrate the
diversity of tactics employed by the Norwegian cod-catching
fleet.

Background on the case study region

The CaPoP fleet studied here is mostly active along the Nor-
wegian coast of the Barents and Norwegian Seas (Figure 1).
The region is known for its strong seasonality. The seasonal
cycle of secondary production is driven by the spring bloom
of planktonic algae (Skjoldal, 2004), triggered by increasing
solar irradiation and stratification of the water masses (Sver-
drup, 1953). The spring bloom first starts in the southwest and
gradually progresses towards the northeast of the Barents Sea
with the retracting ice edge (Skjoldal et al., 1992). The bloom
in the Norwegian coastal waters takes place earlier than in the
offshore waters due to shallow waters and permanent strati-
fication (Fernö et al., 1998). Zooplankton feed on the bloom-
ing phytoplankton and provide an important food base for
large fish, including cod and herring (Clupea harengus), to
thrive. Many fish populations have developed seasonal migra-
tion patterns coinciding with the spring bloom cycle, with fish
concentrating in the southern and south-western areas of the
Barents Sea in February–March to spawn and primary distri-
bution in the northern and eastern areas in August–September
(Nakken, 1998). Seasonal aggregations of fish along the Nor-
wegian coast offer unique fishing opportunities for coastal
fleets. The late winter–early spring fishery of spawning cod
near the Lofoten Islands in Vestfjorden (site 00 in Figure 1) is
one of the best known examples and has existed throughout
recorded history (Fernö et al., 1998).

Fisheries management in Norway includes total allowable
catch (TAC) regulations and various measures to protect ju-
veniles and vulnerable species. Major stocks include Atlantic
cod, haddock (Melanogrammus aeglefinus), saithe (Pollachius
virens), herring, and mackerel (Scomber scombrus), all of
which are quota-regulated; however, there are many commer-
cial species that are subject to, rather than quota regulations,
seasonal or area closures, and minimum mesh size restrictions
(see a summary in Table A1). One important socio-economic
management goal is to maintain a diversified fleet in terms
of size and geographical distribution (Standal and Hersoug,
2014). This is reflected in the quota allocation key known
as the “trawler ladder”, which protects less-efficient coastal
fleets (<28 m using conventional gears) from being outcom-
peted by ocean-going trawlers (Standal and Hersoug, 2014).
In 2019 (our study year), the coastal fleet received 64, 58,
and 36% of the TAC for cod, haddock, and saithe, respec-
tively (Norwegian Directorate of Fisheries. 2018. J-261-2018
https://www.fiskeridir.no/Yrkesfiske/Regelverk-og-regulering
er/J-meldinger/Utgaatte-J-meldinger/J-261-2018). Moreover,
vessels >21 m are largely excluded from fishing inside the
Norwegian territorial waters.

Material and methods

Study scope

We define a CaPoP fleet as coastal vessels with lengths be-
tween 11 and 28 m that caught cod (Gadus morhua) north of
62◦N at least once in 2019. This parallel is used in the Norwe-
gian fishery management to separate southern and northern
components of many stocks and also corresponds to a natural
boundary (Johansen et al., 2020). In total, there were 761 such
fishing vessels. Cod is treated as a focal species in this study
due to its biological and economic importance for the region
and for Norwegian coastal fisheries in particular (Aglen et al.,
2004). There are three types (stocks) of cod included in our
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(a) (b)

Figure 1. Activity map of the Norwegian CaPoP fleet. Colour indicates mean trip revenue (a) and total trip revenue (b) per statistical cell in the log10 scale
in Norwegian kroner (NOK) in 2019. 1 NOK ≈ 0.1 Euro.

data set: northeast Arctic cod, North Sea cod, and coastal cod
(potentially composed of several local sub-stocks). However,
because of the inaccuracy of reporting, we aggregate all three
types under the common name “cod”.

To obtain a holistic picture of the fleet’s behaviour, our
analysis also covers the fishing activities of the selected ves-
sels south of 62◦N. An activity map (Figure 1) of the CaPoP
fleet reveals that: (a) they are active not only in the fishing
grounds along the coast but also further offshore; (b) fish-
ing grounds along the coast of the northern counties (Troms
and Finnmark) generated the highest revenues in 2019, but
that (c) offshore fishing sites had higher mean revenues (note
that fishing costs are not accounted for). Figure A1 shows the
species caught by the CaPoP fleet in 2019. The list includes
only the species that represent the highest or second-highest
catch value per trip in no <50 fishing trips (aggregated over
all vessels); it excludes “rare” species characterized by very
low catch quantities (Norway introduced a full discard ban in
2009; Gullestad et al., 2015). The exclusion affects some fish-
eries that are highly specialized, such as the wrasse (Labridae)
or lumpsucker (Cyclopterus lumpus) fisheries. Our selection
criteria led to 19 FAO species that were caught in over 31800
fishing trips.

Description of data

The main source of data for our case study is the 2019 sales
slips compiled by the Norwegian Directorate of Fisheries. The
data contains detailed landing information, including vessel
characteristics, species-specific catches, revenues per landing,
statistical fishing areas, and gears. The data set does not pro-
vide information on the length of fishing trips; however, trips
can be identified using the reported last fishing day. The full
descriptive statistics of the data are available in Table 1.

Inferring latent targeting tactics with Gaussian
mixture models

We use GMM to identify latent targeting tactics because the
species being targeted are not directly observable. This is par-
ticularly the case when the catches are mixed and contain sev-
eral species. GMM is a model-based classification approach
and is defined by the equation:

log[P(X, Z|μ, σ 2, π )] = ∑n
i=1 log[

∑K
k=1 πkN(xi|μk, σ

2
k )], (1)

where P is the likelihood function of observed variables X
and unobservable latent variables Z. GMM assumes that
X = (x1,..., xn) comes from K finite Gaussian (normal)
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distributions and that each Gaussian in the mixture is deter-
mined by three parameters: the mean μk, variance σ 2

k , and the
weight πk. The weights account for the unequal number of
samples from each distribution and sum up to one.

We assume fishers to be profit maximizers (Clark, 1974),
and the revenue shares (xi) per vessel trip of the 19 selected
species (see Figure A1a) are used to infer Gaussian parameters
� = (μ, σ 2, π ). Because species revenue shares are bounded
between zero and one, we use the angular transformation x′

i =
2 arcsin(

√
xi); the effect of this transformation is to pull out

the ends of the distribution.
The goal of our GMM is to find a set of optimal parame-

ters � = (μ, σ 2, π ) for K Gaussians that maximize the log-
likelihood of the observations X. Latent targeting tactics (Z)
are not observable but can be identified by the expectation–
maximization (EM) algorithm (Redner and Walker, 1984).
EM is the simplest and also most common algorithm for
GMMs. Because EM is susceptible to local optima (Shireman
et al., 2017), multiple initial values are needed to get stable
results. The maximum likelihood estimation determines the
posterior probabilities of latent targeting tactics for each fish-
ing trip.

Assumptions about the variance and covariance structures
of the classes will affect class membership allocation. To
avoid the situation where class numbers are too small or too
large, we focus on configurations “ellipsoidal, equal volume,
shape, and orientation” (EEE) and “diagonal, equal volume,
shape and orientation” (EEI) as implemented in the R pack-
age mclust version 5.4.1 (Scrucca et al., 2016). EEE means that
variances and covariances are allowed to vary within classes
but are fixed between classes. EEI is stricter and does not al-
low co-variances to vary within classes or between classes.
These two configurations allow us to account for inter-species
interactions, i.e. species that are caught together tend to be
grouped in the same cluster. In the compositional data analy-
sis literature, EEE is more preferred and considered less prone
to local optima and non-convergence (Muthén, 2002; Ferrer-
Rosell et al., 2016). We apply the Bayesian Information Cri-
terion (BIC) for model selection (Banfield and Raftery, 1993;
Nylund et al., 2007).

Model validation plays an important role in classification.
In addition to BIC, we use multiple selection criterion for
the best-fit model, including entropy and the level of un-
certainty. However, since statistical criterion only provide a
guideline (Nylund et al., 2007), the interpretability and use-
fulness of the solutions are also important criteria to consider
(Muthén, 2002; Weller et al., 2020). We compared species
profiles obtained by angular-transformed revenue shares with
those based on posterior probabilities weighted by revenue
shares, catch shares, and log-transformed revenues. The pat-
terns of species compositions appear consistent across differ-
ent measures (Figure A2). When membership ambiguity arises
for clusters containing multiple species, we discuss reasonable
allocations with the fisheries experts at the Norwegian Insti-
tute of Marine Research. The procedure leads to a selection
of an eight-membership model, with the EEE configuration as
the best model.

Diversity of vessel-level targeting tactics

We apply HHI to describe fishers’ species diversification
strategies. HHI, also known as the Simpson diversity in-
dex (Simpson, 1949), is often used to measure fishers’ risk

profiles (e.g. Kasperski and Holland, 2013). Here, HHI is
vessel-specific and defined as follows:

HHI =
8∑

k=1

(PkNk

N0

)2
, (2)

where N0 is the total fishing trips by the ith vessel in the year
of 2019, and Nk is the fishing trips harvesting the kth species
group. Nk are weighted by Pk, the posterior probability of a
vessel trip belonging to the kth species class.

HHI takes a value between 0 and 1. Low values correspond
to using many targeting tactics in relatively even proportions,
whereas high values indicate domination of a few tactics. For
example, if a vessel solely focuses on a single species class, HHI
= 1; if trips are evenly distributed between two species classes,
HHI = 0.5. We thus view HHI as a fishing diversification in-
dex. A simple fractional logit model is specified to investigate
the variation of HHI with vessel characteristic variables. The
best-fit model in Equation (3) includes the deviation of ves-
sel length from group means (i.e. len.deviation = len − leni),
length group (lgroup) and registered county (county):

HHI = a + len.deviation + lgroup + county. (3)

The model is analysed as a GLM, assuming a binomial error
distribution. Robust standard errors are calculated using the
R package sandwich (v3.0-2) (Zeileis et al., 2020).

Correlates of targeting tactics

We construct a Poisson regression model to understand how
targeting tactics vary with external variables such as vessel
and fisher characteristics (e.g. risk perception). Specifically,

log(Yi,t,k|X1, X2, mon) = α + poweri,k + CVi + mont

×(lengthi,k + countyi,k). (4)

We denote Yi, t as the probability-weighted total number of
fishing trips in 2019 when vessel i caught species group k in

month t.Yi,t =
Nt∑

pi, where p stands for the posterior probabil-
ity of a vessel targeting species k and is assigned by the GMM;
Nt refers to the total number of trips targeting a species group
in month t. Because total trips Y is a non-integer expectation,
and it must be a count (an integer), Yi, t is rounded up to the
nearest integer. The model is run k times independently for
each species cluster, all coefficients thus are cluster specific.

In addition to dummy variables for month (mon), Equa-
tion (4) includes two main types of variables, X1 and X2. X1

captures vessel characteristics, including loge-transformed en-
gine power (power), the length group it belongs to (length),
and the county of registration (county). We allow month to
interact with length group and county because fishing oppor-
tunities may differ by length group and county of registration:
distance to a favourable fishing ground varies with vessels’
home ports, and different quota allocation rules may apply to
smaller and larger vessels (Standal and Hersoug, 2014). More-
over, the accessibility of fishing grounds depends on vessel size.
The second variable type X2 reflects fisher’s risk perception,
measured as the coefficient of variation (C.V.) in trip revenue
experienced by each vessel (Kasperski and Holland, 2013; An-
derson et al., 2017). Intercept α captures unobserved vari-
ables that are common to all vessels (e.g. weather). We mean-
centre two continuous variables, power and C.V., so that esti-
mates for intercepts can be directly interpreted as the expected
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Figure 2. Eight species clusters were identified by the GMM to describe the targeting tactics of the Norwegian coastal fishing fleet. (a) Heat map
indicating species compositions in probability (posterior) weighted revenue share for each class. (b) Barplot showing class distributions. Classes are
labelled according to the dominating species indicated in panel A. The total number of trips per class are indicated in parenthesis.

number of trips for the reference cases (see intercepts in Table
A3). The models are fitted as GLMs assuming Poisson distri-
bution.

Results

Fishing patterns revealed by latent class analysis

The GMM suggests that eight species clusters can adequately
summarize the fishing behaviour of the CaPoP fleet (Figure 2).
Four of these clusters represent single-species targeting tactics;
these are deep-water shrimp (class 1), Greenland halibut (class
2), Atlantic cod (class 6), and Norwegian spring-spawning
herring (class 8). In addition to its own cluster, cod also sig-
nificantly contributes to two mixed-species clusters, one dom-
inated by saithe (class 5) and another by haddock (class 7).
The two remaining mixed-species clusters are dominated by

ling (Molva molva), a range of other gadids (class 3), and by
anglerfish and Atlantic halibut (class 4).

Class proportions (Table in Figure 2) show that the single
most important targeting tactic in terms of numbers of trips
was pure cod fishing (class 6), accounting for over 40% of
the total trips in 2019. If we also consider the cod caught to-
gether with haddock and saithe, cod-related tactics account
for nearly three-quarters (72%) of all fishing trips in 2019.
Also, the anglerfish–halibut tactic accounted for a sizeable
fraction of trips (13%). The trips targeting ling, deepwater
shrimp, Greenland halibut, and herring were fewer, making
up 2–6% of each.

Harvest tactics by season, site, and gear

Figure 3 highlights variation in fishing behaviour by season,
statistical area, and gear. These tactics can be viewed from
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(a) (b) (c)

Figure 3. Probability (p) weighted trip frequency aggregated by season (a), site (b), and gear (c) for each species cluster (k). The summed trip probability
is scaled by column categories (i), i.e.

∑ipk, i = 1. Infrequent categories (total occurrence ≤ 15 trips) are excluded. Site IDs in parenthesis in (b)
correspond to the statistical areas in Figure 1 and run from northeast to southwest, with the exception of Vestfjorden (00), which is geographically
adjacent to the areas 05 and 06 in Figure 1.

the perspective of species clusters (normalizing column-wise:
Figure 3) or from the perspective of explanatory variables
(normalizing row-wise: Figure A3).

Some targeting tactics are used almost year around with lit-
tle seasonality, notably the haddock-cod tactic (class 7). Sev-
eral other tactics exhibit strong seasonality that is related to
both fishing opportunities (seasonal aggregation of fish) and
constraints (fishery regulations). The best known seasonal ag-
gregation is the spawning of the northeast Arctic stock of cod.
In winter, these fish migrate from the Barents Sea to the coast
of Norway for spawning in early spring (Hylen et al., 2008;
Olsen et al., 2010). Figure 3a shows that pure cod fishing
(class 6) takes place in January–April and peaks in March.
The season for herring (class 8) is also short and occurs in the

winter (November–January), coinciding with the overwinter-
ing aggregations in the innermost part of the fjords in north-
ern Norway (Dragesund et al., 2008). For deepwater shrimp,
aggregation happens during the period of abundant daylight
in late spring and summer (May–August), when the shrimp’s
light avoidance response (Ingólfsson et al., 2021) causes them
to aggregate close to the seafloor. These examples suggest that
seasonal fisheries can be driven by periods of high catcha-
bility when the target species are close to the shore, in tight
schools, and with low mobility, making them highly accessi-
ble for smaller vessels.

Regulations also play a role in shaping the seasonality
of fishing. The abrupt stop of herring fishing in December
(Figure 2a) may indicate that fishers have run out of annual
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Figure 4. Herfindahl–Hirschman Index (HHI) octiles for all 761 vessels. In total, 83 vessels (i.e. HHI = 1) solely harvested the pure cod class in 2019.

quotas or that they allocate their effort in such a way that fish-
ing close to the holiday period can be avoided. By contrast, the
seasonality of fishing for Greenland halibut (class 2) appears
to be driven by seasonal closures. The high season fell in May,
June, and August of 2019 when fishing restrictions were lifted
(see management overview in Table A1).

Most of the fishing activities take place off the coast of cen-
tral and northern Norway (areas 00–07 of Figure 3b; see map
in Figure 1); sites further south or away from the coast are
less visited. Fishing in more offshore areas was typically asso-
ciated with specific tactics (Figure A3b); for example, catch-
ing Greenland halibut in Nordkapp (area 12). Fishing grounds
for pure cod fishing (class 6) spread into several areas in the
north, from near Lofoten (areas 00 and 05) to Finnmark (areas
03 and 04), the northernmost county. In comparison, fishing
grounds for the haddock-cod tactic appear to be concentrated
in east Finnmark (area 03) and those for the herring cluster in
west Finnmark (area 04).

Most targeting tactics are dominated by a single gear. Deep-
water shrimp (class 1) and herring (class 8) are caught by
specialized gears, shrimp trawl and purse seine, respectively.
Other gears are less specialized, with set nets in particular be-
ing strongly associated with several tactics (Figure A3c).

Fishers’ species diversification strategy

We computed the HHI for each vessel to describe the degree
to which fishers changed their targeting tactics across fish-
ing trips. The HHI octiles in Figure 4 show that about one-
eighth (i.e. 83 vessels) of the CaPoP vessels were highly spe-
cialized and caught only one species cluster. This was always
the pure cod cluster (class 6), representing fishing cod spawn-
ing in Lofoten in winter–early spring. Highly aggregated cod
schools make fishing more cost-effective for smaller vessels,
compensating for the lower prices fishers may face due to high
landing volumes (Sogn-Grundvåg et al., 2022). These vessel
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owners only went to sea during this specific time of the year,
and their fishing quotas could be fulfilled just within a few
days of fishing. Furthermore, about a quarter of the vessels
had HHI indices over 0.75, which indicates a strong special-
ization in one to two species clusters (This is an approxima-
tion. HHI = 0.75 can be achieved by 85% of the trips tar-
get one species and 15% target the other, i.e. HHI = 0.852

+ 0.152 ≈ 0.75. A more skewed distribution of effort across
species groups would lead to HHI > 0.75). In practice, this
means the pure cod cluster plus one additional cluster. The re-
maining three-quarters of the vessels engaged in more mixed
harvest strategies by attending three or more species clusters.
The fractional logit model of HHI (Table A2) suggests that
bigger vessels within a length group and vessels from south-
ern counties (e.g. Sogn og Fjordane, Vest-Agder) adopt a more
diversified targeting strategy (i.e. a lower HHI).

Heterogeneous allocation of fishing effort

Poisson regression reveals that the fishing effort associated
with each species cluster, measured by the number of fish-
ing trips per vessel, depends on vessel characteristics and sea-
son (Table A3). Engine power is positively associated with
the number of fishing trips for herring (class 8), haddock-cod
(class 7), and saithe-cod clusters (class 5), but negatively with
the trip frequency of catching ling, angler fish-halibut, Green-
land halibut, and pure cod clusters. The sign of the regression
coefficient associated with the coefficient of variation (C.V.) of
trip revenue, which measures a fisher’s risk altitude, also varies
by species cluster. A more risk-seeking fisher (high C.V.) is ex-
pected to have more fishing trips for the anglerfish-halibut and
saithe-cod clusters but fewer for the haddock-cod, pure cod,
and ling clusters.

Seasonal effort allocation also appears to differ by vessels’
county of registration and by length group. Figure 5 illustrates
trip allocations of the three of the most prevalent species clus-
ters, namely the pure cod, saithe-cod, and haddock-cod clus-
ters. We can observe that (a) for vessels from Troms and Finn-
mark, the highest number of the pure cod fishing trips oc-
curred in January, whereas the peak was delayed to March for
the vessels from other counties (Figure 5a); (b) for vessels from
more southerly counties (Nordland, Trøndelag, and south of
Trøndelag), the peak saithe season was in February, in which
smaller vessels (<15 m) took more frequent trips than the big-
ger ones (Figure 5b); (c) large vessels (≥15 m) registered in
Troms–Finnmark and Nordland were more active in catching
the haddock-cod cluster in July. Vessels from southerly coun-
ties (Trøndelag and southward), which are further away from
the main haddock-cod fishing grounds in western Finnmark
(Figure 3b), have fewer haddock-cod fishing trips. This may
reflect the joint effects of economic, regulatory, and biological
factors: because of the time and monetary costs, smaller ves-
sels might avoid fishing grounds that are far away from home
ports (Haynie and Layton, 2010), unless high catch rates com-
pensate for the long travel (Sogn-Grundvåg et al., 2022).

Discussion

Understanding fishers’ dynamic responses to natural and mar-
ket variability and to management itself is essential for design-
ing effective management policies (Wijermans et al., 2020).
Here, we developed a technique based on GMM to study
within-year dynamics of the CaPoP fleet—Norwegian coastal

vessels catching cod as a part of their species portfolio. We
conclude that the targeting tactics of the fleet can be described
by eight latent species clusters. Although the fishery focuses on
a single species, the CaPoP fleet reveals high variability both
in terms of the number of species groups to target and the
allocation of fishing effort across targeting tactics.

Our results highlight key factors shaping the vessel’s target-
ing tactics. First, perhaps the most evident, biological drivers
in the form of seasonal aggregations can boost catch rates
of certain species. Second, management constraints can be
influential. For example, quota exhaustion can partially ex-
plain the low level of fishing activities towards the end of
the calendar year (e.g. herring) or beyond the biological fish-
ing season (e.g. Greenland halibut). Finally, travel costs and
expected prices, respectively, may explain that vessels from
more southerly counties participated to a lower degree in
fisheries associated with the northernmost part of Norway,
while vessels from the northernmost counties follow a differ-
ent timetable for catching spawning cod.

We note that biological, operational, and economic factors
can be confounded, such that disentangling their individual
effects can be difficult. For example, some TAC allocations
follow seasonal patterns of aggregation (Table A1). There is
a substantial price premium associated with coastal spawn-
ing stocks due to higher fat content and shorter transport dis-
tances (Zimmermann and Heino, 2013; Abe and Anderson,
2022). To improve the fish quality, fishers may adjust the har-
vest schedule according to intrinsic fish quality following bio-
logical aggregations (Larkin and Sylvia, 1999) or change gear
types, haul sizes, trip lengths, and soaking times (Savina et al.,
2016; Sogn-Grundvåg et al., 2020).

The findings from this study echo some earlier research
on fishing tactics. Fishermen follow two generic behavioural
patterns, specialist fishing and generalist fishing (McKelvey,
1983), as ways to cope with market and natural variability
(Lloret et al., 2000) and to improve their economic and fi-
nancial resilience (Finkbeiner, 2015). Fishers target different
species at different times of the year and at different locations
so that the returns from the resources vary asynchronously
(Kasperski and Holland, 2013; Birkenbach et al., 2020). In
mature fisheries, such as the cod fisheries being studied herein,
fishing tactics are typically subject to regulations that restrict
season length, vessel and gear types, fishing areas, and fleet
size (Branch et al., 2006). For cod-specialized fishers, Sogn-
Grundvåg et al. (2022) suggest that this specialization results
from a trade-off between quality and quantity: by engaging in
swift and intense fishing during the spawning season, fisher-
men maximized fisheries output, minimized fishing costs, but
had to endure lower quality of fish.

Targeting tactics identified by our method have some simi-
larity to the “métiers” as recognized by the European Union’s
Common Fishery Policy—both are cluster of species in fish-
eries catches. However, the métier framework describes a hier-
archical top–down structure of fishing activities, with métiers
being subordinate to fleets and defined based on fishing gear,
season, and area. The métier framework is sometimes chal-
lenged for being rigid, lacking clear quantitative guidance (Ul-
rich et al., 2012), and not being able to reflect the reality of
fishing (Jacobsen and Wilson, 2009). Our framework offers
a bottom–up approach where clustering is driven by actual
catches. The deployed methods are quantitative, combining
model-based clustering analysis with GLMs, and can be repli-
cated in other studies.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/79/10/2709/6839999 by H
avforskningsinstituttet user on 12 January 2023



2718 X. Liu et al.

0 2 4 6 8 10 12

Troms & Finnmark

Dec
Nov
Oct
Sep
Aug
Jul

Jun
May
Apr
Mar
Feb
Jan

Below 15m
Above 15m

A
. C

od

0 2 4 6 8 10 12

Nordland

0 2 4 6 8 10 12

Trøndelag + south

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

0 2 4 6 8 10 12

Troms & Finnmark

Dec
Nov
Oct
Sep
Aug
Jul

Jun
May
Apr
Mar
Feb
Jan

B
. S

ai
th

e−
co

d

0 2 4 6 8 10 12

Nordland

0 2 4 6 8 10 12

Trøndelag + south

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

0 2 4 6 8 10 12

Troms & Finnmark

Dec
Nov
Oct
Sep
Aug
Jul

Jun
May
Apr
Mar
Feb
Jan

C
. H

ad
do

ck
−

co
d

0 2 4 6 8 10 12

Nordland

0 2 4 6 8 10 12

Trøndelag + south

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

Below 15m
Above 15m

Expected number of trips per vessel

Figure 5. Predicted number of trips per vessel by main species clusters and county groups based on the model outputs in Table A3. Vessels are
aggregated into two length groups: <15 m (vermilion circles) and between 15 and 28 m (black solid circles). Engine power and C.V. for revenue are fixed
at the sample mean.

Métier studies typically rely on catch compositions. This
raises the question of whether catch data serves better to deter-
mine target species than revenue or profit data. Our material
suggests that the difference between catch- and revenue-based
compositions is small (Figure A2c–d). However, these results
might not hold for all fisheries. Two factors are critical: (i)
how much prices vary across species, and (ii) how responsive
are fishers to price changes? In our case, price variation across
species is moderate (Figure A1b–c). Existing evidence supports
the notion that short-run supply elasticity of fishers is small in
optimally managed fisheries (see a review by Jensen, 2002),
but greater in minimally controlled fisheries (Liu et al., 2021).
This provides some assurance for using trip-level catch com-
positions to describe targeting in managed fisheries. In lightly
managed fisheries (e.g. semi-open access), when price varia-
tions are higher and catch data are highly aggregated over

space and time, some caution in using catch compositions
would be needed.

Our analysis is not without its caveats. First, the sales slip
data includes the last fishing date but no information on
trip duration. Missing trip duration is not critical when deal-
ing with small vessels typically engaged in daily trips, but
could confound a study where trip length can vary widely
across vessels. Especially during longer trips, fishers could em-
ploy more than one tactic, but this would not be visible in
data like ours. Second, while using revenue shares to clas-
sify targeting patterns likely is an improvement over catch-
based approaches, using net revenue (i.e. profit) would ar-
guably be even better. However, information on fishing oper-
ation costs is not easily obtained. Having trip-level informa-
tion can partially mitigate this shortcoming because different
species caught during the same trip share similar costs. The
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importance of including costs increases if using more aggre-
gated data.

The study could be extended in several directions, such as
cluster-level analysis to understand the factors that drive each
fishing pattern, including environmental and biological fac-
tors. Cluster-specific factor analysis is particularly important
for management policy evaluations; for instance, the haddock-
cod cluster that emerged strongly from our analysis can be
triggered by technical interactions (e.g. by-catch) or by a sea-
sonal cod quota policy, a scheme that encourages catching
cod beyond its main fishing season. Moreover, cluster anal-
ysis could be extended to multiple years, for example, in the
framework of latent growth models. This would be particu-
larly relevant when evaluating fishers’ long-term responses to
climate change.

Conclusions

We have demonstrated a new tool that can help fisheries man-
agers and researchers gain a better overview of fleet dynamics.
To our knowledge, this is the first study to quantitatively de-
scribe the targeting tactics of the cod-catching vessels from a
multiple-species perspective. Cod is often studied as if it were a
single-species fishery, reflecting the relatively pure catches ob-
tained in the spawner fishery and its high economic yield. We
show that the activities of the cod-catching vessels are much
broader. Geographically, these vessels are active across mul-
tiple eco-regions; tactically, they target a number of species
groups.

The importance of studying fishing tactics has primarily
been emphasized for mixed fisheries (Tidd et al., 2012), where
many species are caught simultaneously. Our results show that
cod-catching vessels can be engaged in relatively pure fish-
eries during some fishing trips and switch to different, possi-
bly more mixed, targets during other trips—in other words,
they can be engaged in sequential mixed fisheries. This di-
versity of behaviours has several management implications.
First, knowledge of fishing tactics can allow developing more
cost-effective monitoring programmes. Second, the diversity
of fishing tactics makes it more difficult to predict the broader
consequences of species-specific management measures. As
the fishers have many tactics to choose from, such manage-
ment measures can have unexpected spill-over effects on other
species. On a positive note, this tactical flexibility gives re-
silience to the fishers themselves. Third, the managers can also
take advantage of the known fishing tactics when designing
new interventions. This would mean that the spill-over effects
do not come as a surprise and could even be part of the desired
outcome of the intervention.
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Figure A1. (a) Frequency (in logarithm scale) of occurrence of the main species in 2019 by the CaPoP fleet. We select 19 FAO species (in green) that
were caught in at least 50 trips (out of 31,800 trips) as the main species (where species revenue share per vessel trip was the highest or second
highest) for clustering analysis. (b) Price variability of all selected species; (c) Price variability of cod.
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Figure A2. Verification of clusters according to species revenue and catch profiles. The classification is based on angularly transformed revenue shares
(a). The posterior probabilities are then used to calculate probability-weighted species profiles measured in log-revenue (b), revenue share (c), and catch
share (d). The results are used to assist cluster interpretation.
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(a) (b) (c)

Figure A3. Probability (p) weighted trip frequency aggregated by season (a), site (b), and gear (c) for each species group (k). Infrequent categories (i) are
excluded if a total occurrence ≤15 trips. The aggregated trip frequencies are scaled by species cluster, i.e.

∑kpk, i = 1. Site IDs in parenthesis in (b)
correspond to the statistical area in Figure 1.
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Table A1. An overview of fisheries regulation applied to coastal fleets.

Species Regulation Notes

Atlantic cod TAC, area/gear/length restriction Quota proportional to max length and length
group

Haddock, saithe TAC, by-catch quota Quota proportional to max length and length
group

Deepwater shrimp Area closure, minimum mesh, period-specific
TAC (south 62◦N)

No TAC for stock north of 62◦N

NSS herring TAC Quota proportional to max length and length
group

Greenland halibut Period-specific TAC Periods (2019): 20 May–11 Jun, 5–17 Aug
Flounder species (Anglerfish, halibut) No TAC
Ling No TAC

Source: Norwegian Directorate of Fisheries.

Table A2. Fractional logit model of diversification index (HHI).

N=761a Estimate Std. Error z value Pr(>|z|)b

(Intercept) 0.346 0.076 4.540 0.000∗∗∗

log(len.deviation)c − 1.316 0.380 -3.466 0.000∗∗∗

lgroup: under 11 md − 0.622 0.621 -1.000 0.317
lgroup: 15–20.99 m 0.158 0.105 1.506 0.132
lgroup: 21–27.99 m − 0.131 0.113 − 1.163 0.245
county: Hordalandd − 0.232 0.202 − 1.150 0.250
county: Møre og Romsdal − 0.204 0.133 − 1.527 0.127
county: Nordland − 0.017 0.093 − 0.182 0.855
county: Østfold − 0.361 0.077 − 4.708 0.000∗∗∗

county: Rogaland − 0.375 0.168 − 2.225 0.026∗

county: Sogn og Fjordane − 0.502 0.182 − 2.754 0.006∗∗

county: Troms 0.111 0.115 0.962 0.336
county: Trøndelag − 0.066 0.178 − 0.373 0.709
county: Vest-Agder − 0.784 0.213 − 3.677 0.000∗∗∗

a Number of observations.
b ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
c len.deviation measures the deviation of vessel length from the group (i) mean, i.e. len.deviation = length—lengthi.
d Reference groups are 11–14.99 m and Finnmark for length group (lgroup) and county respectively.
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Table A3. Statistical models.

Class 1 2 3 4 5 6 7 8
Ind. var. D. shrimp G. halibut Ling Ang-halibut Sai-cod Cod Had-cod Herring

(Intercept) 1.91∗∗∗ 0.63∗∗∗ 0.48 0.90∗∗∗ 1.44∗∗∗ 2.24∗∗∗ 1.18∗∗∗ 1.17∗∗∗

(0.38) (0.10) (1.05) (0.17) (0.09) (0.04) (0.09) (0.23)
15m+ 0.07 − 0.13 − 0.05 − 0.66 − 0.42∗∗∗ − 0.14∗ − 0.27∗ − 0.02

(0.53) (0.14) (0.61) (0.45) (0.09) (0.06) (0.12) (0.18)
logPower. − 0.06 − 0.16∗ − 0.21∗∗∗ − 0.17∗∗∗ 0.06∗ − 0.04∗ 0.12∗∗ 0.40∗∗

(0.07) (0.08) (0.06) (0.04) (0.03) (0.02) (0.04) (0.14)
C.V. 0.15 − 0.07 − 0.39∗∗∗ 0.17∗∗∗ 0.14∗∗ − 0.11∗∗∗ − 0.67∗∗∗ − 0.22

(0.09) (0.11) (0.08) (0.05) (0.04) (0.03) (0.08) (0.18)
Feb 0.00 − 0.52 0.04 − 0.02 − 0.30∗∗∗ 0.17 − 0.60

(0.53) (1.45) (0.26) (0.19) (0.05) (0.12) (0.47)
Mar − 0.73 − 0.03 0.11 0.12 − 0.38∗∗∗ 0.13 − 1.29

(0.47) (0.23) (0.27) (0.21) (0.05) (0.13) (1.01)
Apr 0.05 0.16 0.57∗∗ − 0.12 − 0.53∗∗∗ 0.04

(0.41) (1.16) (0.19) (0.21) (0.05) (0.16)
May 0.28 0.69 0.25 − 0.35∗ − 0.90∗∗∗ 0.02

(0.40) (1.06) (0.21) (0.18) (0.08) (0.13)
Jun 0.32 − 0.01 0.90 0.14 − 0.36 − 1.03∗∗∗ 0.26∗ 0.87∗∗

(0.40) (0.15) (1.08) (0.21) (0.19) (0.11) (0.12) (0.29)
Jul 0.18 − 0.56 0.21 − 0.07 − 0.67∗∗ − 1.07∗∗∗ 0.47∗∗∗ 0.22

(0.41) (1.01) (1.16) (0.23) (0.24) (0.14) (0.13) (0.40)
Aug 0.48 − 0.10 0.08 0.24 0.31∗ − 0.97∗∗∗ − 0.20 − 1.05

(0.40) (0.15) (1.10) (0.19) (0.12) (0.14) (0.14) (0.59)
Sep − 0.04 − 0.42 0.64 0.32 − 0.02 − 1.17∗∗∗ 0.05 − 0.62

(0.42) (1.02) (1.07) (0.20) (0.12) (0.14) (0.14) (0.40)
Oct − 0.67 − 0.68 0.82 0.34 0.38∗∗∗ − 1.15∗∗∗ 0.17 − 1.04

(0.47) (1.01) (1.10) (0.19) (0.11) (0.11) (0.13) (0.85)
Nov − 0.38 − 0.68 − 0.18 0.40∗ 0.46∗∗∗ − 1.16∗∗∗ 0.54∗∗∗ − 0.03

(0.47) (1.01) (1.10) (0.19) (0.10) (0.09) (0.11) (0.31)
Dec − 0.41 0.27 − 0.65∗ 0.09 − 0.49∗∗ − 1.40∗∗∗ − 0.51∗∗ − 0.07

(0.40) (0.73) (0.30) (0.20) (0.17) (0.12) (0.17) (0.44)
Nordland − 0.60 0.07 0.45 − 0.15 0.58∗∗∗ − 0.39∗∗∗ 0.32∗∗ 0.13

(0.46) (0.12) (1.05) (0.34) (0.10) (0.06) (0.11) (0.23)
Trøndelag s. − 0.02 0.09 0.72 0.42 0.22 − 0.26∗∗∗ − 0.03 − 0.18

(0.44) (0.18) (1.03) (0.22) (0.11) (0.07) (0.17) (0.24)
15m+: Feb 0.25 − 0.08 0.24∗∗∗ 0.21 0.14

(0.85) (0.12) (0.07) (0.18) (0.51)
15m+: Mar 0.22 1.34 0.05 0.09 0.59∗∗∗

(0.68) (0.74) (0.15) (0.07) (0.17)
15m+: Apr 0.12 − 0.22 − 0.62 0.21 0.28∗∗∗ − 0.12

(0.65) (0.63) (1.10) (0.23) (0.08) (0.20)
15m+: May 0.45 0.01 0.43 0.83∗∗∗ 0.30∗∗ 0.60∗∗∗

(0.60) (0.62) (0.65) (0.16) (0.11) (0.17)
15m+: Jun − 0.17 0.11 − 0.07 − 0.69 0.68∗∗∗ 0.22 0.01 − 1.40∗∗

(0.57) (0.18) (0.63) (0.84) (0.18) (0.17) (0.18) (0.45)
15m+: Jul − 0.12 0.80 0.51 0.19 0.30 − 0.30 0.43∗∗ − 0.45

(0.56) (1.14) (0.66) (0.55) (0.26) (0.27) (0.16) (0.58)
15m+: Aug − 0.89 0.17 0.19 0.32 − 0.04 − 0.13 0.39∗ − 0.25

(0.57) (0.18) (0.67) (0.53) (0.13) (0.18) (0.18) (1.16)
15m+: Sep − 0.04 0.00 0.12 0.35∗∗ 0.17 − 0.08

(0.58) (0.75) (0.49) (0.12) (0.17) (0.21)
15m+: Oct 0.65 1.36 − 0.46 0.10 0.13 0.42∗ − 0.24 0.12

(0.63) (1.16) (0.73) (0.47) (0.12) (0.16) (0.19) (0.67)
15m+: Nov 1.36 0.34 0.40 0.24∗ − 0.22 0.06 − 0.17

(1.16) (0.67) (0.50) (0.11) (0.14) (0.16) (0.20)
15m+: Dec 0.71 0.32 − 0.17 − 0.38 − 0.13

(0.75) (0.20) (0.21) (0.27) (0.38)
...
Feb: Nordland 0.10 0.22 0.43 0.41∗ 0.44∗∗∗ − 0.37∗ − 1.30

(0.64) (1.48) (0.53) (0.19) (0.07) (0.17) (1.03)
Mar: Nordland 1.17∗ − 0.29 − 0.82 − 0.77∗∗∗ 0.90∗∗∗ − 0.82∗∗∗

(0.59) (0.32) (0.82) (0.23) (0.07) (0.17)
Apr: Nordland − 0.46 0.46 0.01 − 0.75∗∗ 0.22∗∗ − 0.11

(0.58) (1.17) (0.38) (0.23) (0.08) (0.19)
May: Nordland 0.34 0.14 0.20 − 0.49∗ 0.26∗ − 0.01

(0.49) (1.08) (0.39) (0.20) (0.12) (0.16)
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Table A3. Continued

Class 1 2 3 4 5 6 7 8
Ind. var. D. shrimp G. halibut Ling Ang-halibut Sai-cod Cod Had-cod Herring

Jun: Nordland − 0.15 0.05 − 0.12 0.40 − 0.08 − 0.13 − 0.46∗

(0.50) (0.17) (1.09) (0.39) (0.21) (0.22) (0.18)
Jul: Nordland 0.10 − 0.19 0.71 − 0.27 − 0.43 0.12

(0.50) (1.19) (0.39) (0.28) (0.33) (0.16)
Aug: Nordland − 0.10 0.27 − 0.17 0.60 − 0.54∗∗∗ 0.40∗ 0.19

(0.49) (0.18) (1.12) (0.37) (0.14) (0.19) (0.17)
Sep: Nordland 0.56 − 0.10 − 0.79 0.70 − 0.19 0.54∗∗ − 0.06

(0.52) (1.43) (1.10) (0.36) (0.13) (0.20) (0.19)
Oct: Nordland 1.06 − 1.09 0.64 − 0.43∗∗∗ 0.02 0.08 0.24

(0.56) (1.13) (0.36) (0.12) (0.17) (0.17) (0.63)
Nov: Nordland 0.45 − 0.01 0.62 − 0.58∗∗∗ 0.78∗∗∗ − 0.27 − 0.39

(0.56) (1.12) (0.36) (0.12) (0.12) (0.14) (0.33)
Dec: Nordland − 0.35 − 0.72 0.55 − 0.18 0.33 0.04 − 0.34

(0.56) (0.69) (0.37) (0.20) (0.21) (0.25) (0.52)
Feb: Trøndelag s. − 0.38 0.38 − 0.04 0.52∗ 0.40∗∗∗ − 0.26

(0.62) (1.44) (0.34) (0.21) (0.09) (0.26)
Mar: Trøndelag s. 0.29 − 0.73 − 0.05 0.63∗∗∗ − 0.69∗

(0.62) (0.44) (0.23) (0.08) (0.31)
Apr: Trøndelag s. − 0.46 0.52 − 1.10∗∗ − 0.67∗∗ 0.08 − 0.29

(0.52) (1.15) (0.35) (0.26) (0.10) (0.29)
May: Trøndelag s. − 0.51 − 0.09 − 0.49 − 0.19 − 0.26 − 0.65

(0.52) (1.05) (0.28) (0.22) (0.23) (0.42)
Jun:Trøndelag s. − 0.65 0.03 − 0.40 − 0.02 − 0.34 0.14 − 1.19∗

(0.51) (0.25) (1.07) (0.26) (0.25) (0.25) (0.61)
Jul: Trøndelag s. − 1.00 − 0.22 0.27 0.11 0.06 − 0.63

(0.53) (1.16) (0.28) (0.30) (0.29) (0.34)
Aug: Trøndelag s. − 0.78 0.13 0.03 0.24 − 0.48∗∗ 0.19 0.10

(0.51) (0.25) (1.10) (0.25) (0.18) (0.24) (0.27)
Sep: Trøndelag s. − 0.49 − 1.34 − 0.06 − 0.15 0.13 − 0.16

(0.56) (1.10) (0.25) (0.17) (0.23) (0.31)
Oct: Trøndelag s. − 0.87 − 1.12 − 0.03 − 0.27 0.14 − 0.09 0.41

(0.78) (1.10) (0.24) (0.15) (0.21) (0.27) (0.63)
Nov: Trøndelag s. 0.29 0.08 − 0.21 − 0.18 0.97∗∗∗ − 0.49∗ 0.45

(0.57) (1.09) (0.25) (0.15) (0.14) (0.23) (0.31)
Dec: Trøndelag s. − 0.52 − 0.23 1.31∗∗∗ 0.29 − 0.46

(0.29) (0.24) (0.18) (0.31) (0.47)

AIC 1 109 1 662 2 429 4 866 7 741 12 692 4 358 716
BIC 1 257 1 761 2 629 5 100 7 995 12 974 4 594 810
Log likelihood −510 −808 −1166 −2385 −3820 −6296 −2129 −329
Deviance 346.00 270.32 938.53 1 823.40 3 848 5 695 1 714 115
Num. obs. 198 536 478 963 1 191 2 048 839 187
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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