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The strength of species interactions may have profound effects on population
dynamics. Empirical estimates of interaction strength are often based on the
assumption that the interaction strengths are constant. Barents Sea (BS) cod
and capelin are two fish populations for which such an interaction has been
acknowledged and used, under the assumption of constant interaction
strength, when studying their population dynamics. However, species inter-
actions can often be nonlinear in marine ecosystems and might profoundly
change our understanding of food chains. Analysing long-term time
series data comprising a survey over 37 years in the Arcto-boreal BS,
using a state-space modelling framework, we demonstrate that the effect
of capelin on cod is not linear but shifts depending on capelin abundance:
while capelin is beneficial for cod populations at high abundance; below
the threshold, it becomes less important for cod. Our analysis therefore
shows the importance of investigating nonlinearity in species interactions
and may contribute to an improved understanding on species assemblages.
1. Introduction
Climate change is profoundly affecting and altering marine systems [1]. Indirect
effects of climate change, such as alteration of species interactions, might have a
stronger impact on population dynamics than the direct warming effects [2,3].
The environment can also have a non-additive effect (e.g. threshold) on popu-
lation dynamics in terrestrial [4,5] and marine [6–10] systems alike resulting in
different population equilibrium and dynamics [4]. Marine systems are prone to
nonlinear transitions under climate warming [1] and overfishing [11] that may
also lead to altered population dynamics [12,13]. A prime example of such non-
linear transition is the Atlantic cod [10,11,14]. However, such nonlinear
transitions have seldom been studied in relation to species interactions (but
see [12]). To study such interactions, Wootton & Emmerson [15] suggest
the use of long-term time series to take into account nonlinearity and process
errors. This can be achieved using state-space modelling approaches [12,16]
in data rich systems such as the Barents Sea (BS) [17].

Here, we explore the population dynamics of two interacting species: BS
capelin Mallotus villosus and Northeast Arctic (NEA) cod Gadus morhua. Both
species are known to interact in the BS and affect each other’s population
[18]. Indeed, predation by NEA cod on BS capelin is thought to have delayed
the capelin stock’s recovery after its collapses [13]. In addition, BS capelin is
considered to be the main food for NEA cod [19,20] and low capelin stock
was blamed for the very low cod catches at the end of 1980s [21]. Both species
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Figure 1. Approximate feeding distributions in the Barents Sea of the Northeast Arctic cod (blue) and the capelin (red). The map is redrawn from Bakketeig et al. [25].
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population dynamics are well documented to be affected by
environmental variables (e.g. [22,23]).

Here, we applied a Gompertz state-space model [12,16]
on long-term time series data comprising a survey over
37 years of BS capelin and NEA cod [24] aiming to (i) assess
whether there is a linear or nonlinear interaction between cod
and capelin, and (ii) understand what a nonlinear dynamics
means for the population and the trophic interactions in
the system.
2. Methods
We analysed jointly the change in population abundance for the
BS capelin and NEA cod from the BS (figure 1). Population data
(1981–2019) were published fish stock assessments data (table 9.4
for the capelin, table A3 for the cod) [24]. Capelin stock size in
numbers are estimates from the August–September acoustic
survey, and cod abundance are indices in numbers from the
January–March bottom trawl surveys in the BS (figure 2).

In addition, we used two climatic variables (the Kola transect
sea temperature, ST, and the winter North Atlantic Oscillation,
wNAO) as potential environmental drivers of capelin and cod
population dynamics (e.g. [22,23]). The sea temperature (1921–
2019) is an aggregated average over the upper 200 m at five
stations (3 to 7) on the Kola meridian transect (33°30’ E,
70°30’–72°30’ N) in the BS (http://www.pinro.ru/; [26]). The
December to March North Atlantic Oscillation index [27] rep-
resents North Atlantic-scale climate effects (1964–2019). Both
ST and NAO were standardized to z-scores.

(a) Model description
The analyses were based on a Gompertz state-space model [12]
reparameterized as in Stenseth et al. [4] incorporating compe-
tition (intra- and interspecific, respectively ai,i (with the intra-
specific interaction set to 1 [4,28]) and ai,j) and environmental
variables (ai,st and ai,nao) effects. The model (table 1: equation
(1)) incorporated also a Gaussian distributed stochastic term (ε)
to acknowledge our inadequate understanding of the
complexity of the dynamics of population i (i.e. the process
error: equation (2)).

Since the sampling of capelin population is in August–Sep-
tember while in January–March for the cod, the cod survey at
yearyr was conducted between the capelin surveys at yearyr−1
and yearyr. We took this into account when modelling the capelin
by using the cod abundance estimate at yearyr (Nj,yr) instead of
yearyr−1 (Nj,yr−1) as described in equation (3).

We assumed that the observed abundances (Obs; from trawl
survey for cod and acoustic survey for capelin) were normally
distributed (in log scale) with variance term σ2i,obs around the
true log population values for the species i (equation (4)). Prior
specifications are found in the accompanying codes in the
electronic supplementary material.

To detect possible nonlinear dynamics, we tested for poten-
tial pairwise interactions between all explanatory variables
(table 1) using Bürmann’s expansion [29]. In short, Bürmann’s
expansion test checks interaction between pairs of variables by
analysing the residuals between additive models with or without
interaction thus finding the best fit and reports significance. Only
when nonlinearity was detected did we include a threshold non-
additive effect in the Gompertz state-space model [12]. In our
case (see results), the threshold non-additive effect let the
growth potential of species i and the effect of species j on species
i (ai,0/bj0 and ai,j /bij, respectively) change according to whether
the threshold variable (X ) was below or above some threshold
level θ (equation (5)).

To detect if and at what value the covariate X has a meaning-
ful threshold effect, the model calculates the log-likelihood of the
process equation (i.e. the underlying population dynamics) for
each value of X in the data (i.e. capelin abundance ln(Ncap), see
codes in electronic supplementary material). A threshold is
identified when a single value θ of X produces a large spike in

http://www.pinro.ru/
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Figure 2. Posterior predictive check on abundances indices. The dots show the acoustic ( for capelin in a) and trawl (for cod in b) survey log-transformed abundance
estimates (i.e. data) and the blue bands are the 95% predictive intervals. For both plots, filled data points are for the years with capelin stock size over the estimated
threshold between > 5.30 (blue dotted line in figure a) and ≤ 5.34 billions (red dotted line in figure a).

Table 1. Summary of the equations. With Ni,yr the abundance for the species i at year yr. Process error εi,yr of the population i with variance s2
i,proc.

Observation error ln(Obsi,yr) of the population i with variance s2
i,obs. ST, sea temperature; wNAO, winter North Atlantic Oscillation; a or b, parameters with the

first subscript the modelled species and the second subscript the variable—environment or other species—affecting this species.

formulation equation

lnðNi,yrÞ ¼ ai,0 þ ai,i�lnðNi,yr�1Þ þ ai,j�lnðN j,yr�1Þ þ ai,st�STyr�1 þ ai,nao�wNAOyr�1 þ 1i,yr 1

1i,yr � normal(0,s2
i,proc) 2

lnðNi,yrÞ ¼ ai,0 þ ai,i�lnðNi,yr�1Þ þ ai,j�lnðN j,yrÞ þ ai,st�STyr�1 þ ai,nao�wNAOyr�1 þ 1i,yr 3

lnðObsi,yrÞ � normalðlnðNi,yrÞ,s2
i,obsÞ 4

lnðNi,yrÞ ¼ ai,0 þ ai,i�lnðNi,yr�1Þ þ ai,j�lnðN j,yr�1Þ þ ai,st�STyr�1 þ ai,nao�wNAOyr�1 þ 1i,yr,if lnðN j,yr�1Þ , u
bi,0 þ ai,i�lnðNi,yr�1Þ þ bi,j�lnðN j,yr�1Þ þ ai,st�STyr�1 þ ai,nao�wNAOyr�1 þ 1i,yr, otherwise
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log-likelihood (electronic supplementary material, figure S3).
In which case, the threshold value is located somewhere between
≥θb and <θ with θb being the first value lower than the selected θ.
Moreover, to remove any ‘border’ effects i.e. spurious detection
of a threshold value due to very unequal partitioning of the
data (e.g. 95% below threshold versus 5% above), our model
searched for a potential threshold value only within the 20–80
percentiles of the available values of X (21 values used out of 37).

We used a Bayesian Markov chain Monte Carlo approach to
jointly estimate all parameters (for both capelin and cod) in a
single model for the period 1981–2019. We used the Stan software
via the R packages rstan (v. 2.21.3) and shinystan [30]. A likelihood
function was created based on the model and data, and in combi-
nation with the prior distributions of the parameters, the posterior
distributionswere estimated.Weakly informative priorswere used
in order to let the data drive the inferences except for the process
and observation error variances. The latter were not identifiable
alone thuswe included an informative prior on the ratio of the pro-
cess to observation error variance centred around 1 (Normal(1, 0.5))
[31]. A sensitivity test with a ratio centred around 0.5 and 2
(respectively, Normal(0.5, 0.5) and Normal(2, 0.5)) showed that
the choice of the exact value did not affect our results (electronic
supplementary material, figure S1). Note that there were no
indication of correlation between the estimated process errors of
the two species and hence they were modelled as such (electronic
supplementary material, figure S2).

We used four independent chains with 50 000 iterations each,
where the first 30 000 iterations were discarded as ‘burn-in’
iterations to ensure that the chains had converged. In addition,
we thinned the chains with a factor 10 to reduce autocorrelation
in the posterior samples and to produce a reasonable amount of
output. We used the Gelman & Rubin R̂ convergence diagnostics
[32] and visual inspection of the chains to ensure convergence,
and posterior predictive checks to evaluate the model fit. All
analyses were conducted using the software R v. 4.1.3 [33].
3. Results
The Bürmann test indicated an interaction between capelin and
cod abundance for both capelin and cod models (p < 0.05). We
first used non-additive models to describe the dynamics of
both species (equation (5)) but only the model for cod
showed a relevant threshold (electronic supplementary
material, figure S3). We then modelled capelin following
equation (3) and cod following equation (5) (table 1). The
cod model estimated a threshold θ between greater than
201 × 109 and less than or equal to 209 × 109 capelins (electronic
supplementary material, figure S3).

Model convergence was evaluated by visual inspection of
the four parallel Hamiltonian Monte Carlo chains. The chains
were well mixed, had low autocorrelation after thinning and
displayed no trends after the burn-in iterations. There were
no divergent transitions in the chains. The Gelman &



Table 2. Estimated parameters for the two models. Subscripts ‘cap’ stands
for Barents Sea (BS) capelin and ‘cod’ for Northeast Arctic (NEA) cod. θ is
the threshold value (log-transformed BS capelin abundance of 5.34 billions
individuals). Note that ca 50% indicates that the posterior values are
centred around 0. See electronic supplementary material, figure S4.

stock parameter median estimate

%

>0

NEA cod acod,0 (cap < θ) 0.94 71

bcod,0 (cap≥ θ) −1.85 28

acod,cod 0.84 100

acod,cap (cap < θ) 0.03 55

bcod,cap (cap≥ θ) 0.52 88

acod,st 0.06 71

acod,nao 0.05 81

BS capelin acap,0 5.74 100

acap,cap 0.56 100

acap,cod −0.49 2

acap,st 0.17 86

acap,nao −0.01 45
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Rubin R̂ convergence diagnostics were less than 1.002 for all
model parameters thus supporting convergence. In addition,
there was no systematic deviation between the fitted values
and the observed time series (figure 2).

Median parameter estimates from these models are pre-
sented in table 2 (see electronic supplementary material,
figure S4 for the full marginal posterior distributions). As
expected, the model indicated a positive effect of the previous
year abundance for both species. The environmental vari-
ables (ST and wNAO) did not show an effect for cod but
ST showed an effect (positive) for capelin. For capelin, the
cod showed a negative effect indicating a predation effect.

For cod, the capelin abundance, as expressed in number
of capelin, has a biologically important effect. The inter-
specific competition term—the effect of capelin numbers on
cod—was negligible (acod,cap) when capelin was under the
capelin stock size threshold and was positive (bcod,cap) over
the threshold changing from 0.03 to 0.52 in a log scale
(table 2; electronic supplementary material, figure S4).

This indicated that the capelin abundance had an effect
on cod population only when the capelin stock was big
enough (over 209 billion individuals).
4. Discussion
Through the use of a state-space model that combined long-
term population time series with environmental variables,
we illustrated how historically established species inter-
actions may be drastically modified if explored for
nonlinearity. In particular, we find empirical evidence for
nonlinear change in species interaction (table 2) directly
linked to prey abundance change. Non-additive population
dynamics has been previously described for many species,
notably for cod due to this species data availability [11,34]
but seldom addressing interaction with another species
[12,13].

The NEA cod is a predator of the BS capelin as shown
by diet studies [19,20] and we indeed found a negative
effect of cod on capelin stock, similar to previous findings
[35]. Conversely, capelin abundance is expected to have a
positive effect on cod stock [36,37] and our results also sup-
port the claim. However, they also indicate that the effect
of capelin on cod is nonlinear and it becomes negligible for
low capelin abundance.

Capelin is highly represented in the cod diet during
warm years, with temperature affecting both BS capelin’s
distribution [38] and recruitment [35]. However, cod is a gen-
eralist predator with a diet following the community
composition change [39]. Indeed, the composition of the
cod diet changes over time in response to environmental con-
ditions and the dynamics of prey populations [20,40]. This is
particularly visible for the capelin proportion in the cod diet
that follows the capelin population change, hence its avail-
ability as prey for the cod. This high plasticity in its diet
may explain our result that cod populations are not affected
by capelin abundance when the latter is under a relatively
high threshold of 209 billion individuals (note that the
median capelin abundance during the studied period is 227
billion individuals, data ranging from 14 billion to 1016 bil-
lion individuals). In addition, a low capelin abundance has
been associated with high herring Clupea harengus abun-
dance, another major predator of capelin larvae in the BS
[35,41] that is also part of the cod diet [19,20].

Our model takes into account the main processes affecting
the dynamics of a population i.e. interspecific competition,
intra-specific competition (i.e. density dependence), and
environmental conditions. However, our model does not
take into account the spatial overlap of the two species that
affects their interaction [42] neither the effect of the potential
interaction with other species of the system (e.g. haddock
Melanogrammus aeglefinus [12], herring [13], Polar cod Boreoga-
dus saida [43]). These lacking processes are however partially
taken into account by the process error in the model formu-
lation [15] (see electronic supplementary material, figure S5).

In this study, we show that a nonlinearity in the species
interactions has an impact on population dynamics and
affects our understanding of the functioning of the food
chain similar to what was observed for the effect of climate
warming [6,12]. Stock assessment is conducted on a single
species basis but increasingly incorporates some known inter-
action between the species of interest and climate or other
species [44]. For instance, BS capelin is managed by taking
into account the NEA cod predation [24]. Given the impli-
cation our results can have on the understanding of NEA
cod population dynamics, our approach could be timely
and necessary.
Data accessibility. Data are freely available in the report of the Arctic
Fisheries Working Group (AFWG) 2019 of the International Council
for the Exploration of the Sea [24] at https://ices-library.figshare.
com/articles/report/Arctic_Fisheries_Working_Group_AFWG_/
18618752?file=33397001; wNAO at https://climatedataguide.ucar.
edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-
station-based. Kola sea temperature from Polar branch of the Russian
Federal Institute of Fisheries and Oceanography at http://www.
pinro.ru/ [45].

The data are provided in the electronic supplementary material
[46].
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