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A B S T R A C T   

Numerical models of ecological systems are increasingly used to address complex environmental and resource 
management questions. One challenge for scientists, managers, and stakeholders is to appraise how well suited 
these models are to answer questions of scientific or societal relevance, that is, to perform, communicate, or 
access transparent evaluations of ecological models. While there have been substantial developments to support 
standardised descriptions of ecological models, less has been done to standardise and to report model evaluation 
practices. We present here a general protocol designed to guide the reporting of model evaluation. The protocol 
is organised in three major parts: the objective(s) of the modelling application, the ecological patterns of relevance 
and the evaluation methodology proper, and is termed the OPE (objectives, patterns, evaluation) protocol. We 
present the 25 questions of the OPE protocol which address the many aspects of the evaluation process and then 
apply them to six case studies based on a diversity of ecological models. In addition to standardising and 
increasing the transparency of the model evaluation process, we find that going through the OPE protocol helps 
modellers to think more deeply about the evaluation of their models. From this last point, we suggest that it 
would be highly beneficial for modellers to consider the OPE early in the modelling process, in addition to using 
it as a reporting tool and as a reviewing tool.   

1. Introduction 

Scientists, managers, and stakeholders increasingly rely on numeri
cal models of ecological systems. One challenge is to appraise the effi
ciency of these models to tackle complex environmental questions. 
Providing clear evaluations of model performance is one way to address 
this challenge. Models can be constructed, analysed, and used by 
different actors, from scientists to policymakers, and these actors have 
different understandings and expectations from models. Assessing how 
good a model is at addressing specific problems is difficult when 
ecological modellers use a variety of model types, have different 

modelling cultures and practices, and use different vocabularies. This 
can hinder communication, transparency, reproducibility, and the 
general development of good practices within the modelling commu
nity. It is therefore essential to provide tools to support a collective 
understanding of what can be expected from a model and how a model is 
to be evaluated (Cartwright et al., 2016; Eker et al., 2018; Heymans 
et al., 2020). 

Transparency and reproducibility are at the core of the scientific 
method. However, the complexity of the tools used to observe and model 
ecological systems challenges reproducibility and transparency (Powers 
and Hampton 2019). The ongoing so-called reproducibility or 
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replicability crisis reflects this difficulty. The crisis has primarily been 
identified in the fields of psychology (Pashler and Wagenmakers 2012), 
clinical studies (Begley and Ioannidis John 2015) and economics 
(Camerer et al., 2016) and is much less discussed in ecological research 
(but see Ives 2018; Nichols et al., 2019, 2021). It may not be possible to 
strictly replicate ecological observations, but transparency in workflow 
and data analyses can facilitate reproducibility. It should be possible to 
reproduce ecological model simulations, given that the relevant infor
mation is provided for that purpose. In addition to replicating a model 
and the associated simulations, it is equally important to be able to 
understand, assess and replicate how model performance was evaluated. 
This step is critical, given that almost every new method published 
claims to outperform existing ones, but are seldom re-evaluated (Bou
lesteix et al., 2020). Providing relevant and comprehensive information 
is a first step towards replicability, which needs to be complemented by 
appropriate communication and quality standards. How is the infor
mation communicated? Is it accessible? Is it unambiguous? Is it suffi
cient? A standardised protocol for reporting model evaluation 
procedures would address these questions and contribute to increased 
transparency and reproducibility of ecological models. 

There have been considerable collective efforts in recent decades to 
develop standardized modelling practices, from model building to 
evaluation of model performances. A major advancement has been the 
development of standardised protocols such as the ODD (Overview, 
Design concepts, and Details, Grimm et al., 2006). The ODD protocol 
was originally developed to respond to the lack of a standard protocol 
for describing individual based models (IBMs). The protocol was 
reviewed and updated twice since its original publication (Grimm et al., 
2010, 2020b) and it is now commonly used by ecological modellers, 
beyond the original IBM community, to describe their models in reports 
and publications. The ODD protocol has been inspirational to groups of 
modellers with diverse focus, such as on model optimisation (ODDO, 
Mahévas 2019), data-mapping (ODD+2D, Laatabi et al., 2018), and 
inclusion of human decisions (ODD+D, Müller et al., 2013). In each case 
these groups have borrowed from the original ODD protocol idea and 
extended it for their specific purpose, thereby contributing to the har
monisation and communication of modelling practices. 

A major step in the development and application of ecological 
models is the evaluation phase. There exists a large body of literature on 
how to perform model evaluation for various classes of models (e.g. 
Stow et al., 2009; Allen and Somerfield 2009; Bennett et al., 2013; Conn 
et al., 2018; Hipsey et al., 2020), but much less work has been done to 
standardise the reporting of model evaluations. The TRACE (TRAns
parent and Comprehensive Ecological modelling) documentation 
(Grimm et al., 2014) is a notable exception which provides a framework 
for documenting the modelling process, including several aspects of 
model evaluation. Standardised protocols for reporting model evalua
tion can constitute useful tools for modellers and end-users to easily 
understand and compare evaluation procedures and appreciate the 
performance of models in relation to specific objectives. Making such 
tools available is therefore anticipated to benefit the scientific commu
nity and model end-users. 

The issue of model validation and evaluation in environmental sci
ence has been the subject of extensive research and debate. Oreskes 
(1998) argued that quantitative models cannot be validated but only 
evaluated. In Oreskes’ view, evaluation is described as “an assessment in 
which both positive and negative results are possible, and where the 
grounds on which a model is declared good enough are clearly articu
lated”. This assessment implies an examination of model outputs against 
pre-specified performance criteria. In the literature, the term model 
validation has remained pervasive (Eker et al., 2019) although often 
overlapping with the concept of evaluation as originally presented by 
Oreskes. In their 10-step procedure for developing and evaluating 
environmental models, Jakeman et al. (2006) introduced a stepwise 
approach in which every stage is open to critical review and revision, in 
consort with end-users. The evaluation step is left to the end and is 

concerned with the model being fit for purpose, although the criteria for 
achieving this goal are not fully developed by these authors. More 
recently, Parker (2020) explores the meaning of a model being adequate 
for purpose for different classes of models, whether pedagogical, 
explanatory or predictive. In the works of Jakeman and Parker, model 
evaluation is primarily achieved by measuring the performance of a 
model against pre-specified objectives, thereby following the original 
argument of Oreskes. This excludes the idea of a general validity of a 
model and favours the principle of an evaluation of a model for a specific 
objective (or a set of objectives). This mirrors George Box’s notorious 
statement that "all models are wrong; the practical question is how wrong do 
they have to be to not be useful" (Box and Draper 1987), where useful 
implies use and therefore purpose. This is also in line with Augusiak’s 
review of the literature on model evaluation and validation which 
concludes that despite little agreement on terms and underlying notions 
in the literature, it has repeatedly been pointed out that the evaluation of 
a model should depend on its purpose (Augusiak et al., 2014). 

Evaluating that an ecological model is fit for purpose implies that the 
same model can (and should) be evaluated each time it is used for a new 
purpose. This is a rather trivial implication of the fit for purpose evalu
ation, however examples of re-evaluation of the performance of complex 
ecological models are scarce. Complex ecological models require 
extensive development efforts, and these materialise in the first publi
cation of the model, together with a global evaluation (or validation) of 
the model (see e.g., Radach and Moll 2006; Link et al., 2010; Tra
vers-Trolet et al., 2014; Pedersen et al., 2021). A fit-for-purpose 
approach would require that this first model evaluation be revised and 
reported for each new application of the model. One challenge in doing 
so is that the task of reporting model evaluation, which is already sub
stantial when the model is first published, may seem daunting if it is to 
be repeated for every new model application. This can possibly be eased 
by reporting primarily on aspects of the model evaluation that are spe
cific to each new application. An additional help can be provided by 
following a template in which a set of questions can guide the modeller 
through the reporting process. 

By taking inspiration from the success and utility of the ODD pro
tocol and the following extensions, we here present a complementary 
protocol for the reporting of ecological model evaluation procedures: 
the OPE (Objectives, Patterns, Evaluation) protocol. We discuss the 
rationale for the different elements of this protocol and provide a list of 
questions that can guide modellers to report in OPE format. We sum
marise the protocol (Table 1) and provide an easy-to-use Word template 
to support documenting model evaluations. (Supplementary material 
S1). Finally, we test the protocol on six case studies taken from a 
collection of marine ecosystem models with which the authors are 
familiar. These case studies are presented in detail in the supplementary 
material (S2). These modelling applications pre-existed the OPE proto
col. The OPE has therefore not been used to guide the model evaluations 
presented here, but only to report how these evaluations were 
performed. 

2. Elements of the OPE protocol 

The elements of the OPE protocol are divided into three sections: 
Objectives, Patterns and Evaluation. Each section is then divided in 
subsections which contain one to six questions. 

2.1. Objectives 

2.1.1. Context and motivations 
In our experience, many ecological models are not developed with 

the sole purpose of answering a single, well circumscribed question. 
Rather, complex ecological models take time to develop, are often built 
to address multiple, and sometimes diffuse, purposes and are gradually 
applied to a range of questions (Fulton et al., 2011; Planque and Mullon 
2020). For example, dynamic global vegetation models (DGVM) which 
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were originally conceived to assess ecosystem-level responses to 
atmospheric-CO2 concentration (Prentice et al., 2000) have later been 
applied to deliver projections based on future climate scenarios (Sitch 
et al., 2008) and are being continuously developed to address new 
questions, such as the impacts of different management practices on 
terrestrial ecosystems (Prentice et al., 2007). In a similar fashion, the 
ecosystem model Atlantis developed for the northwest Atlantic shelf 
(Link et al., 2010) was first used to explore the combined effects of 
climate and fishing (Nye et al., 2013), then to address the impact of 
ocean acidification (Fay et al., 2017) and more recently to quantify 
combined effects of acidification, fishing and marine protection (Olsen 
et al., 2018). Models of natural systems are inevitably embedded with 
multiple sources of uncertainty, and modellers make decisions during 
model construction (e.g., on which processes to include or simplify) 
which will affect the final outcome (Babel et al., 2019). There is a risk 
that assumptions which are reasonable for one particular model appli
cation are inadequate for another (Parker 2020; Saltelli et al., 2020). It is 
therefore essential that model suitability and performance are assessed 
and described for each application, and a crucial first step is describing 
the purpose of the specific application. In other words, to evaluate that a 
model is fit for purpose one must first specify the purpose. In this 
contribution, we refer to model as the generic description of the 
modelling tool (e.g. Ecopath with Ecosim, Polovina 1984a, 1984b; 
Christensen and Walters 2004), we use the terms goal, purpose and 
objective in an interchangeable manner to express the motivation driving 
the study and we refer to a model application when the model is applied 
towards a pre-defined objective or set of objectives. Central in the OPE 
framework is our conception that it is sensical to evaluate the same 
model against different patterns or data when applied for different 
purposes. 

Describing the main objectives of the study and how modelling will 
contribute to reach these objectives is perhaps the most crucial step in 
evaluating model performance and suitability, and it should be a key 
reference point throughout the evaluation process. Without a clear un
derstanding of the purpose, it becomes difficult to communicate credi
bility and generate trust in the modelling work. Furthermore, it may be 
sensible to evaluate the same model against quite different patterns or 
data when applied for different purposes. Defining the aims and objec
tives of the model application early in the research process can save 
time, for instance with the realisation that objectives may depend on key 
processes for which the model of choice lacks functionality. 

The aims and objectives of a model application should be stated in 
simple, clear language. We suggest using active sentences (e.g., 
construct, produce, test, document) and avoid vague wordings (e.g., 
explore, study, investigate). Beware that ambiguity in the description of 
the purpose of a model often leads to multiple (subjective) in
terpretations of whether an outcome was successful or not (Parker 
2020). This hinders a reliable evaluation process. The following ques
tions guide the reporting of objectives:  

1 What are the objectives of the model application?  
2 Why is the model suitable to address the objectives?  
3 What would count as successful in achieving these objectives? 

2.1.2. Specific model setup 
Ideally, the ecological model has already been fully described 

following a standardized protocol such as the ODD. It is possible that the 
original description is adequate for a new application of the model, but 
specific applications may also require adjustments of the model struc
ture, parameters, or assumptions. Assumptions are particularly impor
tant to report when the model is used to perform predictions at other 
points in time and space, which requires that the model has some degree 
of transferability (Wenger and Olden 2012; Yates et al., 2018). This is 
the case when the objective of the model is to produce forecasts or to 
predict ecosystem properties in one region based on a model developed 
in another. It is wise to explicitly state what lies behind the 

often-implicit assumption of ceteris paribus (everything else being equal). 
For example, are trophic interactions assumed to follow the same rules 
in different regions? Are spatial distributions or environmental condi
tions assumed to be unchanged in the future? When models are used for 
conditional forecasting, one should also report assumptions about ex
pected changes that can affect the system studied. For example, how are 
possible future changes in water temperature, fishing effort, accidental 
oil spill or increase in noise due to shipping represented in the model? A 
model can be revised to better reproduce the ecological components or 
processes that are relevant to a new application. It is also possible that 
revised model structure, estimates of input parameters or new data on 
the forcing conditions of the model become available. All these updates 
should be reported in this section which describes any changes or ad
ditions which have been made since the original model description.  

4. Are there any deviations from the original model description?  
a In the model assumptions,  
b in the model structure (e.g., addition of submodels, variables, 

components, modifications of spatial or temporal scales),  
c in the model details (e.g., changes in parameter values, functional 

relationships),  
d in the model forcing (e.g., initial conditions, boundary conditions, 

forcing time series and maps). 

2.2. Patterns 

2.2.1. Selected patterns 
A pattern may be defined as a characteristic and clearly identifiable 

structure in nature, or in data extracted from nature (e.g., population 
cycles, animal space use, species diversity etc.), that can be attributed to 
a generative process (Levin 1992; Grimm et al., 1996). Thus defined, a 
pattern is key to ecological understanding and prediction. Ecological 
patterns emerge from multiple ecological processes, which operate at 
multiple spatial and temporal scales and levels of organization (indi
vidual, population, community, and ecosystem). Understanding the 
causal mechanisms responsible for pattern formation is a primary goal of 
ecology (Levin 1992). 

Modelling complex adaptive systems (see Levin 1992), such as ma
rine ecosystems, is challenging, but pattern-orientated modelling (POM) 
may facilitate the task (Grimm et al., 1996, 2005; Grimm and Railsback 
2012). POM “starts with identifying a set of patterns observed at mul
tiple scales and levels that characterize a system with respect to the 
particular problem being modelled” (Grimm and Railsback 2012). In 
other words, the selection of patterns to be used in model evaluation, 
depends on the objective(s) or hypothesis of the study. 

Relevant ecological patterns may be related to numbers, biomass, 
production, or consumption of relevant ecological entities, to dynamic 
behaviour at equilibrium, or to character of state transitions in pertur
bation studies or in systems undergoing change (e.g. Beisner et al., 
2003). Other examples are spatial patterns such as spatial synchrony or 
travelling waves (e.g. Sherratt and Smith 2008). More complex 
emerging patterns (e.g., spatial structure described by a variogram, 
degree of spatial overlap between species) may also be candidate targets 
for model evaluation. The selection of specific patterns is motivated by 
the objectives of the modelling application and is generally driven by the 
hypotheses that can explain the emergence of these patterns. As pointed 
by Cury et al. (2008), it might be relatively easy to reproduce a single 
ecological pattern with all kinds of alternative models, but simulta
neously reproducing an entire set of patterns is much more demanding 
and requires that the model is structurally realistic. Rather than tying a 
model to a specific pattern, via heavy calibration, it can be more useful 
consider several weak patterns at the same time - because then the risk 
that we force the model to look right, but for the wrong reasons, is 
reduced. This is particularly true in the case of complex ecosystem 
models which include many processes and parameters that can be 
adjusted to tune the model to few selected outputs. While some patterns 
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may be used to inform the model construction (e.g., some empirical 
relationships between ecological variables), other are emergent prop
erties of the model. Model evaluation based on these emergent patterns 
may be of greater interest since models that succeed in getting emergent 
patterns right may also have greater potential for transferability to other 
time, place or systems (Radchuk et al., 2019). It is therefore critical to 
report on the selection of patterns and on the justification for this 
selection.  

5. Which ecological patterns are used for the model evaluation?  
a temporal patterns such as cycles, regime shift or trends, measures 

of temporal variability, and autocorrelation.  
b spatial patterns such as spatial synchrony, travelling waves, 

patchiness, and autocorrelation.  
c structural and functional patterns, such as taxonomic diversity, 

biomass ratios, integrated production, diet fractions, and trait 
distributions.  

d Other relevant patterns  
6. Why are these patterns important/essential to address the 

objectives? 

In the following part of the OPE one must describe the data used for 
evaluation purposes, which can include both data from the model output 
and data which are independent of the model. Information on data used 
for model building should be provided in the model description (typi
cally, an ODD protocol) and data used for optimization should be re
ported in the optimization description (e.g. in an ODDO protocol, 
Mahévas 2019). 

2.2.2. Independent data 
Independent data – that is data that exists independently of the 

model being built – are often derived from field observations, and pro
cedures for collecting and processing these observations should briefly 
be summarized in this part of the OPE. Relevant information includes i) 
whether the data originate from a dedicated field survey, an open 
database, or another model, ii) the spatial/ temporal/ taxonomic/ etc. 
extent and resolution of the data, iii) data representativeness, and iv) 
accuracy, precision, bias, or uncertainty. Data representativeness is the 
degree to which data can be used to represent the ecological patterns 
that are relevant for the objective of the study. For example, daily, 
weekly, or monthly time-series will have different representativeness if 
the ecological pattern of interest is related to phenology. Similarly, the 
representativeness of data collected at a single sampling station is also 
expected to vary with the spatial scale of the ecological question of 
concern, being more representative for small scale modelling studies 
centred around the sampling station than for larger scale investigations. 
Deriving ecological patterns (Section 2.2.1) from observations can 
involve extensive data processing, and this should be reported here. 
When the same type of data can be used for model optimisation and 
evaluation (as in cross-validation) this should be reported in this section. 
In some cases, although the data is collected independently of the model 
being built, the model and data may not be completely independent 
from each other (for example, knowledge from historical data used to 
build the model, or input data in an Ecopath model is also expressed as 
an output of the model) and this should be reported. The following 
questions guide the collection of information about the independent 
data used to evaluate the model, given selected pattern(s).  

7. Where do the independent data originate from? (e.g. field survey, 
open database, another model, …)  

8. What are the extent and resolution of the independent data? 
(spatially, temporally, taxonomically, …)  

9. How representative of the ecological process are the independent 
data?  

10. Are there estimates of independent data accuracy, precision, bias, 
or uncertainty?  

11. How are the independent data processed to represent the selected 
patterns? Are assumptions made to derive these patterns from the 
data? 

2.2.3. Model outputs 
Often, only parts of the model outputs are used in a specific appli

cation and the aim of this section is to describe which outputs have been 
used and evaluated. In some cases, the data may be post-processed (e.g., 
aggregation of results by guild, geographical region, or integration in 
time). The purpose of post-processing can be to generate indicators of 
the relevant patterns (ex. species spatial distribution, biomass ratios, 
index of seasonality, see Section 2.2.1) or to generate model outputs that 
are comparable with independent data (Section 2.2.2). The post pro
cessing step can require new assumptions (e.g., assume that conversion 
rates such as C:Chla are constant in time/space/taxa). The aim of this 
section is to describe the selection of model outputs, the post-processing 
operations, and to report on quality, quantity, representativeness, un
certainties, or potential bias in the model outputs.  

12. Which model outputs are used for the evaluation?  
13. Have the outputs been post-processed, and how?  
14. Are there estimates of model outputs accuracy, precision, bias, or 

uncertainty?  
15. Are additional assumptions made when deriving patterns from 

model outputs? 

2.3. Evaluation 

2.3.1. Evaluation methodology 
We refer here to the evaluation method applied in the context of a 

specific application of a model to address stated objectives (Section 
2.1.1). Model verification (sensu Gräbner 2018) - the act of testing 
whether the model does what it is supposed to do, i.e., that it is tech
nically functional - should precede any application of the model and is 
not considered here. A first model evaluation step is often to conduct 
sanity checks. These are rapid explorations of the model outputs which 
ensure that, even though the model is technically functional, it is not 
behaving poorly. Sanity checks are often non-quantitative and based on 
domain knowledge rather than on quantitative comparisons of obser
vations vs. model outputs. Though these are not often reported in model 
evaluation procedures, they inform about key conditions that the model 
must satisfy to be considered useful. Examples of sanity checks can 
include an inspection that population sizes or biomasses are within 
plausible ranges, that seasonal patterns are plausible or that emerging 
spatial patterns are visually credible. These can be done via Fermi es
timations, often referred to as back of the envelope calculations of plau
sible ranges. Sanity checks are often performed in an unformal way and 
the intention of this section is to clarify and document this step. In cases 
when no sanity checks are performed, this should be justified.  

16. Are sanity checks conducted? If so, what is the method used? If 
not, explain why.  
a Which data and patterns are used for this?  
b Does this apply to patterns that are not otherwise evaluated for 

this model application? 

The core of the evaluation process is the comparison of patterns 
emerging from model outputs against those obtained from independent 
observations. This first raises the issue of the comparability between 
independent observations and model outputs, i.e., whether model out
puts and independent data are directly comparable and whether 
modelled patterns are directly comparable to observed patterns. For 
example, are modelled biomass integrated over a large continuous 
geographical domain comparable with biomass field observations from 
a limited number of sampling sites? The second issue is the methodology 
used to compare ecological patterns derived from observations to those 
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derived from the model. There can be many methodological approaches, 
ranging from qualitative visual comparisons to fully quantitative esti
mates of the model performance at reproducing observed patterns 
(Allen and Somerfield 2009; Bennett et al., 2013). The latter can include 
univariate or multivariate approaches, and can be based on error-based 
measures, information theory measures, parametric tests, 
non-parametric tests, distance-based measures, and combined measures 
(Hora and Campos 2015). This stage of the evaluation is sometimes 
referred to as skill assessment. 

The choice of methods and metrics used in model skills evaluation 
will depend on the relevant patterns. For example, when dealing with 
cycles, the degree of congruence between modelled and observed cycles 
amplitude and frequency should be reported. When modelling state 
transitions, agreement in the rate of change of a trend should be re
ported. With ecosystem models addressing ecological stability or tem
poral variability, the stability measure should be reported at multiple 
levels of organisation (e.g., species, functional group, community etc.). 
The quantitative criteria to evaluate the match between observed and 
simulated patterns must be reported. For example, if the mean of the 
simulations is within a certain range (e.g. 1 standard deviation) of the 
observed pattern, the model satisfactorily addresses the pattern (e.g. 
Kramer-Schadt et al., 2007). The selection (or lack of selection) of 
particular skill assessment methods can also be partially dictated by 
existing skills, available software or discipline culture and habits. Some 
evaluation methods may have been tried without success. In those cases, 
one should report on the attempted evaluation steps with some discus
sion on how and why these were deemed unsuccessful. 

Each methodology usually comes with associated assumptions that 
need fulfilling for the method to be valid, and these should also be re
ported here. 

The core issue at the end of the evaluation process is whether the 
model outputs can be considered satisfying for the purpose of answering 
the modelling objective, i.e., that the grounds on which a model is 
declared good enough are clearly articulated (Oreskes 1998).  

17. What is the methodology used to compare ecological patterns 
derived from independent data with patterns derived from the 
model?  
a What is the rationale for choosing this method?  
b How are observational and/or model output uncertainties 

handled?  
c Does the methodology rely on specific assumptions?  
d Were other methods experimented? If they didn’t succeed, 

explain why.  
18. Is there a threshold level (in the match between observed and 

modelled patterns) that can separate acceptable from unaccept
able models?  

19. How comparable are the patterns derived from the model and 
those derived from the independent data? 

By answering the above questions, researchers should also discuss if 
there are patterns that cannot be well evaluated with the chosen 
method. 

2.3.2. Sensitivities 
We distinguish between two types of sensitivities to be reported. 

First, model sensitivity which is the result of a sensitivity analysis (SA), 
usually performed on model structure and parameters. Second, evalua
tion method sensitivity, which refers to the sensitivity of the model eval
uation to the choice of evaluation methodology and available 
observational data. 

Sensitivity analysis scrutinizes how variations in model inputs in
fluence variations in model outputs, a fundamental step in model eval
uation and corroboration (EPA 2009). A sensitivity analysis informs 
about which input parameters the model is most sensitive to (and 
therefore which parameters should be obtained with greater precision 

and accuracy), and about the relative importance of processes in the 
model. A diverse array of SA approaches has been developed to help 
cope with the various needs dictated by differing model assumptions, 
computational complexity, and availability of relevant information 
(Saltelli et al., 2004; EPA 2009). Reviews and guidelines for best SA 
practice in the context of ecological and environmental modelling are an 
important aid to SA planning, implementation, and reporting (Saltelli 
et al., 2004; A. 2021; EPA 2009; Thiele et al., 2014; Pianosi et al., 2016). 

Attributes of SA methods worth considering in reporting include: 
independence of model linearity and additivity assumptions, ability to 
address interaction effects amongst input factors, capacity to handle 
differences in scale and shape of input probability distribution functions, 
ability to deal with differences in input spatial and temporal dimensions, 
and capacity to evaluate the effect of an input while all other inputs are 
allowed to vary as well (Frey 2002; Saltelli et al., 2004). 

In this section, one should consider the sensitivity of the model 
outputs that are relevant to the objective of the study i.e., the modelled 
patterns (Section 2.2.3). Priority should be given to reporting sensitivity 
analyses that were conducted specifically for the model application. 
Sensitivity analyses performed in earlier stages of model development 
can be reported if also relevant for the objective(s) of the study.  

20. Has a model sensitivity analysis been performed? If so, how? If 
not, explain why.  
a on the model structure?  
b on the model parametrization?  
c on other aspects of the model?  

21. Which elements are the modelled patterns most sensitive to?  
a input parameters  
b priors and assumptions  
c structural elements  
d processes  

22. How sensitive are the modelled patterns to the choice of initial 
conditions, boundary conditions, spatial and temporal 
resolution? 

While there is no perfect model to address a specific ecological 
question, there is no perfect method either to evaluate the performance 
of a model (Makridakis et al., 2020). Typically, the choice of the sensi
tivity analyses depends on the availability of observational data with 
which the model can be compared, on the computational requirements 
to perform certain types of model evaluation, on the availability of 
evaluation methodologies to the modellers, and on modellers skill sets. 
This section reports on the rationale and criteria for choosing a partic
ular approach to evaluate the model performance. It stresses when the 
choices are dictated by the objectives of the study as opposed to 
computational constraints, lack of relevant information or other con
siderations. For example, models with complex architecture and high 
computational costs - two common features for ecosystem models 
(Steenbeek et al., 2021) - impose restrictions on the exploration of the 
parameter space. This in turns limits the scope for global SA and 
simultaneous exploration of known sources of uncertainty, which are 
two desirable features of SA. This section also reports on how sensitive 
the evaluation method is to the data used for evaluation (section 2.4). 
Could the model evaluation give significantly different results if sup
ported by other/new/more precise data or if other skill assessment 
methods had been used? It is also the place where one can report failed 
attempts to evaluate the model or discuss possible future development in 
evaluation methodology. Alternative or complementary approaches to 
standard sensitivity analyses (e.g., robustness analysis, Thiele and 
Grimm 2015; Grimm and Berger 2016) can also be reported here. In 
summary, this section highlights the relevant attributes of the model 
evaluation, caveats, possible limitations, and possible developments, 
clarifying the performance of the model evaluation in relation to the 
objectives. 
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Table 1 
The 25 questions of the OPE protocol, grouped into three headings: Objectives, Patterns and Evaluation. A brief comment accompanies each question to guide the reporting. A template form is provided in appendix S1, in 
which reporting can be directly entered.    

# Question Comments 

OBJECTIVES CONTEXT AND 
MOTIVATIONS 

1 What are the objectives of the model application? Describe here the motivation and context for using the model. What is the purpose of the study? Do not describe the 
model, or its general objectives but focus on study-specific objectives. Use active sentences (e.g., produce, test, quantify, 
reconstruct dynamics) and avoid vague wordings (e.g., explore, study, investigate, understand). 

2 Why is the model suitable to address the objectives? Provide the main rationale for why this specific model approach is suited to address the objective(s) raised in question 1. 
For example, is the model representing a process that is central to addressing the objectives? 

3 What would count as successful in achieving these objectives? Explain here which criteria are used to determine if the model can address the objective or not. For example, if the 
objective of the model is to quantify a variable/process, is success defined based on the uncertainty around these 
estimated quantities? 

SPECIFIC MODEL 
SETUP 

4 Are there any deviations from the original model description? If this is the first time the model is presented, a full ODD description should be provided (Grimm et al., 2006, 2010, 
2020b). If the model has already been presented elsewhere, only deviations from the original description should be 
provided here. Models are often adjusted to address a specific ecological question/objective. It is these adjustments that 
should be reported here.  

a In the model assumptions?  
b In the model structure – submodels, variables, components, 

scales?  
c In the model details – parameter values, functional relationships  
d In the model forcing – initial conditions, boundary conditions, 

observation forcing, maps? 
PATTERNS SELECTED PATTERNS 5 Which ecological patterns are used for the model evaluation? The term "ecological pattern" refers to Pattern-Oriented Modelling (POM, Grimm et al., 1996, 2005; Grimm and 

Railsback 2012). Relevant ecological patterns can be observed at various scales and characterize the ecological system 
with respect to the particular problem being modelled. The patterns listed in a, b, and c are by no mean required or 
exhaustive, but are provided as examples of possibly relevant patterns.  

a Temporal patterns – cycles, shifts, trends, variability, 
autocorrelation  

b Spatial patterns – synchrony, travelling waves, patchiness, 
autocorrelation  

c Structural, functional patterns – diversity, biomass ratio, 
integrated production, diet, traits  

d Other relevant patterns 
6 Why are these patterns important/essential to address the 

objectives? 
Explain here how the selection of ecological patterns is justified in relation to the objectives of the modelling application. 
Are there hypotheses that can explain the emergence of these patterns? Do not discuss how these patterns can be derived 
from observations or model outputs, this is addressed in questions 11–15. 

INDEPENDENT DATA 7 Where do the independent data originate from? Independent data refers to data that exists independently from the current model being developed. These can be 
observational data or outputs from other models. Do not discuss outputs from the modelling study, these are addressed in 
questions 12–15. 

8 What are the extent and resolution of the independent data? Report here the spatial, temporal, taxonomic extent and resolution of the independent data identified in question 7. For 
example, if a data series is presented, what are the starting and ending time and the time-frequency of data acquisition; if 
biodiversity data is provided, what is the taxonomic resolution and the method used to determine taxonomic units. 

9 How representative of the ecological process are the independent 
data? 

This is a follow-up from question 8 to link data with key processes and patterns. For example, if a central process in the 
study is interannual variations in population numbers, and observational data of population numbers are available: do 
these data appropriately represent the annual abundance, or do they represent a snapshot in time or space? Do not 
report on uncertainty estimates here, this is addressed in question 10. 

10 Are there estimates of independent data accuracy, precision, bias, or 
uncertainty? 

Uncertainty estimates for the independent data should be reported here (uncertainty estimates for the model outputs are 
reported in question 14). 

11 How are the independent data processed to represent the selected 
pattern? Are assumptions made to derive these patterns from the 
data? 

Independent data – whether observational or modelled – may provide a representation of the patterns of interest 
(question 5) only after further processing. For example, survey data may be spatially interpolated to derive spatial 
distribution patterns. Another example: biomasses from several taxonomic units may be grouped to derive patterns of 
interannual changes in biomass for particular functional groups. Report these post-processing steps here. 

MODEL OUPUTS 12 Which model outputs are used for the evaluation? This is a list of model outputs that have been selected based on the modelling objectives and related ecological patterns. 
The full set of raw outputs, which is often large, unprocessed, and not targeted towards the specific objectives of the 
modelling study, should not be reported here. 

13 Have the outputs been post-processed, and how? As for independent data, model outputs may provide a representation of the patterns of interest only after further 
processing (see question 11). Report here the post-processing steps that are used to go from raw model outputs to 
ecologically relevant patterns. 

14 Are there estimates of model output accuracy, precision, bias, or 
uncertainty? 

Uncertainty estimates for the model outputs should be reported here. Focus should be on model outputs that are used for 
the model evaluation. 

15 Are additional assumptions made when deriving patterns from 
model outputs? 

Report here when some assumptions may be required to derive outputs at the appropriate scale or in the appropriate 
units. For example, a dry:wet-weight ratio may be assumed across species/seasons/areas to derive weight wet estimates 
(the relevant pattern) from dry weight (the model output). 

(continued on next page) 
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Table 1 (continued )   

# Question Comments 

EVALUATION EVALUATION 
METHODOLOGY 

16 Are sanity checks conducted? If so, what is the method used? If not, 
explain why. 

Sanity checks are informal steps that are taken throughout model development to ensure that the model is not behaving 
badly. They inform on key conditions that the model must satisfy to be considered useful. For example, checking that a 
population neither becomes extinct nor grows to unrealistic size.  a Which data and patterns are used for this?  

b Does this apply to patterns that are not otherwise evaluated for 
this model application? 

17 What is the methodology used to compare ecological patterns 
derived from independent data with patterns from the model? 

This section describes how model outputs are evaluated against independent data. This is sometimes referred to as model 
"skill assessment". This section should describe the methodology used as well as the rationale for the choice of methods, i. 
e., how the methods relate to data, model outputs, objectives of the study, and relevant ecological patterns.  a What is the rationale for choosing this method?  

b How are observational and/or model output uncertainties 
handled?  

c Does the methodology rely on specific assumptions?  
d Were other methods experimented? If they didn’t succeed, explain 

why. 
18 Is there a threshold level (match between observed and modelled 

patterns) that can separate acceptable from unacceptable models? 
When are the model outputs reliable enough to be used to answer the main question of the study? Answering this 
question is critical to evaluate when the model can address the main objective of the study. One should not discuss here 
the conclusions of the study, but only the skill level required to consider the model useful. 

19 How comparable are the patterns derived from the model and those 
derived from the independent data? 

This section describes the result of the model skill assessment, plus any other qualitative features (patterns) that can be 
compared between model outputs and independent data. 

SENSITIVITIES 20 Has a model sensitivity analysis been performed? If so, how? If not, 
explain why. 

This section describes the approach used to conduct model sensitivity analyses (SA), in a broad sense, from individual 
parameter SA to global SA. Various aspect of the methods used for SA can be reported here, including sensitivity to 
parameters, model structure, boundary/initial conditions, simulation design, and so on (see e.g., Pianosi et al., 2016).  a on the model structure?  

b on the model parametrization?  
c on other aspects of the model? 

21 Which elements are the modelled patterns most sensitive to? If applicable, report here the results of the SA on parameters, model structure, processes, and assumptions.  
a input parameters  
b priors and assumptions  
c structural elements  
d processes 

22 How sensitive are the modelled patterns to the choice of initial 
conditions, boundary conditions, spatial and temporal resolution? 

If applicable, report here the results of the SA on the choice of initial conditions, spin-up time, boundary conditions, 
spatial and temporal resolution. 

23 How sensitive is the model evaluation to the independent data 
availability and uncertainty? 

Could the model evaluation give significantly different results if other, new, or more precise data were used than those 
described in question 7? 

24 How much is the model evaluation constrained by computational or 
theoretical limits? 

Models that are structurally simple and computationally fast can generally be explored through in-depth SA. It is more 
demanding to run appropriate SA on models that are structurally complex or that use substantial CPU resources to run. 
For some models, complexity & run time make SA non-achievable in practice. These issues should be reported here. 

25 How does the perceived performance of the model depend on the 
chosen evaluation methodology? 

Could the model evaluation give significantly different results if another evaluation approach had been used (other than 
reported in question 17)?  
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23. How sensitive is the model evaluation to availability and uncer
tainty of the independent data?  

24. How much is the model evaluation constrained by computational 
or theoretical limits?  

25. How does the perceived performance of the model depend on the 
chosen evaluation methodology? 

3. OPE template 

As a practical tool, we provide in Table 1 a summary of the OPE 
protocol which highlights the main sections of the protocol, the 25 
questions as well as guidelines on how to answer them. We also provide 
in supplementary material (S1), a Word template that can be used to 
provide information relevant to a modelling study. 

4. Applications 

We provide in the supplementary material (S2) examples of appli
cations of the OPE protocol in the context of six modelling applications:  

1 an Individual Based Model (IBM) used to quantify uncertainties in 
the estimates of mean biomass of the copepod Calanus finmarchicus as 
a function of sampling design (Hjøllo et al., 2021),  

2 a statistical food-web model used to quantify the association between 
capelin (Mallotus villosus) and its main two prey (krill and Calanus 
species) (Stige et al., 2018),  

3 simulations from the Non-Deterministic Network Dynamics (NDND) 
model to assess the persistence of trophic controls in the Barents Sea 
(Sivel et al., 2021),  

4 an Ecopath model to estimate trophic positions for ecological groups 
in the Barents Sea (Pedersen 2022),  

5 the Nordic and Barents Seas Atlantis Model (NoBa) simulations to 
assess cumulative impact of fisheries and climate in the Norwegian 
and Barents Seas (Hansen et al., 2019), and  

6 the reconstructions and predictions of selected physical and 
biogeochemical properties using the NorCPM1 model in the Barents 
Sea (Bethke et al., 2021). 

These case studies cover a range of modelling practices, modelling 
tools and study objectives. Knowledge about context within which a 
model is developed and of the history of the model development is 
essential to understand the evaluation approach.  We realise that the 
OPE case studies presented in this manuscript can be difficult to read 
without prior knowledge of each model context and history. In stand- 
alone modelling studies, model descriptions would normally be pro
vided in full, but this is not the case here. To correct for this, we included 
introductory paragraphs that describe the models that were used in each 
case study and provide a brief history of the models, i.e., where they 
originate from and how they evolved to finally be used in the current 
case studies. 

5. Discussion 

The OPE protocol as we present it here is complementing other 
reporting protocols, in particular the ODD protocol and the extensions 
(e.g., ODDO, ODD+D), by focusing on the model evaluation. We argue 
that such a protocol can significantly contribute to improving model 
evaluation and can in general increase transparency and reproducibility 
of published models. Following Oreskes (1998); Augusiak et al., (2014); 
Edmonds et al., (2019); Grimm et al., (2020a); Parker (2020), and 
others, we contend that model evaluation is purpose-dependant and that 
a clear description of the purpose of a modelling application must be an 
integral part of the evaluation process, whether the model goal is 
pedagogical, explanatory or predictive. 

Model evaluation is essential and should accompany all model 
studies. We have therefore developed the OPE protocol for model 

evaluation, which is generic enough to apply to a wide range of 
ecological modelling studies, from coupled physical-chemical-biological 
systems (NORWECOM.E2E, NorCPM1, Atlantis), to simpler models 
focussed on food-webs interactions (NDND, Ecopath, Gompertz). In our 
experience, most modellers consider their model as somewhat special (i. 
e., not like other models) and therefore presume that it would be diffi
cult to evaluate models using a standardised protocol like the OPE. 
Indeed, we found that it was often work-demanding for modellers to 
answer the 25 questions of the OPE protocol. Through the six case 
studies, we identified several challenges in documenting the OPE. 
Documenting model evaluation is not a standard step in most modelling 
studies. Lack of experience and training in doing so made it a time- 
consuming and demanding task that required several iterations, and 
substantial amount of thinking and discussion. At times, the OPE exer
cise was perceived as too time-consuming, little rewarding in the short 
term and easy to postpone. It was often difficult to find the balance 
between providing informative answers and remaining concise. In 
several cases, it was not always obvious what was the right amount of 
contextual information required to inform readers about the model. The 
amount of evidence to be presented in support of OPE statements was 
also debated. When sensitivity analysis had been performed in earlier 
studies, it could be unclear how much this should be reported. At first 
sight, some questions appeared unclear or redundant, though these is
sues were usually resolved after some iterations. Some questions were 
also of little relevance for some of the model applications explored here. 
Nevertheless, it was possible to successfully apply the OPE protocol to 
each specific case study, despite the diverse collection of model types. 
We therefore anticipate that the protocol will be applicable to many 
ecological modelling studies. 

The protocol can be used from the start of a modelling study, to guide 
model evaluation throughout the study. Though the primary motivation 
for this protocol was to construct a tool to help modellers reporting how 
they evaluated their models given specific objectives, we found that 
answering the protocol questions for the individual case studies led to 
additional discussions and reflections on model evaluation. In some 
instances, it was identified that additional evaluation steps could be 
taken or that some steps in the evaluation process could have been better 
specified. In the case of the Gompertz case study, documenting the OPE 
revealed that posterior predictive checks could have been considered to 
improve the evaluation. In the NDND case study, it was only after the 
OPE was documented that the issue of determining a threshold between 
acceptable and unacceptable models became clear. In the NoBa case 
study, it became apparent that many aspects of model evaluation for a 
complex end-to-end model like Atlantis, were still under-developed, and 
that the OPE could guide future work towards improved model evalu
ation methodology. In all case studies the OPE helped to clarify existing 
evaluation procedures and identify possible improvements. Had the OPE 
been available at the start of these studies, the model evaluation would 
likely have been conducted more thoroughly. A lesson learned from the 
exercise is that documenting the OPE is more easily done if modellers 
take relevant notes about model evaluation while developing their 
model, rather than leaving the OPE questionnaire to the end. This 
highlights the potential utility of the OPE to stimulate higher standard of 
model evaluation, in addition to its original goal of merely reporting 
how evaluation was conducted. 

It is important to note that the OPE protocol goes far beyond model 
skill assessment. Assessing the prediction skill of ecological models has 
been the focus of recent literature (see e.g., Stow et al., 2009; Olsen 
et al., 2016; Steenbeek et al., 2021 and references therein). Skill 
assessment is an integral part of model evaluation and is clearly iden
tified in the first part of the Evaluation section of the OPE protocol 
(questions 17–19). The OPE protocol expands beyond skill assessment 
by addressing issues related to objective, patterns, data, and sensitivity 
analyses and puts balanced focus on these different elements. 

Documenting model evaluation is not yet standard practice. The 25 
questions outlined in the OPE protocol are a guide to present an 
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extensive – but not exhaustive – description of a model evaluation. A full 
description of the evaluation is often too long to be included in the core 
part of a published manuscript. We advocate that the OPE documenta
tion be presented as a technical supplement. By documenting the details 
of the model evaluation procedure, the OPE provides essential infor
mation for the peer-review of a modelling study and directly contributes 
to higher transparency. Even when not all OPE questions are answered, 
it makes sense to present an OPE. We encourage modellers to try the OPE 
protocol by using the word template (S1) and get help and inspiration 
from the answers provided in the six case studies (S2). We also 
encourage reviewers to use the OPE questions as a guide when evalu
ating modelling studies. 

The current OPE template is qualitative, thus providing high flexi
bility in reporting, but makes the evaluation report hard to appraise or to 
enter in automated systems that prefer numbers over free text. Possible 
future developments of the OPE may focus on adding standardised 
evaluation metrics or standardised evaluation vocabularies that could be 
automatically populated while performing evaluation exercises This in 
turn would facilitate analyses and comparisons within and between 
models. Further development of the OPE might also include other as
pects of model evaluation that were not explicitly addressed here, such 
as robustness analysis (Grimm and Berger 2016). The questionnaire 
structure could possibly be hierarchised to highlight questions that have 
the highest priority (e.g., questions 1, 2, 3 and 19), or it could eventually 
be formally linked to other existing tools like TRACE (Grimm et al., 
2014; Ayllón et al., 2021). 

As noted by Grimm et al., (2014), building a ’culture’ of model 
reporting is about doing all these things as well as you can because you know 
that peers and model clients are expecting you to; there is no point any more 
in complaining about “additional effort” for these things. We recognise that 
we are not there yet. Promoting the OPE and similar documentation 
during the peer review process would help in getting this culture in 
place. 

The current version of the OPE protocol is a work-in-progress. Model 
evaluation is complex and the development of tools for reporting how 
evaluation is conducted is not a simple problem. The case studies pre
sented here all originate from high-latitude marine ecosystem modelling 
research, which reflects the expertise of the authors. Further applica
tions of the OPE will show how much the experience gained from 
developing and applying the OPE protocol on these few examples can 
benefit other modelling approaches on other ecological system types. 
During the discussions that formed the basis for the current protocol, a 
central point was that modellers have various cultures, experiences, and 
practices when it comes to model evaluation. These points of view are 
not always easy to reconcile with each other. Further discussions based 
on the use of the protocol on a wider range of models are expected to 
lead to revisions of the OPE protocol in the future. 

6. Conclusion 

The OPE protocol is proposed as a tool to report the evaluation of 
ecological models. The reporting template is organised along 25 ques
tions which make it easier and faster for modellers to report model 
evaluation. The OPE structure further promotes comprehensive report
ing of the evaluation process, ranging from objectives, to data, skill 
assessment, and sensitivity analyses. Our experience is that structured 
reporting of model evaluation helps modellers to think more deeply 
about the evaluation of their models. From this last point, we suggest 
that it would be highly beneficial for modellers to consider the OPE early 
in the modelling process, in addition to using it as a reporting tool (as we 
have done here) and as a reviewing tool. 
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Gräbner, C., 2018. How to relate models to reality? An epistemological framework for 
the validation and verification of computational models. Jasss 21 (3), 26. https:// 
doi.org/10.18564/jasss.3772. 

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., Liu, C., 
Martin, B.T., Meli, M., Radchuk, V., Thorbek, P., Railsback, S.F., 2014. Towards 
better modelling and decision support: documenting model development, testing, 
and analysis using TRACE. Ecol. Modell. 280, 129–139. https://doi.org/10.1016/j. 
ecolmodel.2014.01.018. 

Grimm, V., Berger, U., 2016. Robustness analysis: deconstructing computational models 
for ecological theory and applications. Ecol. Modell. 326, 162–167. https://doi.org/ 
10.1016/j.ecolmodel.2015.07.018. 

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., 
Grand, T., Heinz, S.K., Huse, G., 2006. A standard protocol for describing individual- 
based and agent-based models. Ecol. Modell. 198 (1–2), 115–126. https://doi.org/ 
10.1016/j.ecolmodel.2006.04.023. 

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The 
ODD protocol: a review and first update. Ecol. Modell. 221 (23), 2760–2768. 
https://doi.org/10.1016/j.ecolmodel.2010.08.019. 

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Uchmański, J., Wissel, C., 1996. Pattern- 
oriented modelling in population ecology. Sci. Total Environ. 183 (1), 151–166. 
https://doi.org/10.1016/0048-9697(95)04966-5. 

Grimm, V., Johnston, A.S.A., Thulke, H.-H., Forbes, V.E., Thorbek, P., 2020a. Three 
questions to ask before using model outputs for decision support. Nat. Commun. 11 
(1), 4959. https://doi.org/10.1038/s41467-020-17785-2. 

Grimm, V., Railsback, S.F., 2012. Pattern-oriented modelling: a “multi-scope” for 
predictive systems ecology. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 (1586), 
298–310. https://doi.org/10.1098/rstb.2011.0180. 

Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., 
Edmonds, B., Ge, J.Q., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe- 
Nielsen, J., Polhill, J.G., Radchuk, V., Rohwader, M.S., Stillman, R.A., Thiele, J.C., 
Ayllon, D, 2020b. The ODD protocol for describing agent-based and other simulation 
models: a second update to improve clarity, replication, and structural realism. Jasss 
23 (2). https://doi.org/10.18564/jasss.4259. 

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., 
Weiner, J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-oriented modeling of agent- 
based complex systems: lessons from ecology. Science 310 (5750), 987–991. https:// 
doi.org/10.1126/science.1116681. 

Hansen, C., Nash, R.D.M., Drinkwater, K.F., Hjøllo, S.S., 2019. Management scenarios 
under climate change – a study of the nordic and barents seas. Front. Mar. Sci. 6, 
668. https://doi.org/10.3389/fmars.2019.00668. 

Heymans, J.J., Bundy, A., Christensen, V., Coll, M., de Mutsert, K., Fulton, E.A., 
Piroddi, C., Shin, Y.-J., Steenbeek, J., Travers-Trolet, M, 2020. The ocean decade: a 
true ecosystem modeling challenge. Front. Mar. Sci. 7, 554573 https://doi.org/ 
10.3389/fmars.2020.554573. 

Hipsey, M.R., Gal, G., Arhonditsis, G.B., Carey, C.C., Elliott, J.A., Frassl, M.A., Janse, J. 
H., de Mora, L., Robson, B.J., 2020. A system of metrics for the assessment and 
improvement of aquatic ecosystem models. Environ. Model. Softw. 128, 104697 
https://doi.org/10.1016/j.envsoft.2020.104697. 

Hjøllo, S., Hansen, C., Skogen, M., 2021. Assessing the importance of zooplankton 
sampling patterns with an ecosystem model. Mar. Ecol. Prog. Ser. 680, 163–176. 
https://doi.org/10.3354/meps13774. 

Hora, J., Campos, P., 2015. A review of performance criteria to validate simulation 
models. Expert Syst. 32 (5), 578–595. https://doi.org/10.1111/exsy.12111. 

Ives, A.R., 2018. Informative irreproducibility and the use of experiments in ecology. 
Bioscience 68 (10), 746–747. https://doi.org/10.1093/biosci/biy090. 

Jakeman, A.J., Letcher, R.A., Norton, J.P., 2006. Ten iterative steps in development and 
evaluation of environmental models. Environ. Model. Softw. 21 (5), 602–614. 
https://doi.org/10.1016/j.envsoft.2006.01.004. 

Kramer-Schadt, S., Revilla, E., Wiegand, T., Grimm, V., 2007. Patterns for parameters in 
simulation models. Ecol. Modell. 204 (3–4), 553–556. https://doi.org/10.1016/j. 
ecolmodel.2007.01.018. 

Laatabi, A., Marilleau, N., Nguyen-Huu, T., Hbid, H., Babram, M.A., 2018. ODD+2D: an 
ODD based protocol for mapping data to empirical ABMs. Jasss 21 (2). https://doi. 
org/10.18564/jasss.3646. 

Levin, S.A., 1992. The problem of pattern and scale in ecology. EcologyEcology 73, 
1943–1967. https://doi.org/10.2307/1941447. 

Link, J.S., Fulton, E.A., Gamble, R.J., 2010. The northeast US application of ATLANTIS: a 
full system model exploring marine ecosystem dynamics in a living marine resource 
management context. Prog. Oceanogr. 87 (1–4), 214–234. https://doi.org/10.1016/ 
j.pocean.2010.09.020. 
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