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The deep learning (DL) revolution is touching all scientific disciplines and corners of our lives as a means of harnessing the power of big data.
Marine ecology is no exception. New methods provide analysis of data from sensors, cameras, and acoustic recorders, even in real time, in
ways that are reproducible and rapid. Off-the-shelf algorithms find, count, and classify species from digital images or video and detect cryptic
patterns in noisy data. These endeavours require collaboration across ecological and data science disciplines, which can be challenging to initiate.
To promote the use of DL towards ecosystem-based management of the sea, this paper aims to bridge the gap between marine ecologists and
computer scientists. We provide insight into popular DL approaches for ecological data analysis, focusing on supervised learning techniques with
deep neural networks, and illustrate challenges and opportunities through established and emerging applications of DL to marine ecology. We
present case studies on plankton, fish, marine mammals, pollution, and nutrient cycling that involve object detection, classification, tracking, and
segmentation of visualized data. We conclude with a broad outlook of the field’s opportunities and challenges, including potential technological
advances and issues with managing complex data sets.
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state of marine ecosystems so that management decisions are well-

Introduction informed. Ideally, such decisions use ecosystem-based manage-

Marine ecosystems are complex, highly diverse, and productive,
providing renewable resources to a growing human population. At
the same time, the oceans are particularly sensitive to and impacted
by anthropogenic stressors (Antéo et al., 2020). As such, the scien-
tific community strives to deliver up-to-date information about the

ment (EBM) approaches to preserve ecosystem health and produc-
tivity while allowing appropriate human use. EBM is especially rele-
vant in densely populated coastal areas. During this period of rapid
environmental change, EBM requires researchers to track ecolog-
ical change and critical events when, and not well after, they oc-
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cur. Fortunately, technological developments in observation meth-
ods over the last couple of decades have provided ecologists with
a range of new tools for obtaining vast amounts of data from ma-
rine ecosystems. These include high-end cameras, echo sounders,
and hydrophones, combined with various sensors to measure en-
vironmental parameters. Researchers can attach such technologies
to cabled observatories or static rigs to assess temporal dynamics,
or remotely or autonomously operated vehicles to evaluate spatial
variability. However, because these technologies can produce an un-
precedented amount of data, which has traditionally required man-
ual processing, ecologists may be reluctant to adopt them as an al-
ternative or supplement to traditional sampling techniques. For ex-
ample, using traditional gear (e.g. nets and traps) to assess the abun-
dance of fish has been an established sampling technique for cen-
turies and is still used today. These methods are efficient for manual
data handling and straightforward: as soon as the fish are caught,
counted, and the data entered, it can be analysed by the researchers.
On the other hand, detecting and counting fish with cameras is less
destructive to animals and habitat, offers high-resolution temporal
data, allows researchers to observe behaviour of animals and habi-
tat use, and often provides a more representative estimate of species
diversity and relative abundance (Bacheler et al., 2017). However,
extracting all of this information from videos manually is a labori-
ous task. Thus, automating this step would undoubtedly encourage
more fish biologists to use cameras for data collection.

Many diverse fields of research are undergoing rapid change due
to advances in the use of artificial intelligence (AI) for data inter-
pretation. AT offers fast and accurate analysis of the large volumes
of data collected by sensors, cameras, and other observation tech-
nologies. Off-the-shelf algorithms can now, with high precision,
find, count, and classify organisms from digital images and real-
time video, (Lopez-Guede et al., 2020; Knausgérd et al., 2021; Li
and Du, 2021) and detect cryptic patterns in noisy images or acous-
tic data (Weinstein, 2018). An increasing number of marine ecolo-
gists embrace this opportunity, yet initiating collaborations across
ecological and data science disciplines can be challenging for sev-
eral reasons. First, transferring the necessary information to start
a project between an ecologist and a computer scientist can be a
steep learning curve because knowledge barriers and field-specific
jargon can cloud otherwise fruitful discussions and halt progres-
sion. Second, ecologists unfamiliar with AT may not be aware of the
opportunities available to address a particular problem. Before an
ecologist approaches an Al expert, they may need to know about
the possibilities and limitations of AI, how to prepare and annotate
data sets, and what information to provide the computer scientist
to identify the best AI method for the task at hand. Meanwhile, be-
fore advising on the possibilities, the computer scientist may find it
challenging to understand the underlying ecological question, the
data and its inherent variability/noisiness, how it is categorized, and
whatlevel of accuracy is needed. Thus, substantial investment in the
interdisciplinary partnership is required in order to achieve a com-
mon understanding.

This paper aims to bridge the gap between marine ecologists and
computer scientists to expedite the initial stages of collaboration. To
provide common ground, we describe the most popular and suit-
able AI techniques for ecological data analysis, including techni-
cal concepts. Al is a general term referring to any Al technique
that can solve a complicated problem (Goodwin, 2020; Russell and
Norvig, 2002). We focus on applicable and well-established meth-
ods, namely deep neural networks (DNNs), synonymous with “deep
learning” (DL), and learning with supervision (supervised machine
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learning). Supervised learning requires algorithms to be presented
with datasets that have been labelled with accurate information on
the region of interest, for example the presence or location of known
species, objects, or sound. The algorithms learn to associate the la-
bels with the examples (Christin et al., 2019). With enough train-
ing material, the algorithms can produce models that automatically
recognize and identify new and unseen examples in other datasets
without the need for new labels (LeCun et al., 2015). One of the
biggest challenges for supervised learning is the demand for a large,
labelled training dataset of sufficient quality to achieve high accu-
racy (Malde et al., 2020; Beyan and Browman, 2020). Close collab-
oration between ecologists and computer scientists would likely fa-
cilitate and accelerate the dedicated effort required to collect and la-
bel representative datasets (Weinstein, 2018; Schneider et al., 2019;
Beyan and Browman, 2020).

This paper is organized as follows: In "A non-comprehensive re-
view of DL", we summarize popular DL tools relevant for ecologists
and explain standard AI terms. We then provide an overview of
machine learning approaches as applied to a series of marine ecol-
ogy case studies (Table 1). The section "Established cases: identi-
fication and quantification of marine biodiversity" describes three
cases where AT has been applied to ecological data, namely: fish de-
tection, classification, and tracking in underwater videos; image-
based analysis for plankton monitoring; and acoustic monitoring
of whales. These applications are generally focused on species and
higher-order taxonomic classification for biomonitoring purposes.
Yet, DL in ecology research is not limited to these cases and we are
confident that the DL toolset will further impact emerging research
areas in marine ecology at additional levels of biological organiza-
tion. Therefore, the section "Emerging cases" continues with four
case studies where we see the potential for DL to make a major im-
pact. At the individual level, we show the potential for DL to en-
able individual visual re-identification of fish using unique patterns
(similar to facial recognition) and analysis of fish vocal communica-
tion to identify individuals (i.e. vocal recognition) to better under-
stand mating behaviour. At the ecosystem level, we show how DL
can aid in ghost fishing gear detection and determining the ecolog-
ical functions of fish in the carbon cycle. We conclude by discussing
technological advances, complexity in data, and acceleration of data
collection and labelling through open-source approaches.

A non-comprehensive review of DL

Al is a broad concept, but the most commonly applied technique
is machine learning. Machine learning is a set of algorithms that
learn from an environment containing data such as images. The
most common Al approach used in biology is supervised learning,
which is when the data are labelled or categorized so that the algo-
rithms can learn from the data. Conversely, unsupervised learning
is when algorithms do not use labelled data but, instead, learn data
structures that are reinforced when the algorithms continuously in-
teract with an environment, such as playing a board game. Figure 1
illustrates the overall procedure for training and application of Al
with supervised learning.

Among the most popular and widely used AI algorithms are
the family of artificial neural networks. A neural network is a
set of human brain-inspired networks with artificial neurons and
synapses that are trained to approximate an external function, typ-
ically mapping from input data (e.g. images) to labelled values or
categories (e.g. classes). A neural network consists of a layer of input
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Table 1. Machine learning approaches to ecological data applied (green) or explored (blue) in the case studies (C1-C7), and some alternatives (orange). Grey cells indicate no added benefit to using

that approach for the task. Approaches: (Ap A): One label per region of interest, (Ap B): One label per image, (Ap C): Pixel-wise segmentation, (Ap D): Ground truth spectrograms with labelled

region of interest, (Ap E): Labelled spectrograms with regions of interest, and (Ap F): Segmented time series data.

Segmentation

Classification

Object detection

Case studies

Possible method

When to use

Possible method

When to use

Possible method

When to use

R-CNN with Ap C

Outlines of 14 regions

Squeeze-and-excitation

Images with 1/0

Images with 14 fish YOLO with Ap A

Fish and species counting

wanted
Images with single

with Ap B

CNN with Ap B

fish/species
Images with single

()

Plankton analysis (C2)

R-CNN with Ap C

YOLO with Ap A

Images with 1+

organism

organisms

organisms

(morphology)
Separation for 0+ calls in

RNN with Ap E or

CNN with Ap F

Spectrograms with 1/0

Spectrograms with 1+ R-CNN with Ap D

Marine bioacoustics (C3)

transformer with Ap E

R-CNN with Ap C

time series
Images with fish outlined

calls

Images with 1/0

calls
Images with 1+ fish

CNN with Ap B

YOLO with Ap A

Re-identification in fish

individuals
Spectrograms with 1/0

populations (C4)

Fish vocal

RNN with Ap E or

Separation for 0+ calls in

CNN with Ap F

R-CNN with Ap D

Spectrograms with 1+

transformer with Ap E

R-CNN with Ap C

time series
Areas with partially

calls
Images with 1/0 gear

individual calls
Images with 1+ gear

communication (C5)

Ghost fishing gear

CNN with Ap B

R-CNN with Ap A

dissolved fishing nets
Images or video with

detection (C6)
Carbon cycling by fish

YOLO with Ap C

CNN with Ap B

Images with 1/0 life

R-CNN with Ap A

Images with 1+ life

moving processes

processes

processes

(@)

neurons connected to the input data and a layer of output neurons
mapping to the values or categories to be predicted. It is common
to have layers between the input and output, which are referred to
as hidden layers. When a network has more than one hidden layer,
it is referred to as DL or a DNN.

Neural networks, especially DL, are the go-to machine learn-
ing approach for categorizing and recognizing images and sound
data. These techniques have won numerous pattern recognition
and machine learning competitions for image and sound analyt-
ics (Schmidhuber, 2015; Tessler et al., 2017). In recent years, DL has
become the predominant analytical technology in many domains,
including health (Esteva et al., 2019), customer evaluation (Less-
mann et al., 2019), and crisis management (Ben Lazreg et al., 2019;
Ben Lazreg, Noori, Comes and Goodwin, 2019). Aquatic ecology
has experienced the early stages of the same shift, where object de-
tection and semantic segmentation are being used to identify and
locate marine species in raw images, videos, and audio recordings
for the purpose of species (Knausgard et al., 2021) and individ-
ual (Bogucki et al., 2019) classification, and to quantify abundance.
Despite the domination of deeper over more shallow neural net-
works, there is no need to employ DL models exclusively. Depend-
ing on the complexity and the nature of the problem, various models
with different depths can be utilized. For example, Kohonen net-
works, which consist of only one layer, are shallow but useful for
biology-related classifications and visualization (Suryanarayana et
al., 2008). In addition to identifying and counting fish and other
marine animals, there is enormous potential to apply DL to a wide
range of data in coastal ecology (Grasso et al., 2019; Marre et al.,
2020). In the following subsections, we will briefly go through the
basics of DNN. A glossary of Al terms is summarized in Table 2.

DNNs

All neural networks are function approximators; they mimic the
function presented in the training data and adapt to this function
through an optimization process. During training, the neural net-
works’ weights, which are many real-valued and connected neurons
followed by activations, are updated to match the training data. In
more detail, the real-valued difference between the predicted out-
put, Y, and the expected output, Y, is referred to as the loss, which
guides the training. For example, Y can be a list of image categories
where each value in the vector relates a category to an image, and ¥
is then the neural network’s predicted image categories. If the neural
network is able to correctly predict image categories, ¥ will be iden-
tical to Y and the loss will be zero. The goal of the training process
is, generally speaking, to minimize the loss. However, the loss min-
imization should be done with care since a small loss may indicate
that DL has learned specific patterns for each example rather than
general trends in the data (i.e. overfitting). To check for overfitting, a
separate validation data set is normally employed to independently
evaluate the algorithm’s performance.

A properly trained network has active or inactive neurons that
jointly match the training data and minimize the loss. This is anal-
ogous to a series of virtual dials that can be turned completely
on, completely off, or somewhere in between, indicating the rele-
vance for each feature. During training, the loss for each neuron
is propagated backward through the network so that each neu-
ron’s contribution matches the product of the weight and a hyper-
parameterized learning rate. Hence, each neuron’s influence of the
loss is matched with a corresponding adjustment of weights, and its
adjustment is kept small by the learning rate. When the loss is prop-
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Figure 1. The workflow of Al based strategies. (1) The (yellow) column illustrates the training phase, in which labelled data is used to train the
Al algorithm. (2) The first row (blue) shows that the performance of the trained Al is evaluated using a validation data set and the Al algorithm
may be updated and refined in this process. (3) The bottom row (green) shows the application phase, using the Al on a test data set once the

training and validation are completed.

agated backwards, the dials are turned slightly in the direction that
decreases the loss.

A neural network is considered shallow if it has one layer of in-
put neurons, one layer of hidden neurons, and one output layer.
The same network would be considered deep if it had more than
one hidden layer, and very deep if it had more than ten hidden lay-
ers. Any neuron that is not at the input layer combines a weighted
sum from active neurons in the previous layer. The sum is then fol-
lowed by an activation function for the next layer of neurons. De-
spite popular belief, the depth of the DL may not be proportional
to the difficulty of the problem that it can solve. It is not always
true that deeper networks solve more complicated issues than shal-
lower networks. Some problems can be solved with shallow net-
works, but in many cases very deep models empirically outperform
the shallow ones for image and sound categorizations. For exam-
ple, a type of neural network called Residual Networks (sometimes
abbreviated to ResNets) often has 18, 34, 50, or 101 layers. Usually,
the deeper networks perform better image classification, but occa-
sionally the most shallow network, with 18 layers, is sufficient and
even more accurate than the deeper networks (Aloysius and Geetha,
2017).

A poorly trained network is said to ‘overfit’ when it performs sig-
nificantly better on the training data compared to the testing data
and increased training improves the training results but, at the same
time, worsens the testing results. Hence, overfitting is observable by
increased training accuracy and decreased testing accuracy. A po-
tential mitigation is to increase the complexity of the network or
increase the amount of training data.

A notable limitation of DL is its dependency on vast amounts of
training data. The data requirement typically becomes a significant
problem in supervised learning, as a successful application in most
cases depends on large quantities of human-classified training
examples. This challenge is extensively presented in the marine
biology domain, as the limited capacity of trained experts makes
extensive and quality-assured labelled training databases hard to
acquire. A beneficial property of deep unsupervised learning is its

independence of labelled data. However, due to the unsupervised
nature, the application area is rather limited in the marine biol-
ogy domain and has mostly been confined to finding anomalies
through re-identification (Dargan et al., 2019; Ferreira et al., 2020a)
and data clustering.

Deep semi-supervised learning has emerged in recent years to
mitigate the limitations of supervised and unsupervised learning.
Semi-supervised approaches combine training on a small amount
of labelled data with a subsequent training phase using large
amounts of unlabelled data. In applications where there is often a
lack of human-classified training data, semi-supervised learning is
especially useful.

In the paragraphs below, we summarize typical problems rele-
vant to marine ecology where DNN can be utilized as a promising
solution.

Image classification

DNN is the de facto standard for machine vision, such as the cate-
gorization of images and video files. The most prominent approach
among various DNNs is Convolutional Neural Networks (CNNs),
which extract relevant features of an image for subsequent classi-
fication by a neural network through a series of two-dimensional
mathematical convolutional operations with learnable filters of typ-
ical sizes 3 x 3,5 x 5,and 7 x 7 applied in the image pixels. A CNN
trained for classification of images finds the function that best maps
the input of pixels to a class, e.g. presence of a fish, plankton, or a
rope in the photo (Figure 2). Note that the CNN generates small im-
age blocks from the convolutionals of overlapped data within each
image. CNN categorizes the image but does not output in which
part of the image the object is located.

The first popularized CNN models were LeNet-1-LeNet-5 (Le-
Cun et al., 1995), which contain all the basic building blocks still
used today. A major advancement, in terms of both architecture and
performance, came in 2012 with AlexNet (Krizhevsky et al., 2012).
AlexNet achieved an error rate of 15%, which was better than all
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Table 2. Glossary table.

Glossary

Accuracy
Activation
Area Under the
Curve (AUC)
Attentions
Classification
Convolution
Convolutional neural
network
DL/DNN
Encode-decoder

False negative rate
False positive rate
Feature extraction
Features

Hidden layer
Hyper parameters
Layer

Loss

Machine learning
Model

Neural network

Neuron

Object detection
Overfitting
Weights

Pattern

Pattern recognition

Precision

Receiver operating
characteristic
curve (ROC)

Recall

Recurrent network

Semantic segmentation

Supervised learning
Synapses

Labelled training data
Testing data

True predictions
Underfitting

Fraction of correct classifications

A non-linear mathematical operation. It is often used to approximate “turning on” or “turning off” an artificial neuron
A summary of the ROC curve that shows capacity of a supervised learning algorithm to distinguish between classes.

A perfectly performing algorithm will have an AUC of 1
A DL technique to learn and indicate which sequence in a time series or which region of image to pay attention to
Categorization of input data into classes
Mathematical operation that expresses the amount of overlap of one function as it is shifted over another function
A neural network with convolutions, typically used for image classification

A neural network with more than one hidden layer

A neural network that encodes the input data into an internal representation, followed by a neural network that
decodes the internal representation, typically to a human readable format

The rate of wrongly predicted negative values

The rate of wrongly predicted positive values

An operation to select and extract values into feature, typically from unprocessed data

Valued characteristics, typically numeric or structural, representing the input data

Any layer of neurons in between the input and the output layers

User-controlled parameters that influence the model such as number of layers

A set of neurons that takes data as input and typically does a combination of linear (synapses) and non-linear
operations (activation)

A real number indicating the incorrectness of a single prediction and is typically used to adjust the weights of the
neural network

Trainable computer programs that learn the representation of data with an aim to predict never-before-seen data

A representation of what a machine learning program has learned. In a neural network, the model is a combined
structure consisting of the network and learned weights of the algorithm

A brain-inspired machine learning technique with an input layer (features), one or more hidden layers, and an output

layer (predictions)

A node that combines input data with learned weights and provides a single output

Recognize the presence of an object instance in a location or area

When a model closely predicts the training data but fails to fit testing data

Real values in a neural network in which each parameter individually prioritizes each data value, and that are
updated in the learning process

Common trends and regularities in the data such as statistical trends often unique for one category

Methods to detect patterns in input data

The frequency of true positives among all positive predictions

A graph displaying a supervised algorithm’s performance at all classification thresholds. Typically, the relationship
between the rate of true predictions and the rate of false predictions

The frequency of correctly identified positive values from all positive values in a data set

Neural networks that connect between nodes to form a directed graph to detect patterns that occur, often over a
time series

The process of partitioning images into labelled regions

Machine learning that maps an input to a specific, often labelled, output

Learned weights on the input data for a layer, i.e. how to prioritize the input features

Data used for training the model. It is kept separate from testing and validation data

Data used for independently evaluating the trained model. It is kept separate from training and validation data

Model output that corresponds with the correct values

When a model has not reliably learned the patterns of the data

Unsupervised learning
Validation data

Machine learning that finds patterns in unlabelled data
Data used for verifying the model and tuning the hyper parameters during training

non-neural network architectures, for which the previous best error
rate was 26%. These early models suffered from vanishing gradients,
meaning that the input data was gradually lost when additional lay-
ers were added. This limitation hindered the development of DNN
and the performance of the DL models suffered. Later, major in-
novations included: (1) inception networks (Szegedy et al., 2015),
which utilized parallel convolutions of different sizes, (2) residual
architecture (He et al., 2016), which added skip connections to al-
low for an image to both be processed by convolutions and skipped

through the network, and (3) squeeze-and-excitation networks (Hu
et al., 2018), which introduced a method to add additional param-
eters to each convolutional block so that the model could adjust the
weight of each block. Each of these innovations has enabled larger,
more complex networks. Therefore, the rapid advancement of the
image classification field indicates that the newest techniques are, in
general, much better than earlier ones. Unless there is specific ev-
idence to the contrary, practitioners are advised to choose a more
recent approach.
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Figure 2. Examples of classification, object detection, and pixel-wise segmentation with illustrations of the techniques applied to fish images or

audio files.

Object detection and semantic segmentation

Object detection extends CNN models by detecting regions of in-
terest in the image (Figure 2). In addition to classification, a network
trained for object detection can output the x- and y-location, width,
and height of the object of interest. This information is then used
to draw a boundary box around the object to be classified, e.g. a
fish. In this way, a single image can be divided into multiple regions
by generating several boundary boxes, allowing for many classes
to be classified within a single image. In practice, this means that

we can detect and count objects in an image or a video, e.g. the
number of fish. The approach has been extended even further by
pixel-wise detection and classification of the entire image. This ap-
proach scales down the image with convolutions and pooling op-
erations, followed by reverse order scaling-up of the same image.
This is known as an encoder—-decoder architecture (Girshick et al.,
2014) and allows for categorization of every region in the image at
a high level of detail. A commonly used method for object detec-
tion is You Only Look Once (YOLO; Redmon et al., 2016; Yu et al.,
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2021). Variants of Region-based CNN (R-CNN), including Fast R-
CNN (Girshick, 2015), and Mask R-CNN (He et al., 2017), are used
for pixel-wise segmentation.

Individual identification

A Siamese Neural Network (SNN; Koch et al., 2015) is a type of
DL model that contains two identical sub-networks with the same
layers, hyper parameters, and weights. The neuron weight updates
are mirrored and so can be used to find the similarity of the inputs
by comparing vector features. An SNN allows us to detect if two
images are the same, e.g. two faces are of the same person or two
fish photos are of the same fish taken at a different time. Hence, an
SN can classify a new class without re-training the entire network.
Other features include robustness to class imbalance (i.e. data is un-
equally distributed between classes) and learning efficiency in the
semantic similarities between images. However, SNNs need more
training data and longer computational time than competing net-
works.

When training an SNN, a typical loss function used to detect dif-
ferences in input is a so-called triplet loss, in which the baseline
input is compared both with a positive and a negative example. A
perfectly trained SNN should have a zero loss for the positive ex-
ample and a loss for the negative example. For example, when de-
tecting individual marine animals, a comparison between pictures
of the same animal should have a smaller loss than a comparison
between pictures of two different individuals of the same species.
This approach can be used as a method for classification to identify
if two pictures include the same individual and verify whether an
image consists of an individual that is not part of the training data.
Figure 2 provides examples of classification, object detection, and
segmentation, and how they are typically evaluated.

Audio signal classification

Audio signal classification is a classic yet challenging field of au-
dio signal processing. In brief, it comprises capturing appropriate
features from an audio sequence and employing these features to
distinguish the class that the sequence is most likely to fit. Depend-
ing on the application domain, one may predict a global signal class
with a unique label or a subset of the possible classes with multi-
ple labels. Traditionally, finding appropriate features and designing
a suitable classifier are configured as separate procedures. This ap-
proach has several drawbacks. The extracted features might not be
optimal for the classification objective. Further, certain features may
require prior human knowledge, be difficult to describe precisely, or
be subjective and unstable. As mitigation, DNN-based approaches
are developed to perform feature extraction jointly with classifica-
tion.

In contrast to feed-forward neural networks, recurrent neural
networks (RNNs) contain feedback loops. These loops allow RNNs
to use their reasoning from previous data to influence upcoming
data, hence lending themselves to process a series of data. This fea-
ture is useful when working with data that changes over time, so-
called time series, including audio signals. RNNs vary in complex-
ity, from standard RNNG, often called vanilla RNNs, to models with
more complex memory elements, including gated recurrent units
(GRUs) and long short-term memory (LSTM). The more complex a
module is, the more likely it is to learn intricate patterns in the data.
However, increasing the complexity also increases training time and

the chance of overfitting. Therefore, the choice of RNN will depend
heavily on the level of complexity of the pattern(s) of interest.

A recent trend is to combine RNNs with new variants of feed-
forward methods such as attentions (Phan et al., 2019; Chaudhari et
al., 2021), combine them with multiple attentions coupled together
into the collective concept of transformers (Moritz et al., 2020; Tay
et al., 2020), or avoid RNNs altogether and only use transform-
ers. Attention and transformers weigh the significance of input data
and, like RNNs, they are designed to handle sequential input data
such as audio signals and other time series. However, unlike RNNs,
there is no feedback loop, which means that it learns the context
for any position in the input sequence. Despite similarities, atten-
tions and transformers are technically not RNNs since they do not
rely on recurrent feedback loops but rather a more straightforward
feed forward mechanism. However, a transformer has more param-
eters to learn and is, therefore, more computationally intensive. In
practice, developers must balance the complexity of the models with
available training time and resources. RNNs, CNNs, and attention
modules can be combined to improve the performance of the sys-
tem. For example, an attention-based convolutional RNN model
is utilized for environmental sound classification (Zhang et al.,
2020).

Another approach for audio classification is to convert the au-
dio into a visual representation and use image classification as de-
scribed above. Spectrograms are such a visual representation and
can be classified using a DNN or CNN. These mechanisms, alone
or in combination, can be utilized for audio classification tasks in
marine ecology-related applications. Figure 2 includes examples of
classification, object detection, and data point segmentation with
CNN and RNN networks for audio categorization.

Evaluation criteria

To evaluate the performance of a trained model, different parame-
ters are utilized by the different approaches, such as accuracy, pre-
cision, and recall (Figure 3). Accuracy is the ratio of correct clas-
sifications to the total number of classifications. Precision for the
positive predictions is the ratio of true positive predictions over the
sum of true positive and false positive predictions. The same con-
cept applies to the precision of negative prediction. Recall is the ra-
tio of true positive predictions over the sum of true positive and
false negative predictions. A result of a DL algorithm may be pre-
cise but not accurate when results are biased but with small vari-
ance. A DL algorithm is considered valid if it is both accurate and
precise.

For example, if the expected output Y is five images of cod and
five images of trout, and the predicted output ¥ correctly identifies
all cod and only four of the trout, with one trout wrongly identified
as cod, the algorithm is correct nine out of ten times, yielding an
overall accuracy of 90%. In this example, the precision for trout is
100%, i.e. all trout were predicted as trout, but only % = 83% for
cod, i.e. for all the predicted cod, only 83% are actually cod. The
recall for cod will be 100%, i.e. the algorithm identifies all cod, but
the recall for trout will be £ = 80%, i.e. the algorithm only identi-
fies 80% of the trout. Table 3 illustrates this example as a Confusion
Matrix.

The parameter used for performance evaluation depends on the
data. Accuracy is most suitable if the data set is balanced, mean-
ing an approximately equal number of examples in each class, and
where false positives and false negatives have similar implications.
But if the data set is imbalanced, which is typical for ecological
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Figure 3. Evaluation metrics accuracy, precision, recall, F1-score, and Intersection over Union (loU) for classifications, predictions, object

detections, and segmentations.

Table 3. Example of a Confusion Matrix with five cod and five trout.

True
Cod Trout
Predicted Cod 5 0 Recall=5/(5+ 0) = 100%
Trout 1 5 Recall = 4/(4 + 1) = 80%
Pre. Precision=5/(5+1) = 83% Precision = 4/(4 + 0) = 100% Accuracy=9/10 = 90%

data (e.g. some species are more common than others), precision
or recall are better. A high precision relates to a low false-positive
rate, whereas a high recall relates to how well the model detects the
class in the total data set.

Closely related to precision and recall is the Receiver Operated
Characteristics (ROC) curve, where the true positive rate is on the
y axis and the false positive rate is on the x-axis. Each AI output in-
cludes a score that represents certainty. Changing the threshold of
acceptable scores affects how conservative the output will be. Only
accepting output with a high classification score will result in few
false positives but many false negatives. Conversely, accepting out-
put with a lower score will result in more false positives but fewer
false negatives. The normalized Area Under the ROC Curve (AUC)
describes how well the algorithm works across this range of score
thresholds. The value of AUC is a number between 0 and 1, with
the latter describing a perfect network.

The F1 score, a unified metric, is a weighted average of precision
and recall and, therefore, encompasses both the false positives and
false negatives. A general rule of thumb is to use the F1 score for
evaluation when unsure based on the other metrics.

For object detection and semantic segmentation, the evaluation
should depict how much pixel-wise overlap there is between the
predicted and actual objects. The metric used is called ’intersection
over union’ (IoU). Using fish identification as an example, an IoU of
0 means that there is no overlap between the areas of the predicted
fish and actual areas of the fish. Conversely, an IoU of 1 means a per-
fect pixel-by-pixel overlap between the predicted and actual areas of
the fish.

Data

There is no universally right answer as to how much data is
needed—generally, the more data, the better. Learning an intricate
pattern requires more data than learning a simpler one. For exam-
ple, for a DL to classify an image as either a sea trout or another
fish species with clear morphological differences, such as a cod, it
may achieve a near-perfect separator with relatively few samples.
However, more data are likely to be required for a model to learn
to distinguish sea trout from a closely related species with similar-
ities in appearance, such as salmon, simply because that is a more
complex task to learn.

Mitigation for the lack of data means using an existing model
with weights pre-trained using other data sources, such as the Ima-
geNet database (Deng et al., 2009a). The typical approach is to first
train with an available, sizeable dataset and subsequently train with
a smaller but more relevant dataset. In this way, the learning al-
gorithms find the general image patterns from a big dataset (e.g.
shapes, species patterns, and face patterns) and the individual dif-
ferences from the smaller dataset. This process, known as transfer
learning, allows researchers to use readily available large data sets
like ImageNet to be used on data that seems highly unrelated to the
data set of interest. For example, ImageNet has been annotated in
categories like ‘balloon,” ‘tiger,” and ‘cat,” yet can be used to train
a network to classify fish vocalizations in the Mexican Gulf (Wad-
dell et al., 2021). However, transfer learning has a greater advantage
when the domain difference between the data is small. Because dis-
tribution in real-world ecological data sets is particularly promi-
nent, undesirable variations can result in misclassifications.
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For a classification or object detection task, the dataset needs to
be labelled (sometimes referred to as annotated), usually by a hu-
man expert (e.g. an ecologist). The labelled data is often referred
to as the Y vector. An accurate classifier algorithm should correctly
map the input, known as the X vectors (e.g. images) to the appropri-
ate Y vector (the labels). These predicted labels are often referred to
as the ¥ vector, regardless of whether the predictions are correct (Y
matches Y), or incorrect (¥ does not match Y).

The labels for a classification task are distinct for each input vari-
able, such as a species of fish for each image. This requires man-
ual categorization and labelling of a large set of images. For object
detection and semantic segmentation, the labels must also indicate
where in the image the object of interest is located. In the case of au-
dio input for RNN and CNN classification, the start and stop times
of all events of interest must be labelled in order to segment the data
into relevant categories. If object detection is used on spectrograms
of audio, the frequency bands must also be labelled, encasing the
contours of interest in the spectrogram. As is the case with images,
existing labelled datasets also exist for audio, which can be used for
training when data is otherwise limited (e.g. the DCLDE 2015 data
set for baleen whale social calls; Huang et al., 2016).

A labelled dataset is divided into three separate datasets, as il-
lustrated in Figure 1: training, validation, and testing. The training
set is used to train the model, meaning that it tries to find an ap-
proach to map the training set’s input vector X (images) with the
training set’s correct labels Y. The validation set follows and is first
used to check whether the algorithm can map the validation set’s in-
put vector X with the validation set’s correct labels Y, which is sepa-
rate from the training set vectors. This validation set then provides
a prediction/classification that can be used to evaluate the perfor-
mance of the model. After this evaluation, further fine-tuning of the
model hyperparameters can be done and the model retrained with
the training set if needed (Figure 1). Note that because the model
has used the validation set as part of the training process, a new set
is needed for the final check of how well the algorithm can classify.
This is called the test set. Hence, the training data set is used for the
actual optimization process, while the validation data set is used for
performance feedback after each training step (epoch). This means
that the validation data steers the tuning of hyperparameters and
will therefore heavily influence the weights of the final model. In
contrast, the testing data is used for verification of the final model
only and not for the optimization and selection process while train-
ing. Because the test set is kept out of the entire training process, it
serves as an independent verification of the resulting model.

If the trained network performs poorly, a possible cause is that
the dataset is too small. A simple mitigation is data augmentation,
which is used to artificially enlarge the data set and essentially dupli-
cate the training data with modifications. It is important to note that
only the training data should be augmented and any augmented im-
age should not have a counterpart in the validation or test sets. Such
an inappropriate use of augmentation would falsely increase perfor-
mance. Typical augmentation techniques include flipping horizon-
tally and vertically, rotating, scaling, cropping, translating the x- and
y-coordinate systems, and adding noise. More advanced techniques
include using Generative Adversarial Networks for generating new
images.

Established cases: identification and quantification
of marine biodiversity

The application of DNN provides an alternative to laborious or
repetitive manual tasks, such as processing data from underwater

recording equipment. The following section presents three cases
in ecological research where DL is already used to alleviate data
processing and is likely to become the method of choice. These
cases exemplify the methods described in the section "A non-
comprehensive review of DL":

Case 1: detection, classification, and tracking of fish in
images and videos

Monitoring of fish populations and communities is a central activ-
ity within marine management and conservation. Traditional sam-
pling methods to track population trends, estimate abundance, and
to infer movement patterns of fish have relied on studies that involve
animal handling (i.e. fishing gears, individual tags, and biologgers).
These methods are not only invasive, but also time consuming. De-
veloping and applying passive ways to both obtain the necessary
data and to speed up analysis are therefore imperative. Today, au-
tomated detection, classification, and tracking of small-scale move-
ments of fish through images and video are made possible with DL,
an application well-suited to this task.

When selecting AI approaches for monitoring, consider that a
real-life underwater scenario typically involves multiple fish present
in the same image, which precludes the use of standard classifica-
tion techniques. A solution to this problem is to introduce object
detection before classification. The object detection step discrimi-
nates between individuals within an image and separates them, and
in this way, prepares the image data for classification. Object de-
tection and classification can be two completely separate steps in a
pipeline (Knausgard et al., 2021; Connolly et al., 2021), or integrated
as part of an object detector, such as YOLOv1-YOLOv5 (Redmon
et al., 2016; Bochkovskiy et al., 2020; Jalal et al., 2020; Yang et al.,
2021; Shin et al., 2021; Yu et al., 2021).

Detecting and counting species from still images and videos is
relatively straightforward using standard DL object detection algo-
rithms, as described in "A non-comprehensive review of DL". How-
ever, a challenge with setting up a detection algorithm is that well-
established object detection training datasets, such as Coco (Lin et
al., 2014) and ImageNet (Deng et al, 2009b), include few or no
images within the category of each species of fish and with very
little variation in the background. Thus, the applicability of such
data sets is limited to the first part of a transfer-learning process, in
which object detection in general is learned. To increase the preci-
sion of detection for a specific use-case in marine ecology, one must
then train the DNN with more relevant images (e.g. of fish in their
natural environment). Collecting and labelling relevant image and
video data is therefore central to building a high-performance and
robust fish detector. Public datasets are currently an integral part
of this research, particularly for fish detection and species identifi-
cation (e.g. Fish4Knowlege; Fisher et al., 2016, datasets of temper-
ate fish species; Knausgard et al., 2021, and across species, location,
and depths, as in NOAA fishery datasets; Link et al., 2015, and the
OzFish dataset; Ditria et al., 2021). The best performance by Al in
species identification (i.e. classification) is achieved with a special-
ized CNN that only classifies species without detecting at the same
time. The squeeze-and-excitation-based CNN presented in (Knaus-
gard et al., 2021) reached classification accuracy of 99.27% on the
Fish4Knowledge dataset (Fisher et al., 2016) and 87.74% on a sec-
ond temperate species dataset.

Marine researchers often collect videos rather than still images
and are interested in tracking the same animal across consecutive
frames to obtain information on behaviour (e.g. to estimate swim-
ming speed; Beyan et al., 2015), or to ensure that the same fish is not
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counted multiple times (Lopez-Marcano et al., 2021). To continu-
ously follow a moving object’s position in a video sequence, such asa
swimming fish, object tracking can be used. One way of implement-
ing tracking is to use a detection algorithm that feeds another track-
ing algorithm with position data. When tracking multiple objects
(e.g. a school of fish), a track association decision needs to be made
for each object (e.g. each individual fish). Thus, a complete track-
ing system typically consists of a detection algorithm, association
of detection with tracks, and the actual tracking algorithm. In prac-
tice, tracking commonly involves Kalman filters or other recursive
estimators to enable efficient dynamic tracking of objects (Ristic et
al., 2004), including specific fish (Barreiros et al., 2021). Another
emerging approach is to let DL solve the entire multi-class track-
ing problem in one step (Ciaparrone et al., 2020). This one-step ap-
proach typically results in a more homogeneous system, but with
less fine-scale control than when applying well-understood recur-
sive estimators. Further, a fully integrated CNN-tracking approach
leaves less room for the user to include a priori information on ex-
pected fish dynamics and behaviour. A CNN-only approach will,
however, completely avoid the meticulous tuning requirement of
mathematical models and Kalman filter parameters.

We see DL as an essential building block for automating im-
age and video analysis where the goal is to quantify, classify, and
track fish. DL can either be used in a modular pipeline with sep-
arate steps for detection (Knausgard et al., 2021), association, and
track building, or as a complete solution to a multi-object tracking
problem (Jalal et al., 2020; Yang et al., 2021; Shin et al., 2021). As
these DL tools are adaptable for use with different ecosystems or
species by virtue of the training datasets used, the potential for AI
in monitoring is great.

Case 2: image-based analysis for plankton monitoring
Plankton is a highly diverse group with very different morpholo-
gies and sizes ranging from submicrons to a few centimeters, or
even a few meters (Lombard et al., 2019). Plankton are responsi-
ble for about 50% of global primary production (Field et al., 1998)
and constitute the base of many marine food webs. Some species
serve as bioindicators of ecosystem health, while others can form
toxic blooms with adverse impacts on other marine life, including
commercially important fish. Therefore, tracking seasonal, interan-
nual, and spatial changes in plankton composition and abundance
is central to coastal monitoring. Image-based monitoring is now an
established tool in many regions and it generates an ever-increasing
volume of plankton images each year. Various Al approaches have
been developed to analyse this data and reduce manual processing.
Plankton identification and counting are arguably some of the most
useful examples of DL in marine biology. The ultimate goal is fully
automated plankton classification without human biases (Culver-
house, 2007). This bias is not trivial, as human experts can only
achieve 67-83 % self-consistency during a difficult classification
task (Culverhouse et al., 2003), although accuracy is much higher
(> 90%) when working with natural plankton samples with many
taxa which have variable classification difficulty (Luo et al., 2018).
Several systems for image acquisition and Al analysis of plankton
are commercially available (Lombard et al., 2019), including in situ
(e.g. Imaging FlowCytobot, VPR, and IISIS) and those that image
samples, fixed or fresh, on research vessels or in the laboratory (e.g.
ZooCam and FlowCam). All approaches share the same basic prin-
ciples: pictures are taken of the sampling volume and the objects
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are segmented (i.e. into individual organisms). Each segment is
then classified into one of several pre-defined classes, typically tax-
onomic or functional groups, but living organisms are always sepa-
rated from non-living particles. Besides the predicted classification,
the algorithms can extract object features (e.g. length, width, and
equivalent spherical diameter) and, therefore, provide information
on plankton community structure and function (e.g. normalized
biomass size spectra; Wang et al., 2020). Seasonal and interannual
variability in plankton abundance and composition obtained using
these image-based DL methods is comparable with traditional mi-
croscopy (e.g. FlowCam; Alvarez et al., 2014).

Initial plankton classification models were based on statisti-
cal approaches but soon transitioned into machine learning solu-
tions (Luo et al., 2018; Kerr et al., 2020), including algorithms that
classified plankton based on object features such as size or edge, for
example Support-Vector Machine (SVM) and Random Forest (RF)
algorithms (Faillettaz et al., 2016; Fischer et al., 2020). SVM and
RF algorithms reach 70-90% accuracy in classification for the most
abundant plankton groups, but rare or cryptic species can still be
a problem. These classifiers also cannot extract the object features
from the raw data and instead require these to be manually defined
by ecologists, a cumbersome process. In order to overcome these
issues, CNNG are being proposed, such as collaborative CNNs with
configurations to deal with class imbalance (e.g. where one type of
plankton is much more frequent than another; Kerr et al., 2020) or
when the environment dynamically changes (dataset shift) using a
supervised quantification scheme (Orenstein ef al, 2020). These
CNN s achieve state-of-the-art 90% classification accuracy when
classifying independent test sets (e.g. 97% accuracy classifying 0.1
million FlowCam images; Kerr et al., 2020), although accuracy de-
creases with very many diverse images (e.g. 83% accuracy for 52
million zooplankton images from IISIS; Brisefio- Avena et al., 2020).
Other approaches to improve accuracy of conventional CNNs are
through inclusion of context data (e.g. sampling location and time)
in the classifier (Ellen et al., 2019), using unsupervised clustering of
data (Schroeder et al., 2020), or combining CNNs with SVM clas-
sifiers (Cheng et al., 2020).

DL enables a whole new approach to plankton coastal monitor-
ing by (semi-) automatic analysis of samples either in situ or in the
lab (Wang et al., 2019). DL is used to monitor long-term, seasonal,
and spatial changes in taxonomical groups (Briseo-Avena et al.,
2020) and size spectra (Yu et al., 2016; Wang et al., 2020), to track
plankton that serve as bioindicators of ecosystem health (Uusitalo
etal.,2016), or as an early-warning system for harmful algal blooms
that impact higher trophic levels and, ultimately, humans (Gorocs
et al., 2018; Orenstein et al., 2020). However, DL cannot yet re-
place a taxonomist for difficult identification tasks (e.g. identifica-
tion of certain species or life stages of zooplankton or larval fish),
and as such are not yet adequate for studies that require high tax-
onomic resolution. Experts are also required to create training sets
and validate the results. However, manual hours can be reduced if
training sets and analysis pipelines are made publicly available (Li
et al., 2020; Chen, 2021; Schmid ef al., 2021), as well as through
the creation of global databases and training sets (e.g. Ecotaxa;
Picheral et al., 2017). Ultimately, the combination of traditional
physical plankton sampling with autonomous platforms that com-
bine image-based data with data from other sources (e.g. genomics,
acoustics, and pigments) appears to be the best way forward for
coastal plankton monitoring studies (Gorsky et al., 2019; Lombard
etal., 2019).
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Case 3: passive acoustic monitoring of whales

The use of long-term underwater passive acoustic monitor-
ing (PAM) recording has grown in the last couple of decades to
become an indispensable tool for investigating relative population
trends and temporal and spatial migration patterns of a wide range
of whale species (Wiggins and Hildebrand, 2016).

For many years, the standard procedure for detecting and clas-
sifying whale calls from PAM recording has been to retrieve the
sound recording, use a software package like Triton (Wiggins and
Hildebrand, 2007) to create spectrograms lasting 1-2 min, then
have the spectrograms manually scanned for call contours by a
trained data analyst. This method is not only highly labor-intensive,
as PAM recording can cover months, if not years, but the results
are also subjective (Baumgartner and Mussoline, 2011). As many
whale calls are highly stereotypical, algorithms like matched fil-
tering (Giannakis and Tsatsanis, 1990) and spectrogram correla-
tion (Mellinger and Clark, 1997) have successfully been devel-
oped for automated call detection. However, these methods tend
to work poorly on calls with more variability in frequency mod-
ulation. Hence, manually scanning spectrograms continues to be
used for many call types. The manual procedure of visually scan-
ning spectrograms for known call contours is very similar to the
image classification process. Further, sound classification using DL
is becoming well established outside of marine bioacoustics (Piczak,
2015; Sharma et al., 2020; Mushtaq et al., 2021), which has led
to significant interest in using CNN for automated whale call
detection.

Among the whale calls recently being investigated using CNN
are those of the beluga whale (Delphinapterus leucas) with an AUC
of 0.9906 (Zhong et al., 2020), North Atlantic right whale (Eubal-
aena glacialis) with an AUC of 0.902 (Shiu et al., 2020), killer
whales (Orcinus orca) with an AUC of 0.9523 (Bergler et al., 2019),
and sperm whales (Physeter macrocephalus) with 99.5% accuracy in
detecting sperm whale clicks in 650 spectrograms (Bermant et al.,
2019). A drawback of CNN classification without object detection is
that it does not relay information about where in the image an object
is located. For example, when examining spectrograms where the x-
axis is the timeline, no information is included about the call’s spe-
cific time, nor the number of calls, thus the CNN serves as a “pres-
ence” identification tool only. A work-around for this issue has been
to make the spectrograms very small, covering only a short timeline
(e.g. 2 s; Bergler et al., 2019). When creating a spectrogram, there
needs to be an overlap between two consecutive spectrograms. Oth-
erwise, a call located at the intersection of two spectrograms might
be missed. Using short spectrograms combined with these overlaps
can increase the redundant data up to 20% (Bergler et al., 2019) and
thereby increase the computational cost at a similar level. Object de-
tection can solve these issues for whale call detection. For example,
a custom-made region-based CNN for detecting regions of inter-
est in combination with a transformed pre-trained CNN for fur-
ther classifying the regions of interest was successfully trained and
tested on the highly variable D call emitted by blue whales and 40 Hz
calls emitted by fin whales (Balaenoptera physalus; Rasmussen and
Sirovié, 2021).

Looking to the future, use of Al generally, and DL specifically,
in automated detection of whale calls in PAM recordings will un-
doubtedly benefit from the recent developments in neural architec-
ture search (NAS) algorithms (Sun et al, 2019). This new tech-
nique of automatically developing network architecture from pre-
fabricated blocks will cut down significantly on the work needed to
adapt networks to fit specific species and calls, and make CNN more

n

accessible for whale researchers. A general move from using CNNs
to perform image recognition on spectrograms extracted from the
PAM to using DL directly on the PAM is also anticipated. This can
be done via recurrent networks like long short-time memory net-
works (Hochreiter and Schmidhuber, 1997) or a recently developed
type of network called the transformer (Vaswani et al., 2017).

Emerging cases

A common theme of the established cases mentioned above is that
they replace tasks currently conducted by humans—where using
DL can reduce costs, labour, and sometimes improved accuracy
compared to human analysts. However, DL has the capacity to be
applied to solve more complex tasks, detecting patterns in visual
and acoustic data that are difficult for humans to reliably detect or
discriminate. In this section, we illustrate novel research avenues in
which we predict DL will be successfully applied in the near future.

Identifying and characterizing individual phenotypes
Case 4: visual re-identification of individuals in wild fish
populations
Methods for individual identification are needed to answer many
questions in animal behaviour and ecology, such as growth,
movement, and survival inferred from capture-recapture stud-
ies (Clutton-Brock and Sheldon, 2010). Currently, the most com-
mon approach is to mark animals with various physical identifiers
to recognize individuals upon re-sight or re-capture, such as leg
rings on birds, number scratching or paint on reptiles, or lip tattoos
on larger carnivores. In marine and freshwater systems, capture—
recapture studies on fish are most often performed using external
number tags or radio-frequency identification (RFID) tags (Pine et
al., 2003). However, trapping and tagging surveys are often costly,
logistically challenging to conduct, and are intrusive to the animals.
A less invasive and more practical way forward for data collec-
tion is to use images or videos from wildlife cameras and perform
DL image analysis by taking advantage of natural markings that
make individuals identifiable (Schneider et al., 2019). Like humans,
many animals have unique features about their individual appear-
ance, such as intricate patterns of spots and stripes on the skin, fur,
or feathers. A trained computer vision algorithm can distinguish
between individuals as different classes, even when the identifying
features are highly complex. CNN networks have been trained to
recognize individuals (individual re-identification [Re-ID]) from
photos of animals across many taxa, including birds (e.g., 93.6% ac-
curacy; Ferreira et al., 2020b), turtles (e.g., 95% accuracy; Carter et
al., 2014), and terrestrial and marine mammals (e.g., 92.5% accu-
racy; Schofield et al., 2019). Many fish species also have solid visual
pigmentation; stripes, spots, or mosaic in contrasting colours that
can be clearly seen in images and video surveys (dala Corte and
Moschetta, 2016; Hau and Sadovy de Mitcheson, 2019; Mucientes
et al., 2019), particularly coastal fish like the corkwing wrasse (Sym-
phodus melops; Figure 4). Therefore, development of Re-ID has po-
tential to replace physical tagging for individual identification of
teleost fish, and would also be of great value for monitoring, as
it could be used to assess individual movement, behaviour, and
growth. Re-ID could also solve the problem of double counting
when individuals re-enter the field of view, thus improving video-
based monitoring of abundance (Aguzzi et al., 2015; Campos-
Candela et al., 2018; Perry et al., 2018)
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Figure 4. Established and emerging cases for DL in marine biology, from individuals, to species, to ecosystems. Data input type icons represent
images/video (cases 1, 2, 4, and 6), audio (cases 3 and 5), and large-scale environmental monitoring data that is often stored on remote servers
(i.e. "the cloud”; case 7). Photo credits: Geir Eliassen (ghost fishing gear), Frithjof Moy/Havforskningsinstituttet (kelp forest).

As far as we are aware, Re-ID by CNN has not been tested in
wild populations. One of the challenges preventing the widespread
development of Al-based Re-ID is the need for photos or videos
of known individuals, independently validated with high certainty,
for the training and validation of the algorithm. One solution to this
problem is collecting data by using remote detection systems, such
as RFID technology, to identify individuals tagged with passive in-
tegrated transponders (PITs). By combining PIT-tagging with RFID
and synchronized underwater cameras, a large, automatically la-
belled dataset of many individuals could be created over a relatively
short time (Schneider et al., 2019; Ferreira et al., 2020b).

Case 5: inter- and intra-individual variability in fish vocal
communications

Acoustic communication is a fundamental component of animal
life, especially for aquatic species for which visual cues are not
as effective (Tessler et al, 2017). For example, many fish hear
their species mating choruses from several kilometers away (Winn,
1964). Subtle variation in complex acoustic signals is challenging
for humans to detect or interpret. Furthermore, using algorithms
to detect patterns that defy human perception has technological
limitations, including processing high volumes of noisy, real-time
acoustic data. Using algorithms to detect acoustic signaling presents
the additional challenge of source identification in moving animals.

However, advances both in audio recording technologies and in DL
algorithms that can detect and classify acoustic signals in natural
settings have opened up new systems for study, both on land and at
sea (Parsons et al., 2009). These technologies unlock the potential
for understanding inter- and intra-individual variation in acoustic
communication of fish.

Marine mammals are relatively well studied in this respect, as
vocalizations can be classified at the species, population, and even
individual levels (e.g., Case 3). However, understanding of the di-
versity of fish vocalizations and how these vary within species is
poorly understood. Moving beyond species-level to population-
and individual-level classification of vocalizations is necessary to
understand the ecological and evolutionary consequences of acous-
tic communication in fish and the potential impacts of anthro-
pogenic noise pollution on them. Further, individual-level classifi-
cation permits a better understanding of intra-individual variation
in communication, which is necessary for understanding the role
of vocalizations in fish behaviour and personality.

A prime example is Atlantic cod (Gadus morhua), which use
drumming vocalizations during social interactions, particularly
during mating (Brawn, 1961). Yet, our understanding of inter-
and intra-individual variation in drumming is limited. There
is potential to catalog individual variation in sound production
using DL algorithms (Deng and Yu, 2014). Fine-scale individual
variation in fish sounds, especially without a priori knowledge, is
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beyond human perception. Thus, automating this task requires DL
approaches that do not rely on labelled training sets. Specifically,
CNNs can detect and classify fish sounds by implementing a
transformer network (Deng and Yu, 2014). Transformer networks
work solely on optimized self attention (looking at other positions
in the input sequence for clues that can help lead to a better
encoding of each input element) and are currently state-of-the-art
in translation tasks. The transformer network is rapidly replacing
RNNs previously used for this kind of task, as it solves two of the
problems inherent in RNNs: 1) long computing times due to serial
processing and 2) vanishing gradients.

Ecosystem

Case 6: ghost fishing gear detection

When fishing gear is lost, the continued mortality of fish, crus-
taceans, and other species caught in the gear is termed ghost fish-
ing (Brown and Macfadyen, 2007). The problem is widespread and
high rates of fish trap loss are reported (Vadziutsina and Riera,
2020). Using DL to detect and locate lost gear can greatly increase
the efficiency of clean-up efforts, as human effort could then focus
on retrieving gear (e.g., using remotely operated vehicles). Detec-
tion of ghost fishing gear has been achieved using side-scan sonar
for data acquisition followed by feature cloud generation, which in-
volves looking for objects in an image by identifying areas of high
entropy, then clustering and noise reduction to separate the objects
from noise by looking for clusters of the identified areas (Labbe-
Morissette and Gauthier, 2020).

The next step is using autonomous object detection to extract the
location of lost fishing gear. The detection of lost fishing nets using
a towed underwater camera followed by automatic object detection
has been achieved with a region-based CNN (R-CNN; Politikos et
al., 2021). In that study, fishing nets were detected with higher pre-
cision than any other type of marine litter. Detection of more types
and features of fishing gear is of interest to researchers and clean-
up efforts (e.g. whether the feature detected is a trap, fyke net, or
ropes). Image classification may be an effective approach to provide
this level of detail, where low resolution images are not usually a
hindrance for successful image classification. As well as video, side-
scan sonar on autonomously operated vehicles could provide the
data needed for this approach. Towed underwater cameras may rep-
resent a low-cost option for data collection, whereas autonomously
operated vehicles equipped with side-scan sonar represent a high-
cost option.

Case 7: carbon cycling by fish

The ocean sinks approximately one-third of greenhouse gas emis-
sions out of the atmosphere, including carbon dioxide. The ocean
carbon sink is driven by a physical and a biological pump. As well as
plankton and bacteria, fish contribute to the biological pump, with
recent estimates suggesting 16 percent of sinking carbon could be
due to fish (Saba et al., 2021). However, the role of fish in the bio-
logical pump is not well understood (Martin et al., 2021). The data
on fish required to improve our understanding relates to metabolic
use and excretion of consumed carbon and other nutrients; prop-
erties of carbon and nutrient outputs and their fate in the environ-
ment; habitat use and connectivity of ecosystems; and physical in-
teractions with extrinsic carbon and nutrients in the environment.
As well as advancing knowledge of the role of fish, this knowledge
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could inform effective management approaches to maintaining or
restoring ecosystem carbon function. As an emerging field, zoogeo-
chemistry has the advantage that much of the relevant data are al-
ready published for other purposes. For example, metabolic rates
and behavioural data is already published for many commercially
important species through fisheries and climate change research.
Using Al in this field has the potential to expedite a better under-
standing of fish ecological functions, effects of human disturbance,
and therefore potential management of important carbon sink habi-
tats. Here, we present a few of the options available to apply DL to
zoogeochemistry research.

In habitats where visual sampling is possible, video images could
be used with object detection, classification, and tracking to iden-
tify the presence or absence, behaviour, and features of particles
from fish and their short-term fate (e.g., defecation, spawning, and
whether material reaches and settles on the sea floor). This could
inform estimates of the volume of carbon transferred into or out
of a habitat by fish, and the short-term fate of the carbon or nu-
trient they release. Methods that use AI computer vision to deter-
mine the connectivity of fish populations can also be of value in
estimating carbon flow (Lopez-Marcano et al., 2021). The long-
term fate of carbon and nutrients depends on physical, chemi-
cal, and biological conditions of the environment. Graph networks,
which map out a physical system using nodes to form a graph,
have recently been used to simulate the physical behaviour of ma-
terials (Sanchez-Gonzalez et al., 2020). This technology has po-
tential application to estimating the probable fate of carbon and
nutrient outputs through simulations that combine oceanographic
data with features of the carbon released by fish. With many vari-
ables to consider, recent approaches to assessing carbon contained
in sediments in different habitats include a combination of sur-
vey (acoustic and image-based) and bathymetry data, modelling,
and remote ground-truthing (Wilson et al., 2018; Hunt et al., 2020).
The current approach is manual, but there is potential for Al appli-
cation to link habitats to carbon fates and make spatial and tem-
poral estimates on cycling and sinking of carbon and nutrients.
Graph networks could be applied to generate probable long-term
fates of carbon and nutrient outputs based on isotopes (Lyubchich
and Woodland, 2019), or where simulations can be informed from
video observations and environmental parameters such as season,
temperature, currents, and maps of habitat type (Sanchez-Gonzalez
et al., 2020).

As has been mentioned in earlier cases, biological data for fish
is partially or fully available for commercially targeted species in
online databases (e.g. Fishbase). Such databases have been used
to generate estimates of nutrient output from fish, such as nitro-
gen and phosphorous (Schiettekatte et al., 2020). AI can be trained
on these databases to estimate ecological and behavioural carbon
flows, including on food webs and habitat use (Bohan et al., 2011).
This training could then be applied to generate estimates for species
where ecological data is limited, such as deep-sea fish. The research
needs for deep-sea fish are urgent as commercial interest is increas-
ing at the same time as the significance of these species in moving
carbon from surface waters to the deep sea is beginning to be ex-
plored, but data collection methods are expensive, time consum-
ing, and patchy (Martin et al., 2020). In this instance, DL could be
used to detect probable carbon flows by using logic-based machine
learning (i.e. techniques that incorporate background knowledge or
rules; Bohan et al., 2011).
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Discussion

We are entering a new era in ocean research and management
thanks to new technological developments in observational meth-
ods combined with Al-supported data analysis. Data collection,
processing, and interpretation are at the core of ecological stud-
ies and biodiversity monitoring. Scientists are increasingly rely-
ing on indirect observations from various sensors generating large
and complex data sets, especially in the aquatic environment.
Thus, we envision that within a decade, marine researchers will
firmly integrate AI and DL in data collection and analysis within
most sub-fields of applied marine biology. This development will
only continue to accelerate with new generations of biologists
better educated in computer science and informatics (Weinstein,
2018).

Non-human, autonomous, and remote platforms such as ca-
bled observatories, autonomous underwater vehicles or gliders,
and ships of opportunity will have a pivotal role in ocean mon-
itoring (Whitt et al., 2020). These platforms will record continu-
ous, real-time information on water physics, chemistry, commu-
nity composition, and biomass of plankton, fish, and other ma-
rine species. For example, long-term monitoring of harmful bloom-
forming plankton species can be achieved using inexpensive im-
age technology anchored to piers (Gorocs et al., 2018; Orenstein et
al., 2020). Similarly, changes in whale population trends and migra-
tions can be investigated using PAM (Szesciorka et al., 2020). These
methods are likely to decrease reliance on manual analysis or di-
rect sampling through more invasive, expensive, time-consuming,
or labour-intensive traditional approaches. This new way of observ-
ing the ocean will generate large volumes of data that will only be
feasible to analyse with the help of AL Therefore, AI will play a key
role in making routine processes more time-efficient and alleviate
the manual work required. For example, a trained data analyst cur-
rently needs 50-350 workdays to manually scan 1 year’s worth of
PAM recordings for whale calls (Woods and Sirovic, pers. comm.).
In contrast, the same task can be accomplished by a trained neural
network in approximately 4 workdays (Bergler et al., 2019). Fully
automated coastal monitoring systems will be faster and more effi-
cient at detecting changes of interest, such as necessitating warnings
to the public where toxic algae are abundant and enabling redirec-
tion of boat traffic where whales are moving across shipping routes.
Altogether, this monitoring information will be valuable in the de-
velopment of biological indicators and in integrated assessments to
support EBM (Tam et al., 2017).

It is important to emphasize that expert work will always be
needed to create and correctly label training sets and revise auto-
mated analyses, such as when new species enter a system. A model’s
accuracy performance is likely to decrease significantly when new
species that are not part of the training data are introduced. There
is no established automated approach to detect when models need
retraining. Repeated validation of the models is required to ensure
up-to-date performance. This anticipated demand emphasizes the
need to develop multidisciplinary skills in researchers at all career
stages, as well as the skills required to form fruitful interdisciplinary
collaborations (McDonald et al., 2018).

Collaborative work based on open access and sharing cul-
ture (from model configurations to training sets) will be essential
to advance this future. While this is a common practice within Al
communities, the culture of marine science is not as open. How-
ever, funding agencies, publishers, and institutions are increasingly
enforcing open access for data generated via public funds. The FATR

M. Goodwin etal .

Principles for scientific data management and stewardship are now
widely adopted (Wilkinson et al., 2019). These emphasize improv-
ing the access, utility, and reuse of data by machines in addition to
individual researchers. As such, they may play a vital role in ap-
plying AI to the marine domain. Some collaborative initiatives are
underway to create global databases for plankton and benthic im-
ages and training sets (e.g., EcoTaxa; Picheral et al., 2017 and BI-
IGLE; Langenkamper et al., 2017), as well as pipelines (Chen, 2021).
Ultimately, we envision libraries of images, videos, and metadata
available globally, similarly to the open access GenBank database
for sequence information and associated metadata for genetic ma-
terial hosted by the National Center for Biotechnology Information
(NCBI) in the United States.

Conclusions and future directions

We have provided examples of how image and audio analysis are al-
ready used to analyse marine biodiversity distribution and dynam-
ics in non-invasive ways, emerging applications of Al, and a look at
what the future of Al in marine ecology requires. The United Na-
tions Decade of the Ocean has just started, with the aim of achieving
“a healthy, safe, and resilient ocean for sustainable development by
2030 and beyond”. We have shown that AT will be key to achieve this
goal by developing new technology to uncover new aspects of and
potential threats to marine ecosystems’ structures and functions,
thereby informing EBM. This new knowledge will directly address
several of the key challenges identified for the Decade, from effec-
tive EBM and biodiversity conservation, to creating a digital rep-
resentation of the ocean and delivering data, knowledge, and tech-
nology to all. The Decade of the Ocean initiative promotes global
cooperation and interdisciplinary efforts at all levels, which are at
the core of how Al-linked marine studies will progress. Where re-
searchers have the opportunity to gather large amounts of complex
ecological data, unfamiliarity with AI jargon and the latest develop-
ments should not prevent collaborations with data and computer
scientists to support EBM of ocean resources during this time of
rapid change.
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