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Abstract
Aim: Identify hotspots and areas of high species richness for Arctic marine mammals.
Location: Circumpolar Arctic.
Methods: A total of 2115 biologging devices were deployed on marine mammals from 
13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated 
based on the number of individuals in grid cells for each species and for phyloge-
netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-
cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire 
year. Seasonal habitat differences among species’ hotspots were investigated using 
Principal Component Analysis.
Results: Hotspots and areas with high species richness occurred within the Arctic 
continental-shelf seas and within the marginal ice zone, particularly in the “Arctic 
gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally 
found further north than winter hotspots, but there were exceptions to this pattern, 
including bowhead whales in the Greenland-Barents Seas and species with coastal 
distributions in Svalbard, Norway and East Greenland. Areas with high species rich-
ness generally overlapped high-density hotspots. Large regional and seasonal dif-
ferences in habitat features of hotspots were found among species but also within 
species from different regions. Gap analysis (discrepancy between hotspots and IUCN 
ranges) identified species and regions where more research is required.
Main conclusions: This study identified important areas (and habitat types) for Arctic 
marine mammals using available biotelemetry data. The results herein serve as a 
benchmark to measure future distributional shifts. Expanded monitoring and teleme-
try studies are needed on Arctic species to understand the impacts of climate change 
and concomitant ecosystem changes (synergistic effects of multiple stressors). While 
efforts should be made to fill knowledge gaps, including regional gaps and more com-
plete sex and age coverage, hotspots identified herein can inform management ef-
forts to mitigate the impacts of human activities and ecological changes, including 
creation of protected areas.

K E Y W O R D S
Arctic continental shelf, biotelemetry, cetacean, distribution, Getis-Ord Gi* hotspots, ice-
associated, marginal ice zone, pinniped, polar bear, species richness
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1  |  INTRODUC TION

Climate change impacts have been documented in most ecosys-
tems on Earth (e.g. IPCC, 2014; Scheffers et al., 2016). Shifts in spe-
cies distributions and core habitats are ongoing and are predicted 
to continue throughout this century (Foote et al., 2013; Hazen 
et al., 2013; Poloczanska et al., 2016). These shifts are expected 
to alter trophic dynamics, cause mismatches between resource 
availability and consumers, alter species interactions and lead to 
species extirpations or extinctions (IPCC, 2014; Post et al., 2013). 
Impacts are likely to be especially severe in the Arctic, where air 
temperatures are rising 2–3 times faster than the global average 
and sea-ice extent is declining precipitously; a seasonally sea-ice 
free Arctic is predicted within a few decades (Meredith et al., 
2019; Wang & Overland, 2012). Ongoing environmental change, 
particularly the loss of sea ice, has already caused considerable 
change in Arctic marine ecosystems (Meredith et al., 2019; Post 
et al., 2013). Sea-ice-associated species may have limited ability to 
shift their ranges in response to the ongoing changes (IPCC, 2014). 
Sea-ice loss represents direct habitat loss for ice-associated ma-
rine mammals, but such losses will likely also have many indirect 
effects through changes in their prey bases, increased presence 
of invasive species, temperate competitors and predators, altered 
disease risks and a variety of pressures associated with expanding 
human activities (IPCC, 2014; Meredith et al., 2019; Van Wormer 
et al., 2019). Due to low functional redundancy within Arctic eco-
systems, impacts from species extirpations or range shifts are 
likely to be more severe in the Arctic than in more species-rich 
ecosystems (Post et al., 2009). Benchmark data on core habitats 
and migratory pathways are critical for detecting changes, per-
forming risk assessments regarding impacts of human activities 
and informing spatial planning of protected areas.

Arctic marine mammals are dependent on sea ice for critical 
phases of their life cycles and their position near the top of the 
Arctic food web, in combination with being long-lived and slow 
to reproduce, means that they are sensitive to rapid changes in 
their environment (Kovacs et al., 2021; Reid et al., 2013; Tynan 
& DeMaster, 1997). Based on the boundaries defined by the 
Conservation of Arctic Flora and Fauna (CAFF; Figure 1), there are 
eleven marine mammal species that reside full time in the Arctic. 
Seven species are endemic to the Arctic and are tightly associated 
with sea ice for all or a significant part of the year: the bowhead 
whale (Balaena mysticetus), narwhal (Monodon monoceros), white 
or beluga whale (Delphinapterus leucas), ringed seal (Pusa hispida), 
bearded seal (Erignathus barbatus), walrus (Odobenus rosmarus) 
and polar bear (Ursus maritimus) (Kovacs et al., 2011; Laidre & 
Regehr, 2018). Four species of ice-associated seals, the hooded 
seal (Cystophora cristata), harp seal (Pagophilus groenlandicus), rib-
bon seal (Histriophoca fasciata) and spotted seal (Phoca largha), use 
drifting sea ice as a resting, pupping, nursing and moulting platform 
during winter and spring, but are generally found in open water or 
in subarctic areas for the rest of the year (Kovacs et al., 2011; Laidre 
& Regehr, 2018). Additionally, the harbour seal (Phoca vitulina) and 

grey seal (Halichoerus grypus), which are generally considered tem-
perate species, do have populations that reside year-round within 
the CAFF Arctic boundary.

One of the main challenges for evaluating environmental 
changes and their impacts in the Arctic marine ecosystem in a 
holistic manner is that the available data are spread across many 
sources and generally analysed at the species level using a wide 
range of methods. Therefore, large overall changes affecting mul-
tiple species may go undetected or are underrated. To address this 
data gap for marine mammals, biotelemetry data from 13 marine 
mammal species (collected by 33  scientific institutes) were syn-
thesized to identify species hotspots and areas with high species 
richness across the circumpolar Arctic. Habitat features of the 
identified hotspots were also analysed to investigate the relative 
importance of different features and how these vary seasonally 
and across Arctic regions for individual species. Large-scale syn-
theses of biotelemetry data in other ecosystems have been suc-
cessful in identifying multi-species hotspots, important ecosystem 
components and the magnitude of threats within these areas (e.g. 
Block et al., 2011; Hindell et al., 2020; Queiroz et al., 2019). This 
synthesis of Arctic marine mammal biotelemetry data provides in-
formation vital for: (1) determining the environmental and ecologi-
cal drivers that shape Arctic marine ecosystems; (2) marine spatial 
planning for protected areas; (3) conducting environmental risk 
assessments that include cumulative effects for marine mammal 
populations (i.e. evaluating the overlap between important habi-
tats and present or proposed human activities); and (4) identifying 
knowledge gaps.

2  |  METHODS

2.1  |  Study area and species

The study area comprised the circumpolar Arctic as defined by 
CAFF (Figure 1; CAFF, 2013). Biotelemetry data from all marine 
mammal species that spend most of their annual cycle within the 
CAFF Arctic boundary were included. Data came from 2115 bi-
ologging devices that were deployed on 13 species in the period 
2005–2019 (Table 1). This time frame was chosen to represent re-
cent species distributions during a period of rapid change in the 
Arctic.

2.2  |  Locations

Data-handling and statistical analyses were conducted using R ver-
sion 3.5.3 (R Core Team, 2019). Biologging devices provided ARGOS 
(CLS, 2016) or Fastloc GPS locations that were filtered to remove un-
likely locations using the Douglas Argos-Filter (Douglas et al., 2012; 
walruses in East and West Greenland) or the SDA filter (argosfilter 
package; Freitas et al., 2008; for all other animals). Data sets were 
subsequently analysed using a continuous-time correlated random 
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4  |    HAMILTON et al.

F I G U R E  1  Map of the circumpolar Arctic showing major place names and ocean areas (in italic font; top). Areas mapped in tan show the 
Conservation of Arctic Flora and Fauna (CAFF)’s Arctic region. Lower maps show recurrent polynyas (pink polygons; left) and the mean sea-
ice frequency (%) from 2005 to 2019 in March and September
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walk model (CTCRW model; crawl package; Johnson et al., 2008). 
References in Table 1 and in the Supporting Information provide de-
tails regarding capture methods, the specific type of biologging de-
vices used, research permits and protocols for each deployment. A 
tag had to transmit locations for at least 14 days to be included in the 
analyses. Locations every 12 hours were predicted by the CTCRW 
models for each animal. Some biologging devices were duty-cycled 
(see Table 1); only days when the tag was transmitting were used in 
the analyses. CTCRW model-generated locations that were within 
transmission gaps greater than seven days were also removed from 
the analyses. Locations on land were moved to the closest in-water 
location in time for each species with the exception of polar bears. 
Given the grid size used in this analysis (30 x 30 km) and the large 
geographic extent (circumpolar), moving these locations had little or 
no effect on the hotspot locations.

Land and coastline shapefiles were downloaded from Natural 
Earth (large-scale data; https://www.natur​alear​thdata.com/), and 
polynya locations were downloaded from CAFF’s GeoNetwork 
catalogue (CAFF, 2017). Tidewater glacier front shapefiles were re-
trieved from the Norwegian Polar Institute (NPI; Svalbard), Goliber 
et al. (2021; Greenland) and Cook et al. (2019; Canada). Water 
depth was extracted from the International Bathymetric Chart of 
the Arctic Ocean version 4.0 (Jakobsson et al., 2020). Mean sea-ice 
frequency shapefiles for March and September (2005–2019) were 
retrieved from NPI. Monthly mean sea surface temperatures (SST) 
(2005–2019) for March and September were obtained from NOAA’s 
Optimum Interpolation SST version 2 (Reynolds et al., 2002). The 
range for each species was downloaded from the International 
Union for the Conservation of Nature (IUCN) Red List of Threatened 
Species (IUCN, 2020).

2.3  |  Marine mammal hotspots

Getis-Ord Gi* hotspots (hereafter referred to as Gi* hotspots/
statistic) were calculated for each species or species group (i.e. 
all pinnipeds, all cetaceans, and all species) to identify areas with 
higher use by marine mammals (Getis & Ord, 1992; Ord & Getis, 
1995). The Gi* statistic measures the concentration of a variable 
at a point by comparing the local sum of values (i.e. a point and its 
neighbours within a specified distance) to an expected sum (i.e. 
random permutations drawn without replacement from all points 
in the dataset). A statistically significant positive z-score is as-
signed if the calculated local sum is larger than the expected sum 
and the difference is too large to be the result of random chance 
(Getis & Ord, 1992; Ord & Getis, 1995). The Gi* statistic was cal-
culated based on the number of individuals in 30 x 30 km grid cells 
throughout the study area. This approach identifies areas used 
by most of the tagged animals (i.e. individual hotspots). Hotspot 
maps based on the number of locations in grid cells, which iden-
tify heavily used areas, sometimes by only a few of the tagged 
animals (i.e. location hotspots), are presented in the Supporting 
Information (Figures S1–S8). The Gi* statistic was calculated using Sp
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the localG function (spdep package, Bivand & Wong, 2018). The 
number of neighbours used for each species was found by calcu-
lating the global Getis-Ord Gi* function in 30 km increments from 
30–210 km, to identify the distance where global spatial autocor-
relation was maximized (globalG.test function, spdep package; see 
Table S1; Bivand & Wong, 2018; Ord & Getis, 1995). Four hotspot 
contours were plotted: 99% (z ≥ 2.58, p ≤ 0.01), 95% (z ≥ 1.96, p 
≤ 0.05), 90% (z ≥ 1.65, p ≤ 0.1) and 70% (z ≥ 1.15, p ≤ 0.3). Low 
use areas (z < 1.15, p > 0.3) were plotted as a continuous polygon 
that encompassed all areas used by each species or group. Species 
richness was calculated by identifying the number of species oc-
curring in each grid cell. Hotspot areas and species richness were 
calculated for the entire year, for summer (Jun-Nov) and for winter 
(Dec-May).

Regions were defined for each species to account for differ-
ences in sample size across the circumpolar Arctic; each region was 
given an equal weighting when calculating the Gi* statistic. The cir-
cumpolar range of a species was separated into regions based on 
where sub-populations occurred (i.e. based on IUCN delineations 
and current scientific knowledge) or where movement patterns and 
space use of animals was generally separate from animals tagged at 
adjacent tagging locations (see Table 1). Each individual, regardless 
of any existing finer stock structure, was given an equal weighting 
inside each region. For the analyses of all pinnipeds, all cetaceans 
and all species, each species and region received equal weight.

Null models were created to account for bias in tracking ef-
fort by showing where hotspots (and species richness) would be 
expected for each species and species group given the tagging 
locations and general movement patterns (see Supporting infor-
mation for details; Queiroz et al., 2016; Yurkowski et al., 2019). 
The amount of overlap between high and null hotspot levels (95 
and 99%) and high and null levels of species richness index areas 
(≥4 species) were calculated.

2.4  |  Hotspot habitat

To explore the similarities and differences in the habitat features 
within marine mammal hotspots across the circumpolar Arctic, prin-
cipal component analysis (PCA) was conducted on standardized 
habitat variables extracted from the Gi* hotspots (70–99% statisti-
cal significance) for each species (prcomp function). These variables 
included distance to the coast (km), distance to the nearest tidewa-
ter glacier front (km), water depth (m), sea-ice frequency (% of days 
during a month that an area had sea ice), sea surface temperature 
(SST; °C) and distance to the nearest polynya (km; winter only). 
Sea-ice frequency and SST values were extracted from March and 
September means (2005–2019). March and September correspond 
to the periods of maximum (winter) and minimum sea-ice extent 
(summer) throughout most of the circumpolar Arctic. It is important 
to note that using a 14-year mean of monthly sea-ice data may not 

reflect the sea ice available to the animals during the time frame of 
their respective biotelemetry device deployments. However, this 
index should be sufficient for identifying broad-scale patterns in 
sea-ice use. While these variables may not cover all possible envi-
ronmental conditions of potential importance, they are highly rel-
evant and have been used frequently in previous habitat modelling 
for marine mammals (e.g. Cameron et al., 2018; Hamilton, Lydersen, 
et al., 2019; Hauser et al., 2018; Laidre et al., 2015; Matthews et al., 
2020). Because preliminary analysis showed that SST had very little 
influence on the PCA plots, this variable was excluded from further 
analyses. The range of each species was divided into three regions 
(where applicable) as data exploration showed large regional dif-
ferences in hotspot habitats for some species. The regions were 
defined as: (1) Bering-Chukchi-Beaufort (BCB) region; (2) Canadian 
Arctic Archipelago and West Greenland and; (3) East Greenland and 
the Barents Sea region.

3  |  RESULTS

A total of 400,460 tracking days from 2115 biologging devices were 
available for 13 marine mammal species from 2005 to 2019. Data 
were available for most of the year for most species and regions, al-
though exceptions did occur, notably for walruses and white whales 
because winter data were sparse (see Table 1). Discrepancies be-
tween the IUCN global range and hotspot locations also identify 
spatial data gaps for each species (Figures 2-5 and Table 1). Age and 
sex were not included in these analyses due to species and regional 
differences in individuals that were tagged. For example, the ma-
jority of tagged polar bears were female polar bears, all walruses 
in Svalbard and the Pechora Sea were male walruses while most of 
the walruses from the Bering-Chukchi-Beaufort region (BCB) were 
female walruses, the majority of bearded seals from the BCB were 
juveniles and all harp seals tagged in the Greenland Sea and all grey 
seals tagged in Iceland were pups.

3.1  |  Ringed seals

Hotspots occurred in coastal and offshore areas around the circum-
polar Arctic (Figures 2, S1, S9, Table 1). In particular, they occurred 
in northern Svalbard, East Greenland (between Scoresby Sound and 
Dove Bay), West Greenland (i.e. Melville Bay), around Saglek Bay, 
eastern Hudson Bay, around Baffin Island (including Cumberland 
Sound, Lancaster Sound and around Melville Peninsula), east of 
Victoria Island (including the Amundsen Gulf) and in the BCB (includ-
ing the northern Bering Sea, Bering Strait, the eastern Chukchi Sea 
(including Kotzebue Sound) and much of the Beaufort Sea). Summer 
hotspots were generally more widespread and further north in the 
Pacific Arctic and Canadian Arctic Archipelago than winter hot-
spots (Figures 2, S1). Hotspots were not calculated for the Kara Sea 
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    |  9HAMILTON et al.

region because only one ringed seal was tagged in this region. The 
null model hotspots occurred in the vicinity of where ringed seals 
were tagged and overlapped high hotspot levels (95 and 99%) by 
34% (Figures S15, S16).

3.2  |  Bearded seals

Hotspots occurred in coastal regions of northwest Svalbard and in 
the BCB (in the northern Bering Sea (including Norton Sound and 

F I G U R E  2  Getis-Ord Gi* hotspots for 
ringed seals, bearded seals and walruses 
in the circumpolar Arctic during the 
summer (Jun-Nov) and winter (Dec-May) 
based on the number of individuals per 
grid cell. Increasing intensities of red 
indicate hotspots of increasing level of 
significance. The red dotted polygon 
shows the global range of the species 
(IUCN Red List)
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10  |    HAMILTON et al.

Bering Strait) and in the eastern Chukchi Sea (including Kotzebue 
Sound); Figures 2, S1, S9, Table 1). Winter hotspots were slightly 
further south and more offshore than summer hotspots in the BCB 
(Figure 2). The null model hotspots occurred in the vicinity of where 
bearded seals were tagged and overlapped high hotspot levels (95 
and 99%) by 32% (Figures S15, S16).

3.3  |  Walruses

Hotspots occurred in shallow regions along the northern and south-
ern coasts of the Svalbard Archipelago, East Greenland (i.e. Young 
Sound and Dove Bay), Davis Strait region, Smith Sound, northern 
Foxe Basin, Chukchi Sea and the Pechora Sea (Figures 2, S2, S9, 

F I G U R E  3  Getis-Ord Gi* hotspots 
for bowhead whales, white whales and 
narwhals in the circumpolar Arctic during 
the summer (Jun-Nov) and winter (Dec-
May) based on the number of individuals 
per grid cell. Increasing intensities of 
red indicate hotspots of increasing level 
of significance. The red dotted polygon 
shows the global range of the species 
(IUCN Red List)
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    |  11HAMILTON et al.

Table 1). Null model hotspots occurred in the vicinity of where wal-
ruses were tagged and overlapped high hotspot levels (95% and 
99%) by 55% (Figures S15, S16).

3.4  |  Bowhead whales

Hotspots occurred in the Greenland and northern Barents Seas be-
tween Northeast Greenland and Franz Josef Land (Russia), Disco 
Bay, around Baffin Island (including Cumberland Sound, Hudson 
Strait, Foxe Basin and Gulf of Boothia), Amundsen Gulf and the 
BCB (including the Beaufort Sea and the western Chukchi Sea in 
summer and the Bering Strait and the western Bering Sea in win-
ter; Figures 3, S2, S10, Table 1). Hotspots based on the number of 
locations also occurred around the Franz Josef Land Archipelago 
and further south in the Bering Sea (Figure S2). Summer hotspots 
were located further north than winter hotspots in the BCB and in 

the Canadian Arctic Archipelago, whereas the Greenland-Barents 
Sea population displayed the opposite pattern (Figure 3). Null 
model hotspots occurred in the vicinity of where tags deployed 
on bowhead whales transmitted their first locations and over-
lapped high-density hotspot levels (95 and 99%) by 32% (Figures 
S15, S17).

3.5  |  White whales

Hotspots occurred around southern Svalbard, Baffin Bay, regions 
around Baffin Island (including Cumberland Sound and Admiralty 
Inlet), eastern Hudson Bay, Viscount Melville Sound (annual hot-
spots only), Amundsen Gulf and in the BCB (including Bristol Bay, 
Norton Sound, Gulf of Anadyr and in the Bering and Chukchi Seas; 
Figures 3, S3, S10, Table 1). Summer hotspots were generally located 
further north than winter hotspots in the BCB and Canadian Arctic 

F I G U R E  4  Getis-Ord Gi* hotspots for 
polar bears, spotted seals and ribbon seals 
in the circumpolar Arctic (polar bears) 
and the Pacific Arctic (spotted and ribbon 
seals) during the summer (Jun-Nov) and 
winter (Dec-May) based on the number 
of individuals per grid cell. Increasing 
intensities of red and orange (polar bears 
only) indicate hotspots of increasing level 
of significance. The red hotspots are from 
data included in the analyses herein while 
the orange hotspots are from Yurkowski 
et al. (2019). The red dotted polygon 
shows the global range of the species 
(IUCN Red List)
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12  |    HAMILTON et al.

Archipelago (Figure 3). Hotspots were not mapped for the Kara Sea 
because only one white whale was tagged in this region. Null model 
hotspots occurred in the vicinity of where white whales were tagged 
and overlapped high hotspot levels (95 and 99%) by 34% (Figures 
S15, S17).

3.6  |  Narwhals

Hotspots occurred in East Greenland (i.e. inside and south of 
Scoresby Sound), West Greenland (i.e. Melville Bay), northern Baffin 
Island (including Eclipse Sound and Admiralty Inlet) and southern 
Foxe Basin (including north of Southampton Island; Figures 3, S3, 
S10, Table 1). Summer hotspots were more coastal (all regions) and 
further north (only Baffin Region) than winter hotspots (Figure 3). 
Null model hotspots occurred in the vicinity of where narwhals were 
tagged and overlapped high hotspot levels (95 and 99%) by 67% 
(Figures S15, S17).

3.7  |  Polar bears

Hotspots occurred around the Svalbard Archipelago, along the mar-
ginal ice zone (MIZ) of the Greenland Sea, East Greenland coastline, 
Baffin Bay, Davis Strait, Labrador Sea, Hudson Bay, Beaufort Sea, 
Chukchi Sea and around Wrangel Island (Figures 4, S4, S11, Table 1). 
Summer hotspots occurred slightly further north than winter hot-
spots in most regions (Figure 4). Additional hotspot data were avail-
able from Yurkowski et al. (2019) for the Canadian Arctic (i.e. orange 
hotspots in Figures 4, S4, S11). Null model hotspots occurred in the 
vicinity of where polar bears were tagged and overlapped high hot-
spot levels (95 and 99%) by 58% (Figures S15, S18).

3.8  |  Spotted seals

Hotspots in the BCB region were generally offshore in the central 
Bering Sea in winter and along the eastern Chukchi Sea, including 

F I G U R E  5  Getis-Ord Gi* hotspots for 
hooded seals, harp seals, harbour seals 
and grey seals in the Atlantic Arctic during 
the summer (Jun-Nov) and winter (Dec-
May) based on the number of individuals 
per grid cell. Increasing intensities of red 
indicate hotspots of increasing level of 
significance. The red dotted polygons 
show the global range of the species 
(IUCN Red List)
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    |  13HAMILTON et al.

Kotzebue Sound, in summer (Figures 4, S5, S11, Table 1). Coastal 
hotspots also occurred along the Bering Strait region and the north-
west Alaska coast in the Chukchi Sea (Figure 6). Winter hotspots 
were generally further south and further offshore than summer hot-
spots (Figure 4). Null model hotspots were found near tagging loca-
tions for spotted seals and overlapped high hotspot levels (95 and 
99%) by 31% (Figures S19, S20).

3.9  |  Ribbon seals

Hotspots occurred in the Bering Sea, including in the Gulf of Anadyr 
(Figures 4, S5, S11, Table 1). Hotspots were generally offshore, ex-
cept for in the Gulf of Anadyr (Figures 4, S11). Null model hotspots 
occurred in the vicinity of where ribbon seals were tagged and over-
lapped high hotspot levels (95 and 99%) by 63% (Figures S19, S20).

F I G U R E  6  Getis-Ord Gi* hotspots for 
nine pinniped, three cetacean and the 
combined 13 marine mammal species 
(cetaceans, pinnipeds and the polar bear) 
in the circumpolar Arctic during the 
summer (Jun-Nov) and winter (Dec-May) 
based on the number of individuals per 
grid cell. Increasing intensities of red 
indicate hotspots of increasing level of 
significance. Polynya locations are shown 
on the winter hotspots maps as blue 
polygons
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14  |    HAMILTON et al.

3.10  |  Hooded seals

Hotspots occurred along the south and west coasts of the Svalbard 
Archipelago, Norwegian Sea, Greenland Sea (including the MIZ), 
Davis Strait, coastal regions of southeast Greenland, the Labrador 
Sea, Davis Strait and Baffin Bay (Figures 5, S16, S12, Table 1). 
Hotspots based on the number of locations were also found in south-
ern portions of the Norwegian Sea and southeast of Iceland (Figure 
S6). Summer hotspots generally occurred further north than winter 
hotspots (Figure 5). Null model hotspots occurred in the vicinity of 
where hooded seals were tagged and overlapped high hotspot levels 
(95 and 99%) by 23% (Figures S19, S20).

3.11  |  Harp seals

Hotspots occurred in the MIZ of the Greenland Sea, northern 
Barents Sea and around the Svalbard Archipelago (Figures 5, S6, 
S12, Table 1). Hotspot maps based on the number of locations also 
occurred south of Svalbard and in fjords in western Svalbard (Figure 
S6). Summer hotspots were located further north than winter hot-
spots (Figure 5). Null model hotspots occurred in the vicinity of 
where harp seals were tagged and overlapped high hotspot levels 
(95 and 99%) by 25% (Figures S19, S20).

3.12  |  Harbour seals

Hotspots occurred in south Greenland, Porsanger Fjord (northern 
Norway) and along western Svalbard (Figures 5, S7, S12, Table 1). 
Summer and winter hotspots were located in similar areas in the 
North Atlantic (Figure 5). Null model hotspots occurred in the vicin-
ity of where harbour seals were tagged and overlapped high hotspot 
levels (95 and 99%) by 86% (Figures S19, S21).

3.13  |  Grey seals

Hotspots occurred in northwest Iceland (Figures 5, S7, S12, Table 1). 
Summer and winter hotspots were located in similar areas around 
northern Iceland (Figure 5). Null model hotspots occurred in the vi-
cinity of where grey seals were tagged and overlapped high hotspot 
levels (95 and 99%) by 75% (Figures S19, S21).

3.14  |  Species groups

Hotspots calculated for species groups (all pinnipeds, all cetaceans 
and all species) and the species richness index highlight regions 
across the circumpolar Arctic that are important for Arctic marine 
mammals (Figures 6, 7, S4, S8, S13). These included predominantly 
continental-shelf habitats in the Svalbard Archipelago, the MIZ in 
the northern Barents and Greenland Seas, East Greenland, regions 

around Baffin Island, Foxe Basin, much of the BCB, as well as areas 
within the Kara and Pechora Seas (Figures 6, 7, S13). Summer hot-
spots were generally found further north than winter hotspots in the 
BCB and in the Canadian Arctic Archipelago (Figures 6, 7). Winter 
data for some cetacean species were quite limited.

Particularly, high values of species richness were found in the 
“Arctic gateways” in the North Atlantic (Fram Strait) and North 
Pacific (Bering Strait) (Figures 7, S14). Overlap between high levels 
of species richness (≥4 species) and high hotspot levels (95 and 99%) 
was generally quite high, especially during the winter (Figures 7, S14). 
There were some areas with high species richness near Franz Josef 
Land and in central Baffin Bay that did not have high hotspots levels 
(Figures 7, S14). Null model hotspots and the highest null species 
richness index areas occurred in the vicinity of where animals were 
tagged (Figures S22, S23). High null model hotspot levels (95 and 
99%) overlapped high marine mammal hotspots levels (95 and 99%) 
by 42% (all pinnipeds), 40% (all cetaceans) and 59% (all species). High 
null species richness (≥4 species) overlapped high marine mammal 
species richness (≥4 species) by 41%.

3.15  |  Hotspot habitat

Large regional differences in the habitat features within hotspots for 
marine mammals occurred across the circumpolar Arctic (Figures 8, 
9, Tables S2, S3). Hotspots in Svalbard, Greenland and the eastern 
Canadian Arctic Archipelago were generally in areas with tidewater 
glacier fronts, whereas this habitat is absent in the BCB (Figures 8, 9, 
Table S2). Sea-ice frequency was higher in the winter hotspots than 
the summer hotspots for all species, although a large range of sea-ice 
frequencies were used during the winter period (Table S2). Hooded, 
harp, ribbon, harbour and grey seals were generally found in areas 
with less sea ice than the other marine mammal species during the 
winter months (Figures 8, 9, Table S2). Ringed seal, bearded seal and 
white whale hotspots had less sea ice in the East Greenland and 
Barents Sea region than the other regions during the winter (Figures 
8, 9, Table S2). Distance to the coast and water depth were vari-
able among species, largely reflecting whether species had coastal 
or open ocean distributions (Figures 8, 9, Table S2). Positive water 
depths (i.e. land) reflected tight coastal distributions in some regions 
for some species (Table S2). Most marine mammal species were gen-
erally further away from polynyas in the winter in the Canada/West 
Greenland region than the other regions (Figures 8, 9, Table S2).

4  |  DISCUSSION

Arctic marine mammal hotspots and areas of high species richness 
occurred across the Arctic continental-shelf seas and in the MIZ, in 
regions previously identified as important habitats for Arctic marine 
mammals (Citta, Lowry, et al., 2018; Hamilton et al., 2020; Yurkowski 
et al., 2019). The seasonal presence of sea ice is a defining feature 
for most hotspot areas identified, with most Arctic marine mammal 
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    |  15HAMILTON et al.

hotspots having >10% sea-ice frequency during both the summer 
and winter periods. Sea ice serves a variety of functions for Arctic 
marine mammals: it is a pupping, nursing and moulting platform for 
seals; a hunting platform and transport corridor between hunting 
and maternity denning areas for polar bears; and a resting platform, 
near benthic foraging areas, for walruses. It also offers protection 
from storm events and aquatic predators and ice edges are impor-
tant foraging areas for all species (Kovacs et al., 2011; Laidre et al., 
2008). Seasonally sea-ice-covered regions have high primary pro-
duction from ice-algae and phytoplankton blooms that begin under 
the ice in spring, providing nutritional support for zooplankton, ben-
thic fauna and fish upon which marine mammals depend (Ardyna 
et al., 2020; Kovacs et al., 2011; Sakshaug, 1997). Spring and summer 
blooms follow the MIZ as it retreats northwards in the summer, mak-
ing these high-productivity areas broad and generally predictable in 
both space and time. Correspondingly, summer hotspots were gen-
erally located further north than winter hotspots for many (but not 
all) species and regions and had lower sea-ice frequencies. Bowhead 
whales in the Greenland and Barents Seas are an outlier to this gen-
eral pattern as they have the opposite movement pattern, migrating 
north in the winter and south in the summer (Kovacs et al., 2020). In 

the Canadian Arctic, several marine mammal species utilize a more 
east-west movement pattern than south-north pattern in their win-
ter to summer movements. In addition, defined seasonal movements 
are also not characteristic for several, but not all, species in Svalbard, 
East Greenland and the eastern Canadian Arctic (e.g. harbour seals, 
white whales, ringed seals, bearded seals) that have coastal distri-
butions throughout the year. The differences in movement patterns 
and habitat types within and among species may need to be con-
sidered when designing conservation and management measures 
around important areas (e.g. migratory pathways, over-wintering 
areas, nursing areas).

The selected summer (June-November) and winter (December-
May) seasons corresponded to migration and seasonal residency 
patterns for most, but not all, species and regions. Seasonal hotspot 
designations are therefore not equally representative for all spe-
cies and regions. For example, Amundsen Gulf is a summering area 
for bowhead whales in the BCB. Bowhead whales are predicted to 
remain in summer areas for longer periods of the year due to en-
vironmental changes and they have recently been documented 
over-wintering in Amundsen Gulf (Insley et al., 2021). However, the 
winter hotspot in Amundsen Gulf in the analyses herein is not due to 

F I G U R E  7  Species richness and 
overlap between high levels of Getis-Ord 
Gi* all species hotspots (95 and 99%) 
and high species richness (≥4 species) 
for 13 marine mammal species in the 
circumpolar Arctic during the summer 
(Jun-Nov) and winter (Dec-May). Blue to 
red colour scale indicates an increasing 
number of species (species richness)
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16  |    HAMILTON et al.

over-wintering. It is rather an artefact of the winter season definition 
as bowhead whales arrive in the Amundsen Gulf in May at the end 
of their spring migration. Similarly, the Beaufort Sea is used by white 
whales in the summer but is included in the winter hotspots because 
of white whales that migrate in May with the bowhead whales. Each 
season also encompasses multiple biological stages for all species. 
For example, the winter period includes over-wintering behaviour, 
birth and nursing (either entirely for most pinnipeds or a proportion 
for cetaceans and polar bears) for most species; different areas and 
habitats are likely favoured for different life-history events. Another 
caveat is that in some regions, multiple stocks exist for some species 
and biotelemetry data are usually not evenly split among the dif-
ferent stocks (e.g. white whales in the BCB region). In these cases, 
hotspots will be biased towards the areas that are used by the stocks 
with the most tracking data. Logistical challenges when undertaking 
fieldwork, and the variable ecologies of the ages and sexes in many 
marine mammal species, also means that tracking datasets usually 
do not contain an equal representation of the different age classes 
and sexes. In extreme cases, only one age class or one sex has been 
tagged (e.g. Greenland Sea harp seal data includes only pups, the 
vast majority of tagged polar bears are females). Thus, extrapolating 
results to the species level should be done with caution.

Areas with high species richness were generally found within 
high hotspot levels for all species (overlap >80%). Because each 
species-region combination received an equal weight in the all spe-
cies analysis, some regions (i.e. western Hudson Bay, Kara Sea), had 
high hotspots levels but low species richness. These regions are 
known to be important marine mammal areas, but biotelemetry data 
were lacking for them. Similarly, there were a few regions with high 
species richness that did not have high hotspots levels. This discrep-
ancy is likely the result of areas that are used by multiple species for 
transit or only used intensively by subsets of the tagged populations. 
The species richness and hotspot results should be used in tandem 
for conservation and management purposes.

The two “Arctic gateways” in the north Atlantic and Pacific 
oceans were especially species rich and they generally had high 
hotspot levels (also see CAFF 2017). These regions transport heat, 
nutrients and plankton into the Arctic Ocean (Basedow et al., 2018) 
and are also regions with rich fish stocks (Christiansen et al., 2014). 
Both regions are experiencing warming trends and exhibiting re-
ductions in Arctic ecosystem components (Fossheim et al., 2015; 
Huntington et al., 2020). Regional differences in hotspot habitats 
were also found in many cases, likely reflecting not only the different 
environmental features present but also the ecosystem differences 

F I G U R E  8  PCA plots for habitat variables in Getis-Ord Gi* hotspots (70%–99%) for nine pinniped species (bearded seal, ringed seal, 
walrus, grey seal, harbour seal, harp seal, hooded seal, ribbon seal and spotted seal) in the circumpolar Arctic during the summer (Jun-Nov) 
and winter (Dec-May). The circumpolar range of each species was split into regions (BCB: Bering-Chukchi-Beaufort region; C: Canadian 
Arctic Archipelago and West Greenland; GS: East Greenland and Barents Sea region)
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    |  17HAMILTON et al.

across the circumpolar Arctic (e.g. Bluhm et al., 2015; Stenson et al., 
2020). This indicates that environmental changes might have differ-
ent impacts on species’ distribution and behaviour across the cir-
cumpolar Arctic. The long-term impacts of these ecological trends 
on Arctic marine mammals, concomitant with other threats including 
increased presence of temperate marine mammal species, increased 
levels of human activities and changing trophic interactions are 
concerning.

Recurrent polynyas overlapped many marine mammal hotspots 
in the winter period (Figure 6). Polynyas can be important for marine 
mammals as over-wintering and foraging areas; at times thousands of 
marine mammals from multiple species occupy these areas (Born & 
Knutsen, 1992; Kovacs et al., 2020; Laidre et al., 2008). The hotspots 
of some species, such as bearded seals, bowhead whales, white 
whales and spotted seals, were closer to polynyas than hotspots of 
other species explored herein, although regional differences in po-
lynya use were apparent. Several recurrent polynyas did not overlap 
with identified hotspots, despite these areas being known to be im-
portant for marine mammals. This is likely a sampling artefact re-
flecting where biotelemetry data are lacking such as from the North 
Water Polynya, the Great Siberian Polynyas and polynyas within the 
Canadian Arctic Archipelago (Heide-Jørgensen et al., 2016; Speer 

et al., 2017). Similarly, the finding that winter hotspots were gen-
erally further from polynyas in the Canadian and West Greenland 
region than the other regions may be due to lack of biotelemetry 
data from polynya areas in this region. The winter distribution of sea 
ice has moved north of some well-known recurrent polynyas, fur-
ther demonstrating effects of climate change on important marine 
mammal habitats.

Tidewater glacier front habitat is important for several Arctic 
marine mammal species, but is prevalent only in some Arctic regions, 
including Greenland, Svalbard, Franz Josef Land and Novaya Zemlya 
in the Russian Arctic (Laidre et al., 2016; Lydersen et al., 2014). 
Correspondingly, distance to tidewater glacier fronts was a defining 
feature of regional differences in hotspot habitat. Close association 
with tidewater glacier fronts was identified in the hotspots of many 
species in the Canada/West Greenland and the East Greenland/
Barents regions, but cannot be considered important in the regions 
where it does not occur (i.e. in the BCB region). Upwelling and circu-
lation patterns driven by katabatic winds and freshwater discharge 
lead to high concentrations of lower trophic level prey near the gla-
cier terminus creating important foraging habitats for ringed seals, 
bearded seals, white whales and narwhals (Hamilton et al., 2016, 
2018; Laidre et al., 2016; Lydersen et al., 2014; Meire et al., 2017). 

F I G U R E  9  PCA plots for habitat variables in Getis-Ord Gi* hotspots (70%–99%) for three cetacean species (bowhead whale, narwhal 
and white whale) and polar bears in the circumpolar Arctic during the summer (Jun-Nov) and winter (Dec-May). The circumpolar range of 
each species was split into regions (BCB: Bering-Chukchi-Beaufort region; C: Canadian Arctic Archipelago and West Greenland; GS: East 
Greenland and Barents Sea region
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18  |    HAMILTON et al.

Tidewater glacier fronts are also important pupping and denning 
areas for ringed seals and polar bears (in some locations) and provide 
hunting areas for polar bears in the spring (Freitas et al., 2012; Laidre 
& Stirling, 2020; Lydersen et al., 2014). In the BCB, where there are 
no tidewater glaciers and also in other Arctic regions, ringed seals 
use shore-fast ice for pupping and polar bears use sea ice, barrier 
islands and land for denning (Crawford et al., 2012).

The hotspot method (based on the number of individuals of each 
species in a grid cell) used herein identified areas used by most of 
the tagged animals in a region and include common birthing, nursing, 
resting, foraging and moulting sites. Other important areas used by 
only segments of a population may be missed by this method such as 
foraging sites for species that forage either singly or in small to me-
dium sized groups across large regions. Polar bear denning locations 
might also be missed. Null models were created to address bias due 
to tracking effort; they show where hotspot locations would be ex-
pected based on tagging locations and general movement patterns of 
the species. The amount of overlap between high levels of null model 
hotspots and marine mammal hotspots varied by species group 
(Table 2). Overlap was generally less for species that had large-scale 
or directed movements away from tagging locations. Biases are un-
doubtedly introduced by fieldwork being carried out in areas where 
species are known to occur and that are accessible. Additional biases 
likely result from duty-cycling and short attachment times that limit 
the amount of data available for certain periods of the year.

Sea-ice declines and associated environmental changes are likely 
the largest current threat to Arctic marine mammals. These threats 
may operate directly through the loss of birthing, nursing and resting 
areas or transport corridors, or indirectly through changes in space 
use, prey composition, abundance and distribution, or the presence 

of interspecific competitors and predators (Kovacs et al., 2011; 
Laidre et al., 2008; Matthews et al., 2020; Reid et al., 2013; Stenson 
et al., 2016). Large-scale sea-ice declines and ecosystem changes are 
underway in many of the hotspot areas identified in this study (e.g. 
Fossheim et al., 2015; Huntington et al., 2020; Vihtakari et al., 2018; 
Yurkowski et al., 2018). Arctic marine mammals have reacted to past 
glacial and interglacial periods by changing their distributions (Foote 
et al., 2013; Harington, 2008; Louis et al., 2020). However, there is 
a limit to how far Arctic marine mammals can shift their distribution 
northward into the Arctic Ocean Basin given their strong affiliation 
with the highly productive continental-shelf habitats demonstrated 
by our hotspots analyses. The potential for northward shifts is likely 
variable among species and between regions. Productivity in the 
Arctic Ocean Basin is lower than the Arctic continental-shelf seas 
and it is unknown how productivity and fish distribution will change 
as the Arctic continues to warm.

Sea-ice declines have not led to direct changes in habitat use 
for all species. For some species, including narwhals, white whales, 
bowhead whales, walruses, hooded seals and bearded seals, habitat 
use appears to be more directly linked to bathymetric features than 
to sea-ice concentration for some regions and times of year (e.g. this 
study, Andersen et al., 2013; Hauser et al., 2018; Kenyon et al., 2018; 
Olnes et al., 2020). Some species are making greater use of open 
water areas as environmental changes occur and new prey species 
become available (Hamilton, Vacquié-Garcia, et al., 2019). However, 
habitat use, foraging behaviour and location of hotspots may be 
indirectly impacted through changes in the prey base and the in-
creased presence of interspecific competitors and predators (Breed 
et al., 2017; Hauser et al., 2018; Matthews et al., 2020). In partic-
ular, the increased presence of killer whales has the potential for 
substantial impacts, both directly through predation and indirectly 
through predator avoidance behaviour (Breed et al., 2017; Higdon & 
Ferguson, 2009; Matthews et al., 2020).

Economic interest in the Arctic continental-shelf seas and the 
Arctic Ocean Basin is increasing as decreasing sea-ice extent re-
duces logistical challenges for industries. Increased human activity 
(e.g. shipping, fishing, oil and gas exploration and production, min-
ing and tourism) pose multiple threats to Arctic marine mammals 
including risk of ship strikes, gear entanglement, bycatch, prey com-
petition, effects of noise (e.g. avoidance, hearing loss, disruption of 
prey), oil spills, pollution, displacement and changes in behaviour 
(e.g. Citta et al., 2014; Hauser et al., 2018; Reeves et al., 2014; Rode 
et al., 2018). The overall potential for population-level impacts will 
vary depending on the proportion of the population impacted and 
the magnitude of a given effect. Impacts could be severe if human 
activities interrupt key processes (such as migration) or critical time 
periods (e.g. breeding) (e.g. Heide-Jørgensen et al., 2013).

4.1  |  Future research needs and recommendations

Global climate predictions suggest that many high-use areas iden-
tified herein will likely become less favourable habitat during this 

TA B L E  2  Amount (%) that null model Getis-Ord Gi* hotspots 
(95% and 99%) overlap the marine mammal hotspots (95% and 99%) 
for each species and species group

Species Overlap (%)

Ringed seal 34.3

Bearded seal 31.9

Walrus 55.3

Bowhead whale 32.0

White whale 34.1

Narwhal 67.1

Polar bear 58.4

Spotted seal 31.0

Ribbon seal 62.6

Hooded seal 23.2

Harp seal 24.6

Harbour seal 86.1

Grey seal 74.5

All species 58.9

All pinnipeds 42.4

All cetaceans 39.9
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century, which is likely to result in distributional shifts and to impact 
the long-term persistence of Arctic marine mammals (e.g. Durner 
et al., 2009; Øigård et al., 2014; Reimer et al., 2019). Ideally, biote-
lemetry studies should be expanded across the distributional range 
of species with sample sizes that will document movement and be-
haviour patterns of various age and sex groups in each region to en-
sure that important areas for critical life stages are identified (e.g. 
Fortune et al., 2020; Sequeira et al., 2019).

A gap analysis is implicit in the identification of Arctic marine 
mammal hotspots, because discrepancies between hotspots and 
IUCN ranges highlight where, and for which species, more research 
is required. This comparison also highlights regions where IUCN spe-
cies ranges need to be revised because biotelemetry data extend 
beyond the IUCN borders of species occupancy in some cases. More 
biotelemetry data are needed particularly for the Russian Arctic. 
For example, identification of the western Chukchi Sea and East 
Siberian Sea as low use areas for polar bears is likely due to lim-
ited tagging effort. Data are also lacking for some species in East 
and West Greenland, the eastern Svalbard Archipelago and for 
some areas within the Canadian Arctic Archipelago. Additionally, 
data are lacking from some stocks in the larger regional areas (e.g. 
eastern Chukchi belugas in the BCB), influencing the identifica-
tion of hotspot locations in these regions. Numerous species also 
require more tagging effort; limited data are available for bearded 
seals, white whales, walruses, narwhals and harp seals. Additional 
tagging efforts should also try to attain greater seasonal coverage 
for some species (see Table 1). For species that generally have had 
short attachment durations (e.g. whales, walruses in some regions), 
portions of the year with sparse or no data limits the detection of 
seasonal hotspots. Location data are also generally lacking for the 
moulting periods of seals, an energetically costly period, when seals 
may be particularly vulnerable. Addressing these gaps will require 
innovative new attachment methods. Efforts should also be made 
to continue time series (including re-tagging individuals when pos-
sible) to quantify changes in behaviour, distribution and habitat use 
due to climate change. Integration of behavioural data (e.g. dive and 
activity data) from the tags in future large-scale studies along with 
complementary data from many sources (e.g. diet, body condition, 
prey availability, passive acoustic data) will undoubtedly improve our 
understanding of marine mammal habitat use and how it is likely to 
be impacted by climate change and concomitant changes in human 
activities. In some Arctic regions, Indigenous Knowledge will provide 
information to help fill identified knowledge gaps (Gryba et al., 2021; 
Huntington et al., 2017; Loseto et al., 2018).

Effective conservation and management measures for Arctic ma-
rine mammals rely on comprehensive data from biotagging initiatives 
and syntheses across species to identify important areas. Minimizing 
man-made stressors may reduce the overall impacts and allow some 
species time to adjust to environmental changes. Protected areas, 
including Marine Protected Areas, nature reserves and national 
parks, need to be expanded and protecting areas that extend across 
international boundaries should be considered (Hussey et al., 2016). 
Numerous examples exist of where biotelemetry data and identified 

hotspot regions have influenced policy and management decisions, 
including defining protected areas, reducing the risk of vessel strikes 
and in risk assessments for proposed human activities (e.g. Hays 
et al., 2019). Greater use of movement data is needed to help protect 
species against the variety of threats they face, including complica-
tions arising from transboundary management (e.g. Hays et al., 2016, 
2019; Sequeira et al., 2019; Titley et al., 2021). Given the current 
rate of change in the Arctic, spatially and temporally dynamic pro-
tected areas should be evaluated (D’Aloia et al., 2019; Hyrenbach 
et al., 2000). Specific examples where dynamic protected areas 
might be most effective include avoidance of disturbance to pinni-
ped pupping, nursing and moulting areas during these life-history 
events, polynyas during winter and spatial adjustments relative to 
large intra- and inter-annual variations in the MIZ. Monitoring ma-
rine mammal use of hotspots through biotelemetry in near-real time 
could support dynamic boundary delimitations and active manage-
ment (Hobday et al., 2011; Sequeira et al., 2019).

5  |  CONCLUSIONS

The Arctic continental-shelf seas and MIZ were identified as re-
gions with a high density of hotspots and high species richness. 
The “Arctic gateways” of the North Pacific and North Atlantic were 
particularly species rich. Hotspots differed by species, but some 
common areas were identified, such as coastal areas around the 
Svalbard Archipelago, the East Greenland continental shelf, waters 
surrounding Baffin Island and coastal and continental-shelf areas 
throughout the BCB region. Habitat features of marine mammal 
hotspots differed seasonally, regionally, within and among species. 
Environmental changes associated with sea-ice declines and in-
creases in human activity are currently taking place in many of the 
identified hotspots. Biotelemetry research is needed in regions and 
on populations where data are lacking. Efforts also need to be di-
rected to continuing telemetry time series and incorporating behav-
ioural data and Indigenous Knowledge where applicable. Although 
there are regional, sex and age gaps in the data at hand, the hot-
spots identified in this study do represent key marine mammal areas 
that can serve as a benchmark for spatial management to mitigate 
anthropogenic disturbances and reduce stress on marine mammal 
populations. Arctic marine mammals are currently facing multiple 
threats and the findings of this study can inform management ef-
forts to help mitigate pressures related to these threats and assist 
this species group in adjusting to future environmental changes.
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