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1  |  INTRODUC TION

All fish species are part of complex communities of interacting spe-
cies, typically including predators and prey as well as competitors. 
Therefore, a change in the abundance or biomass in one species 
may propagate to others. In addition, abiotic factors, such as climate 

warming, may play an important role in the dynamics of marine 
ecosystems, for instance by affecting recruitment of fish (Ottersen 
et al., 2013). As a result, ecosystem-based fisheries management 
(EBFM) which recognizes the interactions within an ecosystem 
has been advocated for decades (Botsford et al., 1997; May et al., 
1979). Yet, EBFM is rarely implemented in tactical management 
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Abstract
It is commonly accepted that no ecosystem model is the ‘best’, but rather that eco-
system models should be used in ensembles. This is also the case for the Barents 
Sea ecosystem, where we have used two different ecosystem models to explore the 
role of the top-predator Northeast Arctic (NEA) stock of Atlantic cod (Gadus morhua, 
Gadidae) in the food web. The two models differ in complexity; Gompertz being less 
complex in terms of food web (7 components) and processes compared to the com-
plex Nordic and Barents Seas Atlantis model (53 components). On the other hand, 
Gompertz provides thousands of stochastic realizations for each scenario, whereas 
Atlantis provides only one deterministic simulation. To compare the response to 
changes in NEA cod on two key prey species, capelin (Mallotus villosus, Osmeridae) 
and polar cod (Boreogadus saida, Gadidae), we perturbed the historical fishing pres-
sure by ±50% and used the same NEA cod biomass in both models. Even though 
the links between NEA cod and the prey species are similar in the two models, the 
results from the study reveal that indirect effects through other food-web compo-
nents might be as important as direct predator–prey interactions. Differences in spa-
tial structure and overlap between species also influence the species response to the 
perturbations. In this study, we focus on the mechanisms that drives the changes in 
the models, and advise on potential consequences for fisheries management. The two 
models can complement each other, and the differences between them point to areas 
where more knowledge is needed.
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(Skern-Mauritzen et al., 2016). One reason for this is the level of 
uncertainty associated with the response of marine ecosystems to 
management actions, which includes process, observational and 
model uncertainty as well as uncertainty associated with human be-
haviour (Harwood & Stokes, 2003). Model uncertainty is often used 
interchangeably with structural uncertainty (Geary et al., 2020; Hill 
et al., 2007) and describes the uncertainty that is introduced by as-
suming a certain model structure over any other.

Structural differences may lead to different models giving dif-
ferent projections under the same scenarios. For ecosystem models, 
this is further complicated by the fact that the models may not run 
with the same set of species or functional groups, the same spatial 
structure or at the same time scale (Spence et al., 2018). Another 
problem is selecting the appropriate level of detail for a model 
(Levins, 1966), which is often considered one of the most difficult 
aspects of the modelling process (Brooks & Tobias, 1996; Law, 1991). 
However, parts of these uncertainties can be addressed by basing 
decisions on multiple independent models (e.g. Fulton et al., 2015; 
Hill et al., 2007), that is a multi-model approach.

Multi-model approaches are already widely used for climatic 
predictions at a global scale (Gregory et al., 2005; IPCC, 2013), 
where similar-yet-different Earth System Models are used to draw 
possible trajectories of global temperature under different emission 
scenarios, thus integrating model uncertainty into the projections. 
Such multi-modelling approaches rely on addressing a single ques-
tion with common scenarios and applying them to different models. 
Because models have different assumptions about system dynam-
ics, a multi-model approach can highlight key areas of uncertainty 
in ways that support decision-making (Ianelli et al., 2016; Jacobsen 
et al., 2016; Marasco et al., 2007; Thorpe et al., 2015). A multi-model 
approach can also facilitate collaboration among modellers and pro-
vide a common interpretation of available information (Fulton et al., 
2015).

Inevitably, marine ecosystem models are often tailored to 
specific ecosystems, time periods and geographies, and are time-
consuming and costly to develop and standardize. Even models of 
the same marine ecosystem may differ significantly, both in terms of 
taxonomy, age groups, density independence, species interactions 
and linear vs non-linear responses, as well as environmental forcing, 
human impacts, and spatial and temporal resolution. The practice 
of considering model uncertainty in implemented ecosystem models 
therefore appears to be relatively rare. Several recent efforts have 
largely focused on uncertainty in parameter values, initial conditions 
and the process uncertainty that arises from natural variation (Bracis 
et al., 2020; Hansen et al., 2019; McGregor et al., 2020), whereas 
uncertainties about model structure have received less attention 
(Geary et al., 2020; Hill et al., 2007; Wildermuth et al., 2018).

Still, studies have emphasized that EBFM often benefits from a 
suite of ecosystem models that span a broad range of objectives. 
For instance, some models are useful for data organization and as 
catalysts for subsequent efforts, some may allow full exploration of 
parameter uncertainty within a limited number of species, and oth-
ers may trace ecological impacts through a broader set of drivers 

and species (Fulton et al., 2015; Kaplan et al., 2019). In this study, we 
will address model uncertainty by testing fisheries management sce-
narios in two ecosystem models of varying complexity representing 
the same geographical area.

The Barents Sea ecosystem, situated in the Arctic region north 
of Norway and Russia, offers an ideal opportunity to understand fur-
ther aspects of model uncertainty. This opportunity arises because 
current modelling efforts in this region include a minimalistic multi-
species model (the Gompertz model), and one of the most complex 
(Atlantis). Both model types are fitted and tested using best practices 
(see below for details), but with important structural differences. The 
Barents Sea is also a great study area because the ecosystem dynam-
ics – and model behaviour – can be focused on relatively few abun-
dant fish stocks of high ecological and socio-economic importance 
(Olsen et al., 2010) as well as several key species at lower trophic lev-
els, including krill and Calanus species. In particular, the Barents Sea 
holds the largest Atlantic cod (Gadus morhua, Gadidae) stock in the 
world (Kjesbu et al., 2014) the Northeast Arctic (NEA) cod. NEA cod 
play a dominant role in the Barents Sea ecosystem as important pred-
ators due to their high abundance, wide distribution, long migrations 
and generalist feeding habits, which influence practically all trophic 
links (Link et al., 2009). NEA cod also consume a very wide range of 
food items and can switch to prey that are more abundant in a given 
season and area (Jakobsen & Ozhigin, 2011). Therefore, predictions 
regarding the ecological role and effects of NEA cod are of clear in-
terest, as is understanding how these predictions vary across models.
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    |  1085NILSEN et al.

In this study we focus on the effect of NEA cod on other spe-
cies, in particular forage fish species: capelin (Mallotus villosus, 
Osmeridae) and polar cod (Boreogadus saida, Gadidae). We use two 
different ecosystem models of varying complexity (Gompertz and 
Atlantis) to address the ecological role of NEA cod under different 
fisheries management scenarios, and investigate consistent results 
across models, and as well as divergence in model projections. We 
adopt this detailed analysis to better understand the ecosystem dy-
namics in the Barents Sea and the role of structural uncertainty in 
the models used. Rather than trying to select a ‘best’ model, we com-
pare the models mechanistically by exploring the strengths of each 
of the models, while learning from the differences between them.

2  |  MODEL S AND METHOD

Two different ecosystem models were chosen to explore how 
changes in NEA cod abundance would impact the Barents Sea eco-
system: Gompertz (Stige et al., 2019) and NoBa Atlantis (Hansen 
et al., 2019a). These two models differ in complexity, number of 

species and the amount of time required to run and build them. 
However, both models were comparable in terms of spatial and tem-
poral scale as well as having common species included.

2.1  |  The Gompertz model

The Gompertz model is widely used in many aspects of biology 
(Tjørve & Tjørve, 2017). It has been used to describe the growth of 
animals and plants (Paine et al., 2012; Winsor, 1932), as well as multi-
species dynamics (Hampton et al., 2013; Ives et al., 2003; Langangen 
et al., 2017; Stige et al., 2018) and growth of bacteria and cancer cells 
(Laird, 1964; Vaghi et al., 2020; Zwietering et al., 1990). In this study, 
a state-space version of the Gompertz model was used and analysed 
(Stige et al., 2019). This model was originally developed to study the 
direct and indirect effects of sea ice cover on the major zooplank-
ton groups and planktivorous fish in the northern Barents Sea. The 
model can be regarded as a minimalistic ecosystem model and will 
hereafter be referred to just as ‘Gompertz’.

In short, our Gompertz model focus on five species or groups of 
species that are modelled dynamically: capelin, polar cod, krill, am-
phipods and copepods. In addition to these, two key predators, that 
is NEA cod and herring (Clupea harengus, Clupeidae), are included, as 
well as impacts from fishery and ice cover. To limit model complexity, 
the NEA cod, which is included as a covariate based on time series of 

observed biomass, is only allowed to affect the dynamics of capelin 
and polar cod biomasses. Herring is also included as a covariate that 
affects capelin, mainly through predation on capelin larvae. Climate 
is represented through time series of annual sea ice cover during 
wintertime, while fishing is given as a fraction of biomass removed. 
Fishing is only applied to capelin as it is the only dynamic species 
that was significantly harvested historically during the period with 
available data (1980–2015).

The model is fitted in a Bayesian state-space framework, where 
the species and processes are described by a set of state variables 
and equations referred to as the ‘process model’. The process model 
consists of five equations to describe the dynamics of copepods, 
krill, amphipods, capelin and polar cod. The five equations describ-
ing the log-transformed biomass dynamics are presented below in a 
compact form (Equation 1) and as a matrix (Equation 2).

The general compact form:

More specifically for our case:

In these equations, the state variable xi represents the biomass 
of the five dynamically modelled species on log scale: x1 is copepod 
biomass, x2 is krill biomass, x3 is amphipod biomass, x4 is capelin bio-
mass and x5 is polar cod biomass, while z1–z4 represents the covari-
ates ice, NEA cod, herring and fishing respectively. The subscript T 
symbolizes the year (1980–2015) while the c coefficients represent 
the productivity (ci0), density dependence (cii) and biotic and abiotic 
effects (cij).

In addition, process error (�) for all of the five species was in-
cluded. The process errors, which account for environmental factors 
not included in the model (Ives et al., 2003), were assumed to be 
independent in time and were jointly estimated from a multivariate 
normal distribution that accounts for the potential correlation struc-
ture (Stige et al., 2019).

With the Bayesian state-space approach, the process model is 
linked to data by an observation model. The observation model ex-
plicitly accounts for uncertainties about biological processes and ob-
servation noise (Clark & Bjørnstad, 2004). The output of the Bayesian 
state-space model is the posterior distributions of the model param-
eters, which can be used to quantify uncertainty in the ecosystem 
dynamics (Langangen et al., 2017). We use 2000 estimated parame-
ter posterior samples to simulate the biomasses of capelin, polar cod, 
krill, amphipods and copepods from 1980 to 2015.

A schematic representation of the species and the covari-
ates and the interactions between them is given in Figure 1. The 

(1)xt = a + bxT−1 + c zT−1 + �T

(2)
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1086  |    NILSEN et al.

strength of the interactions between the species was estimated 
from the mean of the posterior samples and is illustrated by the 
colour and widths of the arrows (Stige et al., 2019). Note that not 
all the interactions were statistically significant (dotted lines). To 
estimate the magnitude of the interactions throughout the simula-
tion, we multiplied the cij -values with the biomass at the previous 
timestep. For example, the direct effect of NEA cod on capelin 
would then be c47 (NEA cod effect on capelin) multiplied with the 
biomass of cod at the previous timestep (z4T−1) as the direct effect 
is both determined by the cij -value and the biomass. For the com-
parison between the two models, we analyse the median output 
of the Gompertz model.

2.2  |  The Atlantis model

The Atlantis modelling framework (Audzijonyte et al., 2019; Fulton 
et al., 2011) is one of the most complex marine end-to-end ecosys-
tems models in the world (Plagányi, 2007). It combines oceanog-
raphy, population dynamics, spatial distributions, nutrient cycling, 
fisheries and species interactions in a spatially explicit domain. Most 
species are modelled as individual species or aggregated into func-
tional groups with species of similar life history and ecological char-
acteristics. The version implemented in the Nordic and Barents Seas 

(NoBa) (Hansen et al., 2016, 2019a) is the version that will be used in 
this study and will hereafter be referred to as ‘Atlantis’.

Atlantis includes all trophic levels from phytoplankton to marine 
mammals, represented by 53 species and functional groups. These 
species are connected through a diet matrix where the proportion 
of prey in the predator´s diet is defined (Figure 1). The availability 
of prey also depends on spatial and temporal overlap, as well as the 
gape size limit, that is the size of the prey compared to the predator.

The harvest sub-model allows for multiple fishing fleets with its 
own set of features like gear selectivity, target species and manage-
ment structures. In the base run set up prior to this study, fisher-
ies of the 12 main commercially important stocks were set up and 
harvested close to historical fishing levels (Hansen et al., 2019b). 
The model is forced bottom-up by daily inputs of temperature, sa-
linity and currents from a Regional Ocean Modelling system (ROMS: 
Shchepetkin & McWilliams, 2005) covering the Northeast Atlantic 
(Skogen et al., 2007). Some of the key aspects of the model are sum-
marized in Table 1.

There is a high taxonomic resolution in Atlantis, especially for 
species that are harvested, vulnerable and/or economically import-
ant. Lower trophic levels are also represented but are to a larger 
degree aggregated into groups based on size. Zooplankton, for ex-
ample, are split into large, medium, small and gelatinous groups. This 
means that the amphipods and krill, which are simulated individually 

F I G U R E  1  Schematic representation of both models. (a) Gompertz model where the black figures represent the dynamically modelled 
species, while grey figures represent other key abiotic or biotic variables. Arrows symbolize interactions where thickness is approximately 
proportional to mean estimated effect sizes (posterior means of c-values) while red and blue color indicates positive or negative interaction. 
Note that not all interactions shown were statistically significant, as whole lines indicates 95% c.i. (Stige et al., 2019). (b) Atlantis model 
where the black figures and arrows represent the species included in both models and their interactions with other species. Grey figures and 
arrows show the species and interactions not included in Gompertz. Multiple fishing fleets, physical forcing through temperature, salinity 
and currents, and spatially specific aspects are also included
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    |  1087NILSEN et al.

in Gompertz, are gathered into one broader group of ‘large zoo-
plankton’ in Atlantis. Capelin and polar cod, on the other hand, are 
modelled as individual species in both models, and the ‘Medium zoo-
plankton’ group in Atlantis corresponds to the ‘Copepods’ as both 
groups are based on data and characteristics of Calanus finmarchicus 
(Hansen et al., 2016, 2019a; Stige et al., 2019). Another difference is 
that all vertebrate groups in Atlantis are age structured in up to 10 
age classes, which is not the case in Gompertz, where all age classes 
for a given species are aggregated.

NEA cod and herring are also included in both models. However, 
in Atlantis both species are dynamically modelled, while in Gompertz 
they are represented as covariates based on forced time series. This 
means that NEA cod and herring are unaffected by fluctuations 
in climate and other species abundance in Gompertz, while this is 
not the case in Atlantis. The number of species also differ greatly 
between the two models, as Atlantis includes more than ten times 
more species and functional groups than Gompertz. This is also re-
flected by the number of trophic links included in the models.

2.3  |  Comparison of model structure

Each of these ecosystem models have pros and cons associated with 
their use in providing projections. The Gompertz model is by design 
limited to a narrow taxonomic scope and simple representations of 

predator effects on forage fish, but this simplicity facilitates larger 
numbers of model projections and inclusion of both process and 
observational error. The Atlantis framework, in contrast, is limited 
in terms of replicates by slow simulation time and therefore lacks 
the stochasticity and uncertainty handled by the Gompertz model, 
but in exchange it includes a broader representation of the whole 
food web and encompasses additional important species and inter-
actions (with the exception of large zooplankton which had a more 
detailed representation in Gompertz). Atlantis is however more 
difficult to link directly to data. Atlantis models can be calibrated 
to historical time series (Hansen et al., 2019b) and can be tested 
via extensive sensitivity analysis (Hansen et al., 2019a) and skill as-
sessment (Olsen et al., 2016), but statistically fitting to data, as is 
done with the Gompertz model, is precluded by the long simula-
tion times. Atlantis also includes age structure and spatial dynamics, 
which are lacking in Gompertz. These aspects tend to make mod-
els like Atlantis less responsive to perturbations than models like 
Gompertz (Walters et al., 2016). Using these two independently 
derived models with distinctive assumptions and trade-offs could 
highlight key areas of uncertainty and help address complex eco-
system management issues. Analysing models of different complex-
ity might also help us understand how much resolution of space, 
species and sizes is needed to address complex ecosystem ques-
tions. In Table 1, we compare some of the key aspects of these eco-
system modelling approaches.

Gompertz Atlantis

Species and functional 
groups

5 (+2) 53

Spatial resolution None 60 polygons, 7 depth layers

Model type Statistical state-space Deterministic end-to-end

Includes process error Yes No

Number of model 
realizations

2000 1

Dynamic (i.e. project 
through time)

Yes Yes

Trophic interaction Two-way coupling +one way Two-way coupling

Number of links between 
all species

8 423

Number of links: Capelin 6 23

Number of links: Polar cod 5 19

Representation of harvest Timeseries of landings data of 
capelin at the stock level

Varying fishing mortality 
rates on commercially 
harvested species

Representation of physics Yearly ice cover given in % Daily input of physical 
forcing through 
temperature, salinity 
and currents

Representation of life 
stages

None All vertebrates separated 
into age groups, while 
some invertebrates 
(prawn, squid) are 
separated into juvenile/
adults

TA B L E  1  Comparison of the structural 
differences in the models
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1088  |    NILSEN et al.

2.4  |  Scenarios

To compare the two models, we took a hindcasting approach 
where historical time-series covering the years 1980–2015 
were used. This was done to avoid typical problems associated 
with forecasting, such as potential large uncertainties and over-
confidence in model forecasting (Brander et al., 2013). Since the 
models differed in several aspects, it was necessary to define a 
common baseline to compare the outputs. Atlantis simulates NEA 
cod biomass, while Gompertz uses forced time series as input. 
Consequently, the simulated NEA cod biomass from Atlantis was 
used as input in Gompertz, as the two time series were quite simi-
lar (grey and black line, Figure 2). With this approach, it was pos-
sible to compare the ecosystem response in the two models while 
NEA cod biomass was the same. For species other than NEA cod, 
parameters and forcing were left unchanged, to investigate the 
isolated effects of NEA cod.

A base run in Atlantis set up with historic fishing levels was used 
as the control run in the two models. The NEA cod biomass from 
this scenario was found to be significantly correlated with obser-
vations (r = 0.97, p = 0) (Figure 2). The NEA cod biomass was then 
perturbed by changing the fishing regimes on NEA cod in Atlantis. 
First, the historic fishing pressure was reduced by 50%, and then the 
fishing pressure was increased by 50%. The three scenarios used for 
analysis are summarized in Table 2 along with the mean fishing mor-
tality throughout the simulated period. The historic fishing pressure 
applied in Atlantis was based on the reported values (ICES, 2018, 
2019).

2.5  |  Elimination of unstable runs

Our application of the Gompertz model involved replacing the origi-
nal NEA cod time series (which itself was based on fishery survey 
observations) with Atlantis NEA cod trends. This resulted in some 
of the 2000 posterior samples from the Gompertz model indicat-
ing unstable dynamics. Investigation of the instability indicated that 
it was largely driven by the parameters of density dependence for 
capelin (c44) and polar cod (c55) being larger than 1 for some of the 
posteriors. Figure S3 demonstrates the effect of density depend-
ence on capelin and polar cod and how values above 1 could lead to 
unstable dynamics.

The range of parameters describing density dependence (cii) 
were not restricted below 1 in the original model parameter estima-
tion (Supplementary materials; Stige et al., 2019), and we therefore 
attempted to stabilize the model by contraining c44 and c55 to be 
below 1 (Figure S4). This reduced the number of unstable runs to 
some extent, but it did not solve the problem completely.

Since the samples had extreme values that would not be realistic 
in real ecosystems, it was decided to remove them from the analysis. 
Based on Ives et al. (2003), unstable posteriors were classified by an-
alysing the eigenvalues of the B-matrix of the interaction strengths. 
The B-matrix is formed by the c values with 0s where there is no 
interaction between species (matrix in Equation 1). All the c values 
for the 2000 runs were assembled into B-matrices at a 10 × 10 form, 
and the largest eigenvalue was computed for those matrices. The 
posterior samples where the B-matrix had an eigenvalue larger than 
1 (i.e. unstable dynamics) were then excluded from the analysis.

F I G U R E  2  Biomass of NEA cod in both models normalised to zero mean and unit standard deviation. Black line shows simulated biomass 
from Atlantis used as the base case in both models, while the grey line shows observed biomass used in the original Gompertz model. Dotted 
lines show scenarios from Atlantis where the fishing mortality on NEA cod was reduced (blue) or increased (orange) by 50%

 14672979, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12671 by Institute O

f M
arine R

esearch, W
iley O

nline L
ibrary on [19/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  1089NILSEN et al.

We found that the model preformed consistently across differ-
ent ways of treating the instabilities, especially when focusing on the 
median as we do here. Nevertheless, the instability of the Gompertz 
model for some of the posterior samples was not optimal and this 
must be kept in mind when interpreting the results.

3  |  RESULTS

In the results, we study the impacts of NEA cod by concentrating 
on how capelin and polar cod responded to the NEA cod perturba-
tions in the two models. Then we try to understand why the two 
species responded the way they did by investigating the underlying 
mechanisms of the models, first in Gompertz and then in Atlantis. 
All biomass outputs were normalized to zero mean and unit stand-
ard deviation to facilitate comparison. Since Atlantis produced one 
model realization per simulation while Gompertz produced 2000, 
the median of the Gompertz samples was used for comparison. 
The median was calculated after 605 (~30%) unstable runs were re-
moved based on the calculated eigenvalue. The fact that the median 
was used should be kept in mind when interpreting the results, as 

this excludes the uncertainty of the Gompertz results. For those in-
terested, a figure including the uncertainty of the Gompertz results 
can be found in the Figure S2. All plotting was carried out through ‘R 
studio’ (R Studio Team, 2020) under version 4.1.2.

First, we had to find out how the perturbated fishing scenar-
ios affected the NEA cod biomass and how the simulated NEA cod 
from Atlantis compared to the observed time series in Gompertz 
(Figure 2). The NEA cod stock in Atlantis (black line) corresponded 
well with the observed biomass (grey line), and most of the variabil-
ity in the model originated from variation in catch over time. For the 
perturbated scenarios, the biomass of NEA cod was, as expected, 
higher when the fishery was reduced, and lower when the fishery in-
creased. These biomass projections of NEA cod from the three sce-
narios were then used as time series input in the Gompertz model.

3.1  |  Northeast Arctic cod effect on capelin and 
polar cod

The NEA cod harvesting regimes affected capelin and polar cod 
differently in the two models (Figure 3). One of the most apparent 

Scenario Description Mean F ± sd

Base_run Historic NEA cod fishery 0.32 ± 0.12

F_0.5 Historic NEA cod fishery multiplied by 0.5 0.16 ± 0.06

F_1.5 Historic NEA cod fishery multiplied by 1.5 0.47 ± 0.18

TA B L E  2  Scenarios set up in Atlantis 
and used as input in Gompertz. The base 
run represents historical fishing levels, 
while in F_0.5 and F_1.5 the historical 
fishing pressure for NEA cod was changed 
by ±50%, respectively

F I G U R E  3  Simulated biomass of capelin and polar cod in both models normalised to zero mean and unit standard deviation. Black line 
shows the base run scenario and dotted lines show scenarios where the fishing mortality of NEA cod was reduced (blue) or increased 
(orange) by 50%
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differences between them was the magnitude of the response: both 
capelin and polar cod were less affected by the NEA cod perturbations 
in Atlantis compared to Gompertz. This was especially true for cape-
lin, which was noticeably affected by cod in Gompertz, but hardly af-
fected at all in Atlantis. In terms of the direction of the response, both 
the Gompertz and Atlantis models projected that a higher biomass of 
NEA cod would have negative effects on capelin. On the other hand, 
the direction of the response of polar cod differed between the two 
models. While polar cod was slightly negatively affected by higher lev-
els of NEA cod in Atlantis, higher levels of NEA cod resulted in more 
polar cod in Gompertz. Still, it should be noted that when accounting 
for the uncertainty (Figure S2), the effects of higher versus lower NEA 
cod on polar cod were largely overlapping for the Gompertz model, 
and the results should therefore be considered uncertain.

To understand why the species responded differently to NEA 
cod perturbations in the two models, we further analysed the results 
of each model separately by looking at the underlying mechanisms, 
as detailed below.

3.2  |  Effects of Northeast Arctic cod in Gompertz

As depicted for the Gompertz model in Figure 1, the direct ef-
fects of cod on both capelin and polar cod were expected to be 

negative, via predation. However, the Gompertz model projec-
tions suggested that cod would have a negative effect on cape-
lin, but a positive effect on polar cod. We therefore investigated 
if NEA cod could affect polar cod indirectly through other spe-
cies. The structure of the Gompertz model allowed us to visualize 
this directly from the estimated species interaction coefficients 
in Equation 1. Two different pathways were explored (Figure 4), 
where the magnitude of the c coefficient was multiplied with the 
change in biomass for that particulate species. Figure 4a illus-
trates the direct effect of NEA cod on capelin as well as the indi-
rect effect on polar cod through capelin and copepods. Figure 4b 
shows the pathway in the opposite direction where NEA cod af-
fects polar cod directly and then capelin indirectly through polar 
cod and copepods.

The results confirmed that the dominating effect on capelin was 
the direct negative effect of NEA cod (Figure 4a). Polar cod, on the 
other hand, was both affected by NEA cod directly and indirectly 
through capelin and copepods, where the latter seemed to be the 
most dominant. The negative effect on capelin due to higher NEA 
cod abundance had a positive effect on copepods which then had 
a positive effect on polar cod (Figure 4a). This indirect effect was 
stronger than the negative direct effect of NEA cod on polar cod 
(Figure 4b), which explains why polar cod responded positively to 
increased NEA cod biomass.

F I G U R E  4  Direct and indirect effects of NEA cod in the Gompertz model. The two pathways of how capelin and polar cod and affected 
are presented to the left with arrows showing the strength of the interaction (thickness) and whether the effect is positive (blue) or negative 
(red). Note that the arrows directly correspond to interaction c coefficients in Gompertz, Equation 1. Not all interactions shown were 
statistically significant, as solid lines indicate significance based on the 95% CI, and dashed lines are not significant based on 95% CI (Stige 
et al., 2019). (a) Direct effect on capelin and indirect effect on polar cod through capelin and copepods. (b) Direct effect on polar cod and 
indirect effect on capelin through polar cod and copepods. Black line shows the base line scenario and dotted lines show scenarios where 
the fishing mortality of NEA cod was reduced (blue) or increased (orange) by 50%. The total effect of species x on species y was estimated 
by multiplying the biomass of species x with the c coefficient determining the strength of x´s effect on y
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    |  1091NILSEN et al.

In addition to the direct and indirect effects of NEA cod, there 
was also an effect caused by the density dependent parameters. As 
mentioned, the cii parameters govern the strength of the density 
dependence in the Gompertz model. As cii increases, the compen-
satory effect of density dependence decreases, and when cii = 1 no 
density dependence occurs (Ives et al., 2003). This means that a pop-
ulation with high density dependence (cii close to 0) will be more ro-
bust against predation as the predation will be partly compensated 
for, while populations with low density dependence (cii close to 1) 
are likely to respond more strongly to altered predation pressure. 
Comparing the density dependent parameters for capelin and polar 
cod also indicated that capelin had more runs with low density de-
pendence, which most likely contributes to the stronger response to 
NEA cod seen in capelin biomass (Figure S3).

3.3  |  Effects of Northeast Arctic cod in Atlantis

To get a better overview of the Atlantis results, we plotted the bio-
mass as change in percentage for NEA cod, capelin and polar cod 
(Figure 5). We also examined the direct effect of NEA cod on cape-
lin and polar cod by investigating the change in NEA cod predation 
under the two scenarios. Both capelin and polar cod experienced 
changes in predation pressure from NEA cod under the two scenar-
ios, indicating a direct link between the two species and NEA cod. 
Still, the change in capelin and polar cod biomass was almost negli-
gible compared to the changes in NEA cod biomass and predation 
mortality, as the mean change in biomass was <10% for capelin and 
<5% for polar cod.

To investigate why the response to NEA cod was so weak, the 
total mortality from all predators was plotted (Figure 6). Although 
NEA cod accounts for a significant portion of the total predation 
on capelin and polar cod, the figure also introduced other predators 
and showed how the mortality increased and decreased in the two 
scenarios with varying NEA cod abundance.

Most of the reduction in NEA cod predation seemed to be re-
placed by increased predation from other species. When predation 
from NEA cod was reduced, capelin and polar cod experienced a 
higher predation pressure from species such as herring and blue 
whiting (for capelin) and skates (for polar cod). This effect was the 
opposite when the NEA cod predation increased. Still, the total pre-
dation pressure (black line, Figure 6) slightly increased in the sce-
nario with 50% lower fishing pressure on NEA cod and decreased 
in the scenario with 50% higher fishing pressure, indicating that the 
responses in capelin and polar cod in large part was caused by a di-
rect effect from NEA cod.

The spatial overlap between NEA cod, capelin and polar cod in 
Atlantis was also investigated (Figure S6). This spatio-temporal over-
lap of prey and predators is explicitly represented in the Atlantis 
model, and the overlap could therefore be studied. NEA cod and 
capelin were in the same areas throughout the entire course of a 
year. The overlap between NEA cod and polar cod, on the other 
hand, was present throughout the year, but mainly prominent during 

fall and wintertime in the Southeastern Barents Sea, when polar cod 
migrates further south.

Since Atlantis models a wide range of species, we also included 
a figure of how all species in Atlantis responded to the various cod 
scenarios (Figure S7). Results showed that the response to the al-
tered NEA cod stock was negligible for most species in the early 
period of the simulation (1985–1990), but slightly stronger towards 
the end (2010–2015). Another visible overall trend was that most 
species responded positively to less NEA cod and were negatively 
affected by more NEA cod. Multiple species responded to the al-
tered fishing regime, including prawns, herring, long rough dab and 
large demersal fish. The strongest response was seen in haddock 
and the planktonic groups. However, the plankton groups in Atlantis 
are highly variable, and haddock depends strongly on the plankton 
biomass for recruitment, so these results are highly uncertain and 
were not used for further interpretation.

Overall, the results revealed that the prey communities in the 
two ecosystem models responded differently to the same NEA cod 
abundance. Capelin responded negatively to NEA cod in both mod-
els but had a stronger negative response in Gompertz. Polar cod, 
on the other hand, reacted opposite in the two models: positive 
to NEA cod in Gompertz and slightly negatively in Atlantis. Even 
though NEA cod had negative direct effects on capelin and polar 
cod in both models, this negative effect was overshadowed by an in-
direct positive effect through capelin and copepods in the Gompertz 
model. This indirect effect could not be identified in Atlantis, which 
resulted in the two models projecting different responses in polar 
cod. Even though the polar cod response in the Gompertz model was 
non-significant (Figure S2), the results still provided a good contrast 
to the Atlantis result and emphasize the uncertainty regarding this 
species’ responses to changes in cod fishery exploitation.

4  |  DISCUSSION

To understand why the models responded differently we take a 
closer look at the structural differences between the models, focus-
ing on the food web complexity and the fact that Atlantis included 
additional features like age structure and horizontal grid resolution. 
We also discuss our results in the broader context of best practices 
for handling structural uncertainty in multi-model approaches and 
consider how this can be used for living marine resource manage-
ment purposes.

4.1  |  Food web complexity and age structure

The main difference between the responses in the two models 
was that Gompertz projected a stronger response to the NEA cod 
perturbations than Atlantis. These results seemed to emerge from 
a combination of weaker direct effects in Atlantis compared to 
Gompertz, in addition to the differences in taxonomic resolution, 
as Atlantis includes nearly 10 times as many species and a higher 
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1092  |    NILSEN et al.

number of links between the species. This structural difference led 
to NEA cod predation in Atlantis being largely compensated for by 
other species, and capelin and polar cod was therefore less affected 
in Atlantis than in Gompertz. These results are consistent with previ-
ous studies of how various models of the same ecosystem can pro-
duce different outcomes, as both Smith et al. (2011) and Kaplan et al. 
(2013) found that models including fewer species (EwE, OSMOSE) 
projected stronger impacts compared to Atlantis with its high taxo-
nomic resolution.

Still, we also highlighted the significance of other species in 
the Gompertz model. Even though Gompertz included few spe-
cies, the indirect effects from other species on polar cod were 
more important for its response to the perturbations compared 
to direct predation effects. Note that these results were based 
on mean posterior samples and not all effects were statistically 
significant (Figure S2). Previous studies have shown similar results 
of how indirect effects may lead to unforeseen responses, such as 
Kaplan et al. (2017), which saw a positive effects of reduced sar-
dine abundance on zooplankton and small forage fish. However, 
these indirect effects on polar cod through copepods were not 
easy to verify through field data. Studies have indicated that 

warmer temperatures may increase overlap between capelin and 
polar cod causing increased competition for copepods (McNicholl 
et al., 2016; Orlova et al., 2002, 2009). Hence, one could assume 
that cod affecting capelin positively or negatively could result in 
the opposite effect on polar cod due to increased competition for 
copepods.

In Atlantis, polar cod was directly affected by NEA cod, but 
the response was partly compensated for by other species such 
as skates and long rough dab. Stomach content data indicates that 
polar cod is a part of skate's diet in the Barents Sea (Dolgov, 2005), 
but the exact strength of the link is hard to identify due to lack of 
data. This response was not accounted for in the Gompertz model 
and raises the question to whether skates should be included when 
modelling polar cod, or if the link is so uncertain that it should be 
excluded. Still, using the two models emphasized different links that 
could potentially play a part in polar cod responses to changes in 
NEA cod abundance.

In addition to taxonomy, Atlantis also includes life history traits 
in the form of age structure. The inclusion of age structure could 
be partially responsible for the speed with which different species 
responded to the perturbations; this differs from the Gompertz 

F I G U R E  5  The effect of NEA cod on 
capelin and polar cod explained through 
changes in NEA cod predation in the 
Atlantis model. Black line shows the 
base line scenario and dotted lines show 
scenarios where the fishing mortality of 
NEA cod was reduced (blue dotted lines) 
or increased (orange dashed lines) by 50%
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    |  1093NILSEN et al.

model, which omits age structure. Results showed that the species 
biomasses were quicker to respond to the change in NEA cod in 
Gompertz compared to Atlantis. This response was most evident 
for polar cod where Gompertz allowed for a relatively large per-
cent change in biomass over the first 10 years of the simulations, 
while polar cod was hardly affected at all in Atlantis. In return, the 
response in polar cod in Atlantis steadily increased throughout the 
simulation and could potentially have proved to be greater than 
the effect on capelin if a longer simulation time was applied in-
stead of a hindcast. This could be caused by the fact that capelin 
has a faster life history than polar cod in the Atlantis model, as 
the life span of polar cod is set to 10 years while it is set to only 
5 years for capelin.

4.2  |  Spatial complexity

Another important difference between the two models was that 
Atlantis included a spatial aspect, while Gompertz did not. Spatial 
resolution is an important issue when considering the dynamics of 
ecosystems. Enhanced spatial resolution generally increases model 
complexity and requires more data for model construction, parame-
terization, calibration and validation, and may lead to great increases 
in computing time. However, without spatial structure, competitors 
and predators are effectively ‘everywhere’ and encounter rates are 
not related to abundance as they are in nature (Fulton et al., 2004). 

Non-spatial models may also underrepresent seasonal dynamics in 
cases where spatial complexity involves seasonal movement or mi-
gration by one or more key consumers. Fulton et al. (2004) studied 
the effect of reducing spatial resolution in models and found that 
simpler models did not capture the effects of changes in nutrient 
loads or fishing pressure as well as more complex models. An alter-
native could be to add an implied spatial structure to more simple 
models (like Strath E2E2, Heath et al., 2020).

In a spatially explicit model like Atlantis, the interactions between 
species are determined by spatial and temporal overlap. The degree 
to which species overlap in time and space will therefore largely 
determine the strength of the interactions between the species. In 
Gompertz, these interactions are governed by the cij parameters, 
which are constant throughout the run, but vary between the 2000 
model realizations. However, the input data were selected to repre-
sent the central and northern Barents Sea, which partly accounts for 
the spatial overlap (Stige et al., 2019).

Looking at the spatial distribution of the NEA cod, capelin and 
polar cod in Atlantis, results imply that the slightly stronger direct 
effect on capelin could be explained by a greater spatial overlap with 
NEA cod. We also saw that NEA cod represents a stronger part of 
the predation mortality applied to capelin compared to polar cod.

The geographical distribution of polar cod in the Barents Sea is 
not as well-known as capelin, as the current knowledge is mostly 
based on surveys that primarily targeted capelin, and areas north 
and east of the usual distribution of capelin have thus not been 

F I G U R E  6  The portions of predation mortality for capelin and polar cod caused by various predators in Atlantis for the three scenarios. 
Black lines show how the total predation mortality varied between the scenarios
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covered (Gjøsæter et al., 2020). Stomach data from 1984 to 2016 
does not identify polar cod as a big part (occurrence in less than 10% 
of the samples) of NEA cod diet (Holt et al., 2019), which supports 
the assumptions made in Gompertz. However, Barents Sea field ob-
servations have shown that since the early 2000s, warmer tempera-
tures have led to an expansion of NEA cod feeding grounds towards 
the northern Barents Sea (Fall et al., 2018), resulting in a greater 
overlap with polar cod. In these areas the NEA cod consumption of 
polar cod increased, with evidence of polar cod practically replacing 
capelin in the NEA cod diet in some local areas (Orlova et al., 2009). 
This indicates that the link between NEA cod and polar cod might be 
increasingly strong. Climate change and shifts in distribution might 
therefore call for spatial resolution, or at least some implicit model-
ling of overlap functions through time. While the Gompertz model is 
built for a specific area, it does not capture the dynamics in species 
distribution. This can only be modelled in spatially explicit models 
such as Atlantis.

4.3  |  Model uncertainty

Our approach here has been to understand how structural differ-
ences between the two models lead to divergent responses of spe-
cies such as polar cod; however we have neither formally created a 
model ensemble, nor have we weighted or ranked the models.

Structural uncertainty and resulting divergence in predicted re-
sponses are common in complex ecosystem models (Geary et al., 
2020). Unlike physical ocean models that generally share a common 
set of state variables and governing equations, ecosystem models 
often differ in model structure and components, complicating efforts 
to formally combine predictions across models (Spence et al., 2018). 
Methods of combining outputs for different ecosystem models have 
previously been proposed, though applications of these methods are 
more rare. One method is to use a ‘democracy’ of simulators (Knutti, 
2010; Payne et al., 2015) where each model gets one vote, regard-
less of how well it represents the true ecosystem, and a distribution 
of possible outputs is derived from this. Alternative approaches are 
to find the ‘best’ model based on fits to historical data, or to apply 
Bayesian model averaging, again based on model fits to data (such 
as Ianelli et al., 2016). Another novel approach, developed by Spence 
et al. (2018), is to construct a flexible statistical meta-model of the 
relationships between a collection of mechanistic models and their 
biases or discrepancies. This is particularly appealing because even 
when an individual model omits a species, the method statistically 
predicts behaviour of that species based upon interspecies relation-
ships that can be obtained from other models in the ensemble, and 
ultimately this gap filling allows quantitative comparison across an 
ensemble of somewhat dissimilar models. Overall, our exploration 
of structural uncertainty is a step towards ‘mingling models’ (Reum 
et al., 2021; Townsend et al., 2014), not fully achieving formal en-
sembles but nonetheless using multiple models to strengthen infer-
ence and qualitatively compare predictions from models that span a 
range of complexity. This study also has the strength of being able to 

look at model responses mechanistically, which might be hidden by 
a statistical ensemble.

4.4  |  Consequences of model complexity for 
ecosystem-based fisheries management

Incorporating ecosystem considerations requires moving from the 
single-species models used in stock assessments to more complex 
models that include species interactions, environmental drivers and 
human consequences. Model uncertainty generally increases with 
the number of assumptions made, which often increases with the 
complexity of the system of interest since more processes can be 
represented (Hill et al., 2007). With this increasing complexity, model 
fit can improve, but parameter uncertainty increases. Overly simple 
models, on the other hand, may not be able to represent important 
aspects of ecosystem dynamics and can thus have large model bias 
(Collie et al., 2016). Our study applied two models of very different 
complexity that illustrate these trade-offs, where the models are po-
tentially on each side of the complexity scale.

The complexity of the Gompertz model is relatively low, while 
the opposite is true for the Atlantis model (Plagányi, 2007). This 
large difference in complexity between the models is likely to lead 
to a relatively high risk of model bias in the Gompertz model while 
Atlantis may be prone to higher risk of parameter uncertainty (Collie 
et al., 2016). Neglecting model uncertainty can lead to underrepre-
sentation of uncertainty in model predictions, with important impli-
cations for management (Hill et al., 2007), as also indicated by our 
analysis of the underlying mechanisms of the ecosystem response to 
changed fishing pressure in cod in the two contrasting models. It is 
important to use the ecosystem models for what they are designed 
for, among other purposes as an important tool to explore trade-offs 
from changes in management strategies (Link et al., 2012). The con-
sequences for management of our analysis depend on the credibility 
of the two models. We summarize the possible interpretations and 
consequences of the different combinations of model credibility in 
Table 3.

The perturbation of the NEA cod fishery by 50% was regarded 
as extreme and we consider it a relatively unlikely scenario. Still, the 
results could provide valuable information for future management 
of capelin and polar cod in the Barents Sea. For capelin, both models 
projected that increased harvesting of NEA cod was associated with 
a higher capelin biomass. However, the magnitude of the increase 
was quite different between the two models, which indicates the 
role of model uncertainty caused by the structural differences in the 
models. The management of capelin and NEA cod is currently one of 
the few examples of EBFM in the world, as the importance of cap-
elin as food for cod has been considered in the capelin fishery since 
1991 (Skern-Mauritzen et al., 2016). These results thereby support 
the current management strategy that capelin and NEA cod should 
be considered together.

For polar cod, the situation was somewhat different. The per-
turbations did not affect polar cod strongly in Atlantis, and in the 
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Gompertz model, there was an indirect positive effect on polar cod, 
but this was quite uncertain (Figure S2). This indicates that a smaller 
change in NEA cod management would be unlikely to have cata-
strophic effects on this species. The results indicate that NEA cod 
and polar cod are quite independent, and a classical single species 
management approach would not differ extensively from a multi-
species approach.

However, Atlantis results (Figure S5) displayed the impacts 
of NEA cod on other parts of the ecosystem that one might have 
missed with a single-species model, or even a simpler ecosystem 
model like Gompertz. Results showed similar responses as capelin 
and polar cod on additional species, such as prawns and herring that 
are important prey for NEA cod, as well as long rough dab and large 
demersal fish that compete with NEA cod for the same type of prey. 
Even though the changes in these species were not dramatic, the 
results emphasize the benefits of models including multiple species 
to capture a broad range of ecosystem responses.

5  |  CONCLUSIONS

Our study emphasized the value of using multiple models to study 
ecosystems, both to better understand the models, and to provide 
useful information in terms of connections we are uncertain about 
and areas that need more research. Similar to earlier studies (Fulton 
et al., 2015; Kaplan et al., 2019), we find that a suite of models can 
be valuable in a collaborative context. By applying a multi-model ap-
proach to investigate the role of NEA cod in the Barents Sea, we 
draw the following conclusions:

•	 Including similar food webs for a selected set of species in the 
Barents Sea, the results from two ecosystem models are consis-
tent in terms of the direction of effects on capelin, an important 
prey group, even though the magnitude varied.

•	 In both ecosystem models, indirect food web effects can be as 
important as direct effects.

•	 As illustrated by the case of polar cod, differences in horizontal 
model grid resolution are in part responsible for different re-
sponses to the same perturbations, due to changes in overlap 
between the top predator and its prey. This could potentially be 
important for models used in management, as these usually does 
not take into account neither other species nor have a spatial res-
olution. Applying models both with and without a spatial resolu-
tion could help identify the size of this uncertainty.

•	 The two models complement each other, and used in a manage-
ment context they can guide the actions on different species, 
for instance using the strong cod-capelin interactions of the 
Gompertz model to explore potential management trade-offs 
between those species. The Atlantis model can be used to under-
stand broader impacts of cod across a full suite of species ranging 
from prawns to larger demersal fish.

Our study supported the idea that fisheries management strat-
egies could benefit from using multiple models of varying com-
plexity, rather than relying on single models to assess ecosystem 
impacts of management and predator abundance. The results also 
illustrated the importance of trophic effects that would not be 
incorporated in single-species fisheries management, and which 
potentially could have impact on other parts of the ecosystem. 

TA B L E  3  Possible interpretation of the credibility of the models

Possible Interpretation Discussion & Consequences

Atlantis is more credible than Gompertz Spatial and age resolution are essential to understand foodweb dynamics, suggesting that models 
which lack such resolution should be given less priority. Given the relatively long-run times of 
Atlantis, incorporating uncertainty analysis in this should be high on the agenda rather than 
obtaining large samples sized from running overly simplistic models. We may need standards 
for the ‘minimum requirements’ for a model to be considered credible for foodweb response 
evaluation.

Gompertz is more credible than Atlantis This implies that we should focus more on computational speed and ensemble size of projections 
to estimate uncertainty, rather than formulating a single model including a large range of 
mechanisms with less certainty on parameter values. Interaction strengths of Gompertz is more 
likely to be correct with implications for fisheries management of fewer but stronger foodweb 
links. The Gompertz model is also much more tractable for quantifying parameter and process 
uncertainty.

Both Gompertz and Atlantis are equally 
credible

We can have higher confidence in the responses that are common to both models, while we remain 
uncertain about the sensitivity of key links in the foodweb to the cod fishery where the responses 
differ between the two models. It is also uncertain how much spatial structure and taxonomic 
structure is necessary to characterize the foodweb response. Based on Collie et al., we may gain 
important insights from Models of intermediate complexity (MICE, Plagányi et al., 2014) that are 
more complex than Gompertz, but simpler than Atlantis.

Neither models are credible We may need to consider more models before being able to meaningfully inform fisheries 
management. Based on perceived failings of a model, we might gain some information on lacking 
mechanisms and potential large parameter uncertainties. Ensemble methods (Spence et al., 2018) 
may help maximize the information we can get from available models and help with credibility 
issue.

 14672979, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12671 by Institute O

f M
arine R

esearch, W
iley O

nline L
ibrary on [19/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1096  |    NILSEN et al.

Although NEA cod is considered to be sustainably managed 
(Kjesbu et al., 2014), EBFM encourages consideration of trophic 
links and other drivers, to strengthen and coordinate management 
across not only this target species but also co-occurring species 
such as polar cod and capelin. This study shows that ecosystem 
models are useful tools to improve and support this more holistic 
management approach.
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