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Chronically high infestation of salmon louse (Lepeophtheirus salmonis) questions the sustainability of the Norwegian Atlantic salmon (Salmo
salar) aquaculture industry. The confinement of millions of hosts, within hundreds of farms with overlapping larval dispersal kernels create the
structure for extremely persistent parasite meta-populations. However, the processes regulating the temporal variation in cross-contamination
of pelagic salmon louse stages among farms (i.e. connectivity), a vital process driving louse population dynamics, are not well described.
Here, we employ a data driven biophysical dispersal model that reproduces three-and-a-half years of production histories of 132 salmon farms
in western Norway and quantifies the connectivity of infective pelagic lice stages among the farms with the ocean currents. We show that
although the complex geography of western Norwegian fjords governs the long-term topology of the connectivity network, there was a strong
seasonal component to network fragmentation. The main de-structuring agent was the delayed infectivity of the pelagic lice stages at cooler
temperatures increasing dispersal distances, enhanced by occasional large scale wind forcing events. Coordinated fallowing strategies and
de-lousing treatments only played a marginal role in network fragmentation, suggesting that novel lice restraining strategies that consider the

environmentally sensitive transport distances must be developed to successfully break up the connectivity network.
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Introduction

Parasitic sea lice (Copepoda, Caligidae) are a growing eco-
nomic problem to aquaculture worldwide due to their
pathogenic effect on farmed bony fishes (Costello, 2006,
2009). Salmon louse (Lepeophtheirus salmonis) is the most
commercially detrimental sea louse in the Northeast Atlantic,
primarily due to its pathogenic effect on farmed Atlantic
salmon (Salmo salar) produced in excess of 1.75 million
tonnes annually (Iversen et al., 2020). In Norway (the largest
salmon producer worldwide) salmon louse related expenses
average 9% of revenue, where the major costs include ad-
ministration of pesticides, reduced marketability and growth,
and increased stress to fish host (Abolofia et al., 2017). The
confinement of up to several million salmon hosts in rela-
tively small cages, themselves often spaced well within the
pelagic larval dispersal distance of the lice, creates a near-
perfect template for an exponential growth of farmed lice
meta-populations. Although salmon lice are natural parasites
on wild populations of salmon, the infection pressure around
a single farm can be more than 70 times greater than am-
bient levels, with elevated concentrations at distances up to
30 km (Krkosek et al., 2005). This proliferation of farmed
salmon louse in the natural habitat has drastic negative ef-
fects on wild salmon post-smolt, including lowered condi-
tion and increased mortality (Krkosek et al., 2007; Johnsen
et al., 2020). In an effort to curb the negative effects of
salmon lice farming on the wild salmonoid populations (pri-
marily on Atlantic salmon, but also sea trout Salmo trutta
and Arctic charr Salvelinus alpinus), the Norwegian aquacul-
ture industry is currently governed by set mortality limits on
wild salmon post-smolt migrating through the fjords, with in-
dependent/scientific bi-annual evaluations in 13 production

zones (PZs) along the Norwegian coast. Most recent evalua-
tions indicates that industry-induced mortality was acceptable
(<10%) in nine PZs, moderate (10-30%) in two PZs, while
two PZs had excessive mortality (>30%) (Vollset et al.,2019).

The Hardangerfjord production zone (PZ3) is currently
among the PZs where industry-induced mortality on wild
post-smolt was estimated to be on moderate to high levels
(>10%), and thus measures must be taken to reduce post-
smolt mortality for future growth. PZ3 has a licensed produc-
tion of up to 112.098 tonnes distributed among 132 farmed
locations, and is home to several unique, wild salmon popula-
tions (Harvey et al., 2019). The current management regime is
based on a set limit of 0.5 adult salmon louse per fish, or 0.2
during post-smolt migration period in spring, reported weekly
based on a random sample of 20 fish from every other cage at
all farms. Moreover, to reduce cross-contamination of pelagic
salmon lice and other infectious agents to newly stocked farms
there are four coordinated stocking periods across a two-year
period (spring, summer, odd and even years), preceded by at
least two months of fallowing. This under the assumptions
that a temporally and spatially staggered stocking scheme will
reduce initial louse infestations, by limiting interactions (i.e.
water contact) with farms containing a more mature louse
demography (e.g. Bron et al., 1993). The circulation of up-
per water masses in the Hardangerfjord system, where most
of the pelagic life stages of the parasite is found (Heuch et al.,
1995), is mainly driven by large scale wind forcing and den-
sity fluctuations of the coastal water carried northwards by
the Norwegian Coastal Current (NCC) (Asplin et al., 2020;
Dalsoren et al., 2020). Due to high freshwater runoff into the
fjords a brackish layer is often apparent in the upper 5-10 m,
and the surface layer has a net outward flow (Figure 1).
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Figure 1. Overview of salmon farms (blue dots) in greater Hardangerfjord production zone (PZ3), and average modelled currents at 5 m over the
three-and-a-half-year study period (yellow, orange, purple gradient). Also plotted is the sea-surface wind density function based on weekly averages
(yellow, green, blue gradient), and 12 most important rivers for wild salmon populations in PZ3 (black lines).

From a network perspective (e.g. Barthélemy, 2011; Pastor-
Satorras et al., 2015) it is to be expected that decreasing the
diversity of connections to upstream farms (in relation to flow
of ocean currents) will reduce the external infestation pressure
of salmon lice, decreasing the need for expensive and stress-
ful treatments. Previous modelling works have addressed the
external infestation pressure and network connectivity pat-
terns by kernel density estimations (Kristoffersen et al., 2014;
Aldrin et al., 2017; Cantrell et al., 2018) and coupled ocean
model and particle tracking algorithms (Adams et al., 2016;
Samsing et al.,2017; Cantrell et al., 2020). However, few stud-
ies have addressed the temporal dynamics of such a marine
parasite network in detail. Here we apply a biophysical dis-
persal model that recreates the weekly connectivity patterns
of pelagic salmon lice among farms over a three-and-a-half-
year study period (1 April 2017 to 30 September 2020); with
the overarching aim of: (i) quantifying the degree to which
salmon farms in PZ3 are connected to each other via disper-
sal of louse pelagic stages (i.e. describe the long term network
structure); and (ii) to quantify the variation in network struc-
ture through the seasons. Subsequently we wanted to explore
several working hypotheses with regards to the drivers of vari-
ation in network fragmentation by evaluating the explana-
tory value of mixed effect models. Specifically we aimed to: (i)
explore how louse physiological response to environmental
factors could influence network fragmentation, for example
through the temperature sensitive infectivity of louse as shown
in laboratory studies (Skern-Mauritzen et al., 2020); (ii) quan-
tify how variation in large scale physical forcing could affect
network fragmentation, for example by increasing/decreasing
lice dispersal distances as suggested by Asplin ef al. (2014);
and finally, (iii) to test if the temporally and spatially staggered

stocking scheme employed by the regional managers breaks
up the network in any meaningful way, an important precon-
dition to minimize transfer of pathogens between operational
management units (e.g. Werkman et al., 2011).

Materials and methods

Biophysical dispersal model

The hydrodynamic model used to represent the ocean cur-
rents, temperature, and salinity in the study area was based on
the Regional Ocean Modeling System (ROMS, http://myroms
.org), a free-surface, hydrostatic, primitive equations, general
ocean circulation model (Shchepetkin & McWilliams, 2005).
ROMS was run with a horizontal resolution of 160 x 160 m
in an orthogonal, curvilinear grid covering the entire PZ3. The
model was run with 35 vertical layers of depth-varying spac-
ing (meaning tighter spacing/higher resolution at shallower
depths) and with an increased resolution towards the surface.
Hydrodynamic forcing on the model boundaries was applied
from the larger NorKyst800 covering the entire Norwegian
coast (see Albretsen et al., 2011 for details); wind forcing
was applied from the 2.5 km AROME-MetCoOp atmospheric
model (Miiller et al., 2017); and daily freshwater discharge
from the ~170 rivers in the study area was provided by the
Norwegian Directorate for Water Resources and Energy-all
assembled hereafter referred to as the “NorFjords-setup” (see
Asplin et al., 2020 and Dalseren et al., 2020 for elaboration
model on performance). The model was forced over the time
period 1 April 2017 to 30 September 2020 with internal time
steps of 6 s. The output from the NorFjords-setup contained
velocity, salinity, and temperature fields with a temporal res-
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olution of 1 h, thus adequately resolving the important tidal
forces in the study area.

The advection of particles in the horizontal plane was mod-
elled by the Runge-Kutta second order scheme “LADiM”
with a random horizontal diffusion of up to 0.2 m?/s
(Adlandsvik, 2020), evaluated every 2 min of the simulation
period yielding a total of 920.880 time steps. At the same dis-
crete time steps the vertical movement of pelagic salmon lice
stages was evaluated, where particles were moved towards
the surface when the light level exceeded a critical level, or
downwards if salinity was lower than 31% (see detailed re-
view and specific parameters used for lice behaviour in Sand-
vik et al., 2020). One particle was released from each of the
132 farmed localities in PZ3 every hour of the study period,
yielding 4.051.872 particles released in total.

To realistically represent the magnitude of dispersal of
pelagic lice stages among the salmon farms while at the same
time maintaining computational feasibility, each particle re-
leased in the model represented the predicted egg production
at the farm (i.e. a super-particle; Scheffer et al., 1995). Here,
we integrated egg production at the farm level over the hourly
release step as a function of incubation duration and temper-
ature (see caption of Figure 2 in Stien et al., 2005), aver-
age number of adult female lice at each farm (as reported to
the Norwegian Food Safety Authority), with an assumption of
two egg-strings per adult female carrying 150 eggs each (see
results section in Stien et al., 2005). After release, the super-
particles experienced a fixed daily mortality of 0.17 (see re-
sults section in Stien et al., 2005).

Network analyses

If super-particles drifted within a 160 m radius around farms
(i.e. within nine grid cells in the hydrodynamic model) a pro-
portion of the infective lice that the super-particles represented
settled within the farm, dependent on age (in degree-days) and
temperature experienced by the super-particle (equation [1] in
Skern-Mauritzen et al., 2020, and see Figure S1). Every week
we integrated the number of modelled infective pelagic salmon
lice originating from farm 1 infecting farm 2, 3,4 ... 132, and
from farm 2 infecting farm 1, 3, 4 ... 132 etc. The weekly
integrated number of infective salmon lice exchanged among
farms was stored in a 132%132 matrix, for every 175 weeks of
the study period, hereby referred to as “the connectivity ma-
trix.” To quantify the long term structure as well as seasonal
variation in network fragmentation, we evaluated the com-
munity structure of the connectivity matrix both integrated
over the entire study period and on a weekly basis. Here we
used three different algorithms implementing very different
approaches to detecting community structure, all available
in R-package “igraph” (Csardi & Nepusz, 2006). First and
foremost, we used the “infomap” algorithm that minimizes
the expected description length of a random walker trajectory
within the connectivity matrix, both on the directed and undi-
rected graph (Rosvall & Bergstrom, 2008); second, the “lead-
ing eigen-vector” method that tries to find densely connected
subgraphs in a graph, by calculating the leading non-negative
eigenvector of the modularity matrix of the graph (Newman,
2006); and third the “fast, greedy” method that tries to find
dense subgraphs via directly optimizing a modularity score
(Clauset et al., 2004). The modularity score is an inherent
property of a specific division of a graph, where a “good” divi-
sion (corresponding to a low modularity score) generally have
many edges within communities and only a few between them.

Practically speaking, infomap’s clusters are heuristically deter-
mined by the local retention rate of simulated random walk-
ers within subdivisions guided by the weighted connectivity
matrix links; while the eigenvector and greedy algorithms are
pure mathematical constructions, by either dividing the mod-
ularity matrix (a mathematical derivation of the connectivity
matrix) into clusters via eigenvalue spectral partitioning, or
by directly minimizing the modularity score of different graph
partitions, respectively. Due to the more intuitive design of the
infomap algorithm the main results were viewed considering
the communities found by infomap on the undirectional graph
(as this implementation seemed least complex), but where ap-
parent differences among the four programmatic iterations
were discussed accordingly.

Linear modelling and variation partitioning

To quantify the effect of louse physiology, variation in nat-
ural environment, and management action on the temporal
dynamics of the connectivity network, here measured as the
median number of communities detected by the four cluster-
ing algorithms, we fitted mixed effect models to each predictor
that hypothetically could be correlated based on prior knowl-
edge (as outlined in introduction). The predictors tested (in
total 15) could be classified into three general categories relat-
ing to either physiological response of lice to the environment,
direct physical effects, or measures taken by management to
reduce overall infestation pressure.

The six predictors related to management were (integrated
over all farms belonging to PZ3): (i) trailing number of de-
lousing treatments the previous four weeks; (ii) total number
of fallowed farms; (iii) total standing mass of salmon reported
for a given week; and number of fallowed farms following
each of four different coordinated fallowing strategies, stock-
ing the farms either in (iv) spring of even years, (v) summer
in even years, (vi) spring in odd years, or (vii) summer in odd
years. Determining which farm that belonged to either of the
four fallowing strategies was based on a hierarchical cluster
analysis on the similarity in production histories (i.e. weekly
presence/absence of fish in farms). The cluster analyses were
run with k = § groups, that allowed a fifth and separate group
for farms that followed a sporadic fallowing regime (i.e. spo-
radic fallowing).

In total we tested the explanatory value of six physical vari-
ables, including: (i) current speed at 5 m (the average drift
depth of pelagic lice); (ii) wind speed at sea surface (iii); wind
speed of the south-north and east-west component (iv—v); and
(vi) total freshwater discharge from all 178 rivers in the study
area. All the physical variables were interpolated to the geo-
graphical grid of NorFjords-setup (including wind speed and
direction extracted from the atmospheric model), averaged to
weekly values, and only grid cells inside PZ3 and inshore of
the national baseline was used.

The first (of two) physiological predictors tested was age at
peak probability of infection, where infection probability of
pelagic salmon louse was calculated as function of accumu-
lated degree-days and temperature (cf. equation [1] in Skern-
Mauritzen et al., 2020, and Figure S1) through all drift tra-
jectories. Subsequently the number of days (since hatch) until
reaching peak probability of infection was identified for all
particles. The second physiological predictor tested was drift
depth as response to light and salinity (cf. Sandvik ez al., 2020).
Both of these “in drift” physiological predictors were weekly
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Figure 2. Community structure of PZ3 connectivity network, integrated over the three-and-a-half-year study period. Denoted with roman numerals 1-9
in a clockwise fashion are clusters: (I.) @ygarden-Austevoll, (I.) Bjernafjord-Langnuen, (Ill.) Fusa-Eikeland-Samnangerfjord, (IV.) Seevareidsfjord, (V.)
Hardanger-Kvinnheradsfjord, (VI.) Al-Bjoa-Skaneviksfjord, (VII.) Haugesund, (VIII.) Bemlo, and (IX.) FitjarStokksund. Arced connections between farms
(black lines) represents the shortest path between farms (in a clockwise direction) and does not reflect the actual drift routes taken during model
simulations. For clarity only the 500 strongest connections are plotted (represented by thin arcing lines), with thick arcing lines representing the 100

strongest connections.

averages of all individuals hatching/being released in a given
week.

Explanatory power of the 15 models fitted was evaluated
by the Akaike information criterion (AIC), an objective trade-
off routine that balances goodness of fit and simplicity of
the model (for the general idea for model selection crite-
ria see Hastie & Pregibon, 2017). The AIC-evaluation was
done in concurrence with the outcome from Likelihood-ratio
tests (with cut-off at the 0.05 significance level), that assesses
the goodness of fit of the two competing statistical mod-
els based on the ratio of their likelihoods. Subsequently, to
explore the potential effect of an additional predictor, all the
variables were again added to the top model from the first
round and compared to the AIC of the top model of the
first round. Moreover, as our response variable was measured
at regular (weekly) time intervals they were not expected to
strictly comply with assumptions of independence. Thus tem-
poral autocorrelation of the residuals was accounted for using
an auto-regressive model of order one. All model fitting was
performed using the generalized least squares (gls) function in
R library “linear and nonlinear mixed effects models”/“nlme”
(Pinheiro et al., 2021).

Results

Integrated over the entire study period, infomap revealed nine
communities from the unidirectional graph (Figure 2). These
nine communities of highly connected farms aligned well with
the major topographical features of the region, for exam-

ple distinguishing large clusters in the Hardangerfjord (V., cf.
Figure 2), and the Skaneviksfjord (VI.). Infomap also distin-
guished lesser topographically constrained communities, for
example along the Austevoll/@ygarden archipelago (I.), and
in the Bjernafjord (IL.). On a general basis, three of the four
community detection algorithms (the two infomap implemen-
tations and the fast and greedy method) converged on almost
identical partitions of the long-term graph (Figure S2).

Although the long-term topology of the network followed
the large-scale geographical features, the network varied con-
siderably on a weekly basis, for example from no fragmenta-
tion in January 2018, to up to 11 communities in July 2019
(Figure 3).

On closer inspection there was a clear seasonal variability
in network fragmentation as suggested by all four community
detection algorithms (Figure 4A), where the median weekly
number of communities identified had a negative correlation
with number of connections (COrngust vs. Neonn = —0.61, t =
—10.1, df = 173, p<0.001). In total, three of the mixed ef-
fects models constructed showed explanatory power on me-
dian weekly number of communities, as evaluated by a com-
bination of reduced AIC (compared to the null model) and
significant p-values from the Likelihood ratio tests (Table 1).
As was clear based on model AIC, the first and by far the
most important predictor in explaining variation in network
fragmentation was age of peak infectivity, which in turn was
highly correlated with temperature (Corremp vs. nfece = —0.94,
t = —36.01,df = 173, p<0.001, Figure 4B); where a delayed
infectivity of pelagic stages associated with lower temperature
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Figure 3. Connectivity networks of pelagic salmon lice stages among farm localities in PZ3, with contrasts of two weekly integrated connectivity
networks: (A) highly fragmented network with localities partitioned into 11 clusters (week 33, 2019), and (B) an unfragmented network with (week 4,

2018). For further figure descriptions, see Figure 2.

corresponded to a decreased fragmentation. The second most
important predictor was increased wind anomalies from the
south (meaning high positive S to N deviations) co-occurring
with low fragmentation (Figure 4C). The top mixed effect
model fitted (with regards to lowest AIC), combining age of
peak infectivity and S-N wind anomalies, had an pseudo-R?
(i.e. correlation between predicted and observed number of
communities) of 0.73 (see Table 2 for top-model estimated pa-
rameters, and Table S1 for all fitted model parameters). How-
ever, note that the correlation structure between age of peak
infectivity and S-N wind anomalies in the mixed effect model
was estimated to —0.14, indicating some degree of (negative)
co-variability between the two variables. Temporal autocor-
relation of residuals was estimated to 0.38, meaning that net-
work fragmentation one week out had a correlation of 0.38,
two weeks out 0.38% ( = 0.14) etc. Overall, there were no sys-
tematic deviations between model predictions and observed
fragmentation over time, indicating that the combination of
the two predictors could adequately represent most of the pro-
cesses that created the seasonal pattern in network fragmen-
tation (Figure 4E).

Discussion

While the topographically steered circulation pattern of the
western Norwegian fjords constrains the long-term structure
of the connectivity network, the main driver of variation in
fragmentation through the season was time until onset of
peak infectivity of louse, directly mediated by the seasonal
temperature. However, the co-variability of seasonal temper-
ature and large-scale wind forcing confounds the interpreta-
tion of the results to some degree. For example, along-fjord
internal waves forced by S-N wind episodes are most fre-
quent in winter and spring and advects a substantial amount
of lice along the Hardangerfjord (Asplin et al., 2014); while
at the same time the low temperatures in winter delays peak
infectivity by several weeks (Skern-Mauritzen et al., 2020),
increasing the potential for dispersal drastically. Moreover, a

central parameter that needs to be optimized in community
detection applications on large networks is modularity (e.g.
Clauset et al., 2004; Newman, 2006). Three of the four com-
munity detection algorithms applied in our analyses imple-
ment some form of optimization on modularity (only infomap
on the directional graph omits this step), and three of the re-
sulting long-term partitions were highly correlated, although
with the eigenvector method deviating substantially from the
other three. Comparing our long term graph (i.e. Figure 2)
with the findings of Samsing et al. (2017) using the eigen-
vector method; we find a large discrepancy between our nine
communities, and Samsing’s two communities within the same
area. Other differences in approach was that the time integra-
tion periods were different between our studies (two seasons
in Samsing et al., 2017 vs. inter-annual integration in Figure
2), age and temperature dependent infectivity was not imple-
mented (cf. Skern-Mauritzen et al., 2020), and the hydrody-
namical model resolution used was different (800 m vs. 160 m,
although otherwise using very similar configurations). Thus
future, high(er)-resolution studies on a nation-wide scale are
needed to resolve these apparent incongruences in community
detection.

Management action through the regional fallowing scheme
had an almost negligible effect on network fragmentation.
Bron et al. (1993) reported strong effect of fallowing on a
farm-level by reducing infestation pressure during the initial
stocking phase. Yet simple deterministic models suggests that
for synchronized fallowing to be most effective in isolating
the newly stocked farms, long-distance connections into the
management unit has to be reduced substantially (Werkman
et al., 2011; Murray & Salama, 2016). The persistently high
external infestation pressure typical within the densely farmed
PZ3 most likely decreases the network “fragmentation effect”
of fallowing to a large extent (Guarracino et al.,2018). Corol-
lary, if operational fallowing units were optimally divided,
as for example suggested by community detection algorithms
that explicitly minimize the interconnectivity across commu-
nities, we predict that external infestation pressure during the
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Figure 4. Time series of response variable and predictors tested during model selection: (a) number of communities identified by the four different
community detection algorithms and their combined median; (b) age of peak infectivity (in days post hatch) of pelagic lice stages and "“in-silico”
temperature of lice at drift; (c) prevalent wind direction and speed on sea-surface averaged over the study area, where cardinal direction of arrows
indicates wind direction (i.e. arrows pointing upwards means winds generally blowing from the south) and length of arrows indicates speed; (d) number
of fallowed localities during four main coordinated stocking strategies and number of trailing (30-days) treatments; and (e) residuals of the top mixed
effects model (including predictors age of peak infectivity and S-N wind anomalies) plotted over the weeks of the study period.

Table 1. Results from the two-step model selection procedure presenting all mixed effect models that showed increased explanatory power compared
to the null-model, as evaluated by a decrease in AIC. However, do note that in model selection round 1 models 1.1-1.5 are compared to model 0, while in
round 2 models 2.1-2.6 are compared to model 1.1. Also presented is model AIC (and difference in AIC when comparing models, Delta AIC), log-Likelihood
of the model, the likelihood ratio between respective models, and p-values from likelihood ratio tests comparing the models.

Model Predictor AIC Delta AIC logLik L-Ratio p-value
0 NULL 641.94 - -317.97 - -

1.1 +peakage 602.50 -39.44 -297.25 41.44 0.000
1.2 +northavg 633.58 -8.36 -312.79 10.36 0.001
1.3 +mass 640.28 -1.67 -316.14 3.67 0.056
1.4 +Fallow2 640.74 -1.20 -316.37 3.20 0.074
1.5 +currentavg 640.98 -0.96 -316.49 2.96 0.085
2.1 peakage + northavg 597.33 -5.17 -293.67 717 0.007
2.2 peakage + currentavg 601.07 -1.43 -295.54 3.43 0.064
2.3 peakage + Fallow4 601.66 -0.84 -295.83 2.84 0.092
2.4 peakage + ntreat 601.95 -0.55 -295.98 2.55 0.110
2.5 peakage + Fallow2 602.16 -0.34 -296.08 2.34 0.126

2.6 peakage + mass 602.22 -0.29 -296.11 2.29 0.130
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Table 2. Estimated parameters from the top mixed effects model (as evaluated by lowest AIC), fitted to predictors age of peak infectivity and S-N wind

anomalies (model 2.1 in Table 1).

Predictor Parameter estimate Std.Error t-value p-value
(Intercept) 8.85 0.36 24.92 0.000
peakage -0.29 0.03 -8.85 0.000
northavg -0.11 0.04 -2.72 0.007

initial stocking phase could be drastically reduced; in turn
scaling down the need for expensive and stressful/harmful de-
lousing treatments. However, further explorations into new
fallowing strategies are needed, for example by employing a
fully dynamical meta-population model (as opposed to a data-
driven model used here), simulating fallowing and stocking at
different times allowing one to break up the statistical depen-
dencies inherent to this correlative study.

Although this study was performed in PZ3, a seasonality in
network fragmentation is probably also typical in other areas—
yet most likely less pronounced and with larger communities
at higher latitudes due to lower average temperatures. Simi-
larly, in accordance to future climate warming scenarios (e.g.
Sandvik et al., 2021) we generally predict a higher fragmen-
tation. However, further studies are needed to make plausi-
ble projections of future warming on network fragmentation,
where a regional downscaling of future warming scenarios
have to be implemented directly into the biophysical disper-
sal simulations.

To conclude, we observed a highly structured connectivity
network of salmon louse in the Hardangerfjord area, where
the main de-structuring agent was the seasonally oscillating
temperature lengthening/shortening pelagic larval durations
by up to several weeks. However, this seasonal pattern was oc-
casionally disrupted by large scale wind events, at times strong
enough to unify the entire PZ infestation network into one
highly connected unit. At the other extreme we observed high
fragmentation during the summer months, when temperatures
were high and disruptive large scale circulation events were
rare. Furthermore, management action through the histori-
cal fallowing regime of PZ3 had no observable effect on net-
work fragmentation. Although detailed suggestions for novel
fallowing strategies may be premature based on this correl-
ative study, we argue that the connectivity is generally too
high among the operational management units for fallowing
to have a noticeable effect on network fragmentation. On a
general basis, we thus recommend larger operational fallow-
ing units on a scale similar to the communities of our long-
term network (i.e. on a fjord scale, viz. Figure 2); where the
fixed topology of the PZ may play a greater role in fragment-
ing the network, and thus increase the overall effectiveness of
fallowing.
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