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A B S T R A C T   

To reduce the risk of overexploitation and the ensuing conservation and socio-economic consequences, fisheries 
management relies on receiving accurate scientific advice from stock assessments. Biomass dynamics models 
used in stock assessment tend to rely primarily on indices of abundance and commercial landings data. Standard 
practice for calculating the indices used in these models typically involves taking averages of survey tow data 
over large, diverse spatial domains. There is a lot of variability in the choice of methodologies used to propagate 
index uncertainty into the assessment model, many of which require specifying it through expert knowledge or 
prior distributions. Here we propose an alternative approach that treats each individual survey tow as an in
dependent estimate of the true underlying biomass in the stock assessment model itself. This reduces information 
loss and propagates uncertainties into the model directly. A simulation study demonstrates that this approach 
accurately captures underlying population dynamics and reliably estimates variance parameters. We further 
demonstrate its utility with data from the Inshore Scallop Fishery of south-west Nova Scotia. Results show sig
nificant improvements in parameter estimation over previous models while providing similar predictions of 
biomass with less uncertainty. This reduced uncertainty can improve the resulting scientific advice and lead to 
improved decision-making by fisheries managers.   

1. Introduction 

Fisheries scientists have long used statistical models to quantify 
population status and associated demographic variability in harvested 
populations. Typically, the primary goal of these models is to estimate 
population parameters to help provide reliable science advice for fish
eries management. The scientific advice provided must be as accurate as 
possible to lower the risk of overexploitation or implementation of 
undue socio-economic restrictions. This risk is exemplified by numerous 
examples of stocks which have collapsed despite the use of complex 
assessment techniques and detailed scientific advice (e.g. Northern cod 
(Gadus morhua) in Hutchings and Myers, 1994; Myers et al., 1996). To 
this end, much effort has gone into creating stock assessment frame
works capable of accounting for multiple sources of uncertainty (e.g 

Schnute and Richards, 1995; Aeberhard et al., 2018). 
State-space models (SSMs) are one such framework: they are able to 

account for both measurement error, which occurs in the observation of 
data, and process error, which comes from the imperfect knowledge of 
the underlying dynamical processes of interest (De Valpine, P, 2002; 
Cressie et al., 2009; Aeberhard et al., 2018). These models can be built to 
account for noisy data (e.g. Punt et al., 2000), complex non-linear 
population dynamics (e.g. Froese, 2006; Linton and Bence, 2008) and 
non-Gaussian distributions (e.g. Martin et al., 2005; Cressie et al., 2009), 
all of which are common with fisheries data. Estimation frameworks for 
SSMs, traditionally difficult to fit in practice, have become more easily 
accessible through innovations facilitating the approximation of 
intractable integrals. Multiple approaches have been developed, such as 
Bayesian methods usually involving Markov Chain Monte Carlo 
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(MCMC) (Meyer and Millar, 1999; Linton and Bence, 2008), and fre
quentist methods employing automatic differentiation and the Laplace 
approximation (Skaug and Fournier, 2006; Kristensen et al., 2016). 
These approaches have been used extensively when incorporating 
traditional stock assessment models into SSM frameworks (e.g. Nielsen 
and Berg, 2014; Smith et al., 2017; Pedersen and Berg, 2017). 

Biomass dynamics models are a common type of stock assessment 
model used by fisheries scientists (Hilborn, 1992). Requiring only an 
index of population abundance and commercial landings, their imple
mentation in SSM frameworks has led to their widespread use (e.g. 
Smith and Hubley, 2014; Xu et al., 2019; Best and Punt, 2020). A 
common example is the delay-difference model, developed to be a 
compromise between intractably complex models and overly simplistic 
ones (Deriso, 1980; Schnute, 1985). However, since biomass dynamics 
models use relatively few inputs, it is imperative that these inputs be 
reliable and that their uncertainty is quantified. 

These models tends to utilize two different types of data as part of 
their indices: fishery-dependent (e.g. commercial landings, fishing log
books, etc) and fishery-independent (e.g. surveys) data. Although sig
nificant work often goes into developing better methods to obtain 
reliable indices, such as stratification approaches and sampling designs 
for survey data (e.g. Smith, 1996; Kimura and Somerton, 2006) or 
improved estimates from fishery-dependent sources (Harley et al., 2001; 
Maunder and Punt, 2004; Maunder et al., 2006b), the uncertainty 
around them is often specified or approximated using prior assumptions 
(e.g. Smith and Lundy, 2002; Winker et al., 2020) or simply estimated 

using expert judgement (e.g. Cook, 2013; Nielsen and Berg, 2014; Yin 
et al., 2019). Additionally, the data used to generate the indices for these 
models contain a wealth of information that is obscured or aggregated 
during the development of a population index. Somewhat surprisingly, 
there has not been a great deal of research attempting to quantify how 
directly incorporating individual observations (e.g. survey tows) into 
existing model frameworks would impact the model inference. 

To directly utilize individual survey observations stock assessment 
SSMs must be modified to deal with a common difficulty associated with 
these types of data: zero inflation. This can be achieved through the use 
of delta distributions, wherein the probabilities of zero catches and 
positive ones are modeled separately before being combined to obtain 
the final estimates (Stefánsson, 1996; Martin et al., 2005; Thorson et al., 
2015). This type of approach has recently been used to obtain reliable 
indices of abundance (Kimura and Somerton, 2006; Thorson et al., 
2015), but incorporation of this approach directly into a biomass dy
namics model has not been thoroughly explored. 

This work aims to demonstrate how to incorporate fishery- 
independent survey data directly into an SSM in order to reduce the 
information loss associated with traditional indices that aggregate data 
spatially. Referred to as the Tow-Level Model (TLM), we modify the SSM 
proposed in (Yin et al., 2019) for the Inshore sea scallop (Placopecten 
magellanicus) fishery, Scallop Production Area 3 (SPA 3), Nova Scotia, 
Canada, to directly incorporate individual survey tow data. We under
take a simulation study to explore the estimability and identifiability of 
TLM. We then fit TLM to SPA 3 and compare its parameter estimates to 

Fig. 1. Map of Nova Scotia with Scallop Production Area 3 (SPA 3) inset. Black borders represent management borders of SPA 3, red represents the Inside VMS 
stratum and blue represents the St-Mary’s Bay stratum. 
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those obtained with the current operational model by Fisheries and 
Oceans Canada (DFO) (referred to as the Aggregated Index Model 
(AIM)) (Nasmith et al., 2016). Finally, we compare the predictions of the 
underlying processes (commercial size biomass, recruit biomass and 
instantaneous natural mortality) and associated uncertainties. 

2. Implementation 

2.1. Data 

DFO conducts annual scallop surveys in SPA 3, which is a scallop 
management area in the Bay of Fundy, Canada (Fig. 1). The number of 
tows per year ranges from 100 to 162 during the study period 
(1997–2018). This area is spatially heterogeneous and has historically 
been challenging to model, as exemplified by the 2012 restratification of 
the area to strata based on fishing effort as a proxy for habitat (Nasmith 
et al., 2016). DFO uses a stratified random sampling design where the 
sample size in a given strata is proportional to its area. There are 3 strata: 
the St. Mary’s Bay stratum, the Inside VMS stratum, and the Outside 
VMS stratum (Fig. 1; Nasmith et al., 2016). The area is managed using a 
Total Allowable Catch (meats) which is informed based on the opera
tional model used by DFO. 

At sea, all live and dead scallops (clappers: dead scallops whose 
shells are still hinged) are counted and sorted into 5 mm bins. Com
mercial size scallops are defined as having shell heights greater than or 
equal to 80 mm, and recruits are those between 65 mm and 79 mm, 
which are expected to grow to be commercial size the following year. 
Clappers are used to obtain an estimate of instantaneous natural mor
tality and only commercial size clappers are included in the model. A 
subset of live scallops (3 per 5 mm bins that are 50 mm and larger) is 
dissected in order to record their individual shell height and meat 
weight (weight of the adductor muscle, Glass, 2017). A linear model 
based on a cube law (Froese, 2006) with depth as a covariate is fitted to 
these data in order to estimate the commercial and recruit biomass per 
tow. The start and end position of each tow are recorded at sea using the 
commercial vessel navigational system Olex AS (Olex marine survey and 
navigation, www.olex.no); survey catches are standardized to 800 m 
length x 5.334 m width. 

The operational population model currently used by DFO considers 
only two stratum: St. Mary’s Bay and the Inside VMS strata (Fig. 1, 
Nasmith et al., 2016). Annual survey indices of commercial biomass, 
recruit biomass, commercial numbers, and clapper numbers, corre
sponding to the modelled area are calculated by obtaining the means per 
tow for both the St. Mary’s and Inshore VMS strata, then scaling up to 
the respective stratum by multiplying the mean value by the number of 
towable units (number of tows that would be necessary to cover the 
whole stratum), and then the totals for St. Mary’s Bay and the Inside 
VMS strata are added together. All landings are 100% dockside moni
tored and commercial landings are obtained from individual commer
cial logbooks. All commercial landings are assumed to come from the St. 
Mary’s Bay and Inside VMS strata, an assumption supported by previous 
analyses (Nasmith et al., 2016). 

Alternatively, each individual survey tow can be considered as a 
separate observation. Only data from St. Mary’s Bay and the Inside VMS 
strata are used, and are treated as if from a single combined stratum. The 
observed commercial biomass and recruit biomass in each tow are 
multiplied by the number of towable units in the total modelled area. In 
this way, each individual tow can be thought of as a replicate of the 
traditional single index of abundance. 

2.2. Models 

State-space models (SSMs) are hierarchical models defined by two 
stochastic processes: Xt, t = 1, . . . , T, representing the unobserved dy
namic state process (e.g. that describing the real population dynamics) 
at discrete time-steps t, and the observation process Yt, t = 1, . . . , T, 

which links the observations to the true underlying dynamic processes of 
interest (Aeberhard et al., 2018). Model parameters are combined in a 
p-vector θ ∈ Θ⫅Rp, and fixed covariates are indicated by zt. 

θ is considered a vector of fixed effects and X1:T a vector of random 
effects predicted from estimates of θ. These variables can be combined 
into the following joint likelihood L(⋅) and marginal log-likelihood L (⋅): 

L(θ,Y1:T ,X1:T) = p(Y1|X1, θ)
∏T

t=2
p(Yt|Xt, θ)p(Xt|Xt− 1, θ) (1)  

L (θ,Y1:T) = log
∫

L(θ,Y1:T ,X1:T)dX1:T (2) 

Approximations for these high-dimensional integrals are obtained 
using the Laplace method as implemented in the TMB package in R 
(Kristensen et al., 2016). TMB’s use of automatic differentiation has 
been shown to be computationally more efficient than most other 
packages without loss of accuracy (Kristensen et al., 2016; Auger-Méthé 
et al., 2017). Nomenclature follows the style of (Yin et al., 2019), where 

∼
Ind indicates that the data are independently distributed and ul N(σ2)

describes a lognormal distribution with mean ¼ 0 on the log scale and 
variance σ2 on the log scale. 

2.2.1. TLM 
Our TLM represents the population dynamics of sea scallops through 

the following equations: 

Bt = [exp( − mt)gt− 1(Bt− 1 − Ct− 1) + exp( − mt)gR
t− 1Rt− 1]τt (3)  

Rt = Rt− 1ϕt, ϕt∼
Indul N(σ2

ϕ) (4)  

mt = mt− 1ηt, ηt∼
Indul N(σ2

η) (5) 

where τt∼
Indul N(σ2

τ ) for t = 2, . . . , T. Eq. 3 moves the underlying 
scallop biomass in year t − 1, Bt− 1, to year t by removing the commercial 
landings Ct− 1, adjusting for instantaneous natural mortality mt, growth 
gt− 1 and recruitment where Rt− 1 represents the recruits surviving to time 
t − 1 and gR

t− 1 their growth rate. This is a simplification of the delay- 
difference model(Deriso, 1980; Schnute, 1985), originally presented in 
Smith and Lundy (2002)) and more recently described in Nasmith et al. 
(2016)). While the growth rates are usually obtained as part of the 
model itself, we instead use direct estimates. These are based on the 
ratios between the observed average meat weight of commercial size 
scallop in a given year and in the following year (see Nasmith et al., 2013 
for details). Equation 4 and 5 allow some temporal dependency in the 
recruitment and mortality processes. No distributions were assumed for 
the initial states of all 3 processes (B1, R1 and m1) and they were instead 
left free to vary based on the observations. 

The following equations connect the underlying population dy
namics to the observations: 

Ii,t =
qIBt

pI
ϵi,t, ϵi,t∼

Indul N(σ2
ϵ) (6)  

IR
i,t =

qRRt

pR
I

υi,t, υi,t∼
Indul N(σ2

υ) (7)  

Li,t∼
IndBinomial(ni,t,mtS) (8) 

where Eq. 6 links the observed survey commercial size scallop 
biomass Ii,t in tow i at time t, t = 1, . . . , T to the underlying population 
biomass Bt by adjusting for commercial size catchability qI and the 
probability of observing a non-zero survey tow, pI. Using the delta 
approach, pI is assumed to follow a binomial distribution based on the 
number of tows with positive commercial size scallop catches. ϵi,t is a 
lognormal error term with associated variance parameter σ2

ϵ . Eq. 7 fol
lows a similar approach, replacing each term with their recruit 
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equivalent so that IR
i,t is the observed survey recruit biomass in tow i at 

time t, Rt is the underlying recruitment, qR is the recruit catchability, pR
I 

is the probability of positive recruit catches and υi,t is a lognormal error 
term with associated variance σ2

υ . pR
I is also assumed to follow a binomial 

distribution based on the number of tows with positive recruit scallop 
catches. Eq. 8 links the number of clappers in a given tow Li,t to 
instantaneous natural mortality mt scaled by clapper catchability S using 
a binomial distribution based on the total number of live scallops plus 
clappers caught ni,t. This approach assumes that the ratio of clappers to 
clappers plus live scallops is a proxy for the instantaneous natural 
mortality i.e., the probability of death of any individual scallop, instead 
of a proxy for the cumulative mortality over the previous year. pI, pR

I , qI, 
qR, variances σ2

ϵ,t and σ2
υ , and S are parameters to be estimated from the 

data. The observations are assumed to be independent from one another 
under these equations. 

In summary, TLM contains the observed states Yt = (It , IR
t ,Lt)

T, the 
unobserved states Xt = (Bt ,Rt ,mt)

T, the fixed covariates zt = (Nt ,Ct , gt ,

gR
t )

T and the parameters θ = (pI, pR
I , qI, qR, S, σ2

ϵ , σ2
υ , σ2

τ , σ2
ϕ, σ2

η )
T. 

2.2.2. AIM 
AIM utilizes a Bayesian framework which incorporates prior 

knowledge (such as expert opinion and historical experience) (Meyer 
and Millar, 1999) through what are known as prior distributions π(θ). 
The full model formulation is described in Yin et al. (2019)). A Markov 
Chain Monte Carlo (MCMC) algorithm, which samples from the poste
rior distribution for the purpose of inference (Best and Punt, 2020), is 
used to fit AIM in R using the WinBUGS package (Lunn et al., 2000). The 
population dynamics are captured in the following way: 

Bt

K
= [exp( − mt)gt− 1

Bt− 1 − Ct− 1

K
+ exp( − mt)gR

t− 1
Rt− 1

K
]τt (9) 

Here, τt∼
Indul N(σ2

τ )1[0,8] for t = 2, . . . , T. K is a scaling parameter, 
while 1[a, b] is an indicator function indicating censoring within interval 
[a, b]. Both are present for numerical stability and to facilitate conver
gence (Yin et al., 2019). B1 is specified as B1∕K ∼ ul N(σ2

τ ). All other 
variables are identical to those of TLM. 

There are no underlying process equations for recruitment Rt and 
instantaneous natural mortality mt. Instead, both the ratio Rt∕K and mt 
are assumed to be independently and identically distributed (i.i.d.) 
following log-normal distributions with mean − 1.9 and variance 2 on 
the natural logarithm scale. The following equations connect the un
derlying population dynamics to the observations: 

It = qBtϵt, ϵt∼
Indul N(σ2

ϵ,t) (10)  

IR
t = qrtRtυt, υt∼

Indul N(σ2
υ,t) (11)  

Lt = mtS(
S
2
Nt− 1 + (1 −

S
2
)Nt)κt, κt∼

Indul N(σ2
κ) (12) 

Both commercial size and recruit indices are linked to their respec
tive processes by a single catchability parameter q. For recruits, this 
catchability is adjusted by rt, which is the ratio of commercial size 
scallops caught in lined and unlined survey drags with the lined gear 
meant to capture recruits. Furthermore, the variances for both equations 
σ2

ϵ,t and σ2
υ,t are allowed to vary through time because of the availability 

of survey coefficients of variations (CVs) used in the prior distributions 
(Yin et al., 2019). A single index per year is used. 

Equation 12, called the “popcorn" model (Smith and Lundy, 2002), 
links the clapper index Lt to the live scallop index Nt and instantaneous 
natural mortality mt using parameter S, which represents the average 
hinge separation time in years for a clapper (known as dissolution rate) 
instead of a simple catchability as in Equation 8. Equation 12 assumes a 
fixed lifespan for clappers (see Smith and Lundy, 2002 for details). 

In summary, AIM contains the observed states Yt = (It , IR
t , Lt)

T, the 
unobserved states Xt = (Bt ,Rt ,mt)

T, the fixed covariates zt =

(Nt ,Ct , gt , gR
t , rt ,CVϵ,t ,CVυ,t)

T and the parameters θ = (K, q, S, σ2
ϵ,t,

σ2
υ,t , σ2

κ , σ2
τ )

T. Identifiability issues exist for AIM, wherein priors intended 
to be non-informative have a strong impact on the model output, which 
motivated its reformulation using a frequentist framework as proposed 
by Yin et al. (2019)). 

2.3. Simulation Study 

Five simulation experiments were conducted to assess the estim
ability and identifiability of TLM with the focus on parameter estimation 
and random effects prediction. Both data simulation and model fitting 
were performed using TMB. The first simulation experiment estimated 
qI. To assess how much of the uncertainty in the predicted processes was 
related to the variance parameters and how much to the catchability 
parameters, the second experiment informed qI using a beta distribution. 
These first two simulations spanned 22 years (the same time length as 
the SPA 3 data). To see if the length of the time-series was impacting 
parameter estimation, a third simulation experiment mimicked the first 
but extended the data to 50 years. Finally, to test the effect of higher 
variances, a fourth experiment mimicked the second (informing qI) but 
increased the observation variances by an order of magnitude while a 
fifth experiment did the same for the process variances.Table 1. 

Eqs. 3 to 8 were used to simulate Y1:T and X1:T 1000 times. gt and gR
t 

were fixed at 1.1 and 1.5 in every year t, values that are very close to the 
mean values in this area, the number of tows ntows

t was set to 100 every 
year, and the total number of live scallops and clappers caught (ni,t) in 
every tow was simulated from a Poisson distribution with λ = 100. B1 
was set to 1000 metric tonnes, R1 was set to 100 metric tonnes and m1 
was set at 0.1. 

Commercial landings Ct were simulated from a log-normal distribu
tion with a mean of 20% of Bt in every year and a variance of 0.1 on the 
log scale. Simulating the commercial catch as a direct proportion of the 
biomass avoids the possibility of simulating negative biomass, which is a 
common issue with these type of models (Yin et al., 2019; Best and Punt, 
2020). 

The true values for the parameters θ and the starting values are 
provided in Table 2. Starting values for the random effects were 2000 
metric tonnes for Bt, 200 metric tonnes for Rt and 0.3 for mt. The 
maximization of the likelihood was performed using the quasi-Newton 
optimizer nlminb in R. The beta distribution used to inform qI in ex
periments 2, 4 and 5 had its shape parameters set at 10 and 12 (gener
alized from the distribution used in assessments for the inshore fishery, 
see Yin et al., 2019). For experiment 4, the true values of σϵ and συ are 
increased to 1, while for experiment 5 the same is done for στ and σϕ. Due 
to the use of log-normal random walks, the simulated processes tended 
to decrease over time (Lewontin and Cohen, 1969). This was not an issue 
for the commercial size and recruit biomass, since simulated populations 
only reached unrealistic numbers on much longer time-scales (over 100 
years), but was more difficult for the instantaneous natural mortality 
which sometimes rapidly decreased to a very small value when larger 
variances were tested. Due to this, the simulation value for ση was fixed 
at 0.1 for all settings. Code for all simulations is available upon request. 

Table 1 
Simulation experiments.  

Experiment qI 

estimation 
Time-Series 
Length 

Observation 
Variance 

Process 
Variance  

1 Free 22 Years Low Low  
2 Informed 22 Years Low Low  
3 Free 50 Years Low Low  
4 Informed 22 Years High Low  
5 Informed 22 Years Low High  
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2.4. Application 

To compare parameter estimates and predictions, both the TLM and 
AIM were fitted to SPA 3 data from St-Mary’s Bay and the Inside VMS 
stratum. TLM was fitted twice, once freely estimating qI and once 
informing qI with the same beta distribution as for the simulations. This 
distribution is a slightly modified version of the one used in the current 
assessment, itself based on experiments regarding gear efficiency (Smith 
et al., 2012). To further test its flexibility, TLM was fitted to all of the 
data from SPA 3 (see Supplementary Materials). Since detailed com
mercial logbook data are only available from 1998 onwards, the models 
were fitted to data from 1997–2018. AIM was fitted using the custom 
DFO R package SSModel, which uses WinBUGS (Lunn et al., 2000), 
while TLM was fitted using the Template Model Builder (TMB) package 
in R. Optimization starting values are provided in Table 2 and random 
effects starting values set to 10 *max(Ii,t) for Bt, 10 ∗ max(IR

i,t) for Rt and 
0.3 for mt. As indicated above, TLM assumes that the survey tows are 
independent. While the delay-difference equation should account for 
temporal correlations, this approach is unable to account for spatial 
correlation. The use of a stratified random sampling design, if the strata 
are appropriate, should help compensate for this potential issue. To 
examine how appropriate this assumption is, one-step prediction re
sidual plots as described in Thygesen et al. (2017) are calculated using 
the oneStepPredict function in TMB for all three types of observations. 

3. Results 

3.1. Simulation 

Over 96% of simulations converged for all 5 experiments (see Col
umn 1 of Table 3). Almost all variance parameters were captured with a 
very high accuracy for all experiments without affecting the estimability 
of other parameters (see Supplementary materials). The only exceptions 
are στ and σϕ in experiment 4 where they are sometimes estimated 
arbitrarily close to zero (usually when the simulated data are variable to 
the point of being unrealistic). 

Informing qI through a beta distribution (Experiments 2, 4, and 5) 
substantially improves both its own estimability and that of qR, 
removing the density at 0 for both, and has no visible impacts on the 
estimability of other parameters (see Fig. 2). This indicates that a single 
assumption about qI can result in more accurate and precise estimation 

in TLM. If qI is misspecified in the prior distribution, the model tends to 
move to this incorrect value (see Supplementary Materials). Histograms 
of parameter estimates for individual experiments are available in the 
supplementary materials. 

The predicted underlying biomass has minimal bias and improved 
accuracy when qI is informed, with over 98.5% of the predictions being 
at most 31% away from the simulated value in experiment 4 and even 
more precise in experiment 2 and 5. (Fig. 3). S and qR are generally 
underestimated, and there is a strong correlation between instantaneous 
natural mortality and recruitment estimates (e.g. r = 0.718 in experi
ment 2). These results are indicative of confounding between the esti
mate of recruitment and instantaneous natural mortality. However, the 
model is able to reliably capture their combined effect since the 
consistent biases in both these processes do not lead to biased biomass 
predictions (Fig. 3). 

3.2. Application 

Both TLM and AIM successfully converged when fitted to data from 
the modelled area. Furthermore, TLM also successfully converged for 
the entirety of SPA 3 (see Supplementary Materials). Estimates for the 
few directly comparable parameters were very similar (see Table 4). The 
standard error of στ is more than 3 times lower when estimated by TLM 
than AIM, indicating substantially less uncertainty in the estimated 
patterns of population biomass change. Informing qI increases its esti
mate from 0.24 to 0.43 in comparison to when it is freely estimated, and 
its standard error declines from 145% to 25% of the point estimate. It 
also reduces the standard error of qR but does not impact any other 
parameter (Table 4). Residual plots generally do not raise any concerns 
regarding model assumptions, although a spatial pattern in the biomass 
residuals is present in years where part of the areas were not sampled 
(see Supplementary materials). 

The 95% confidence intervals for the biomass obtained from TLM 
(prediction ± 1.96 standard error) are 6.7% smaller on average than the 
95% credible intervals from AIM (Fig. 4). The uncertainty declines 
despite the much larger uncertainties around the recruitment and 
instantaneous natural mortality estimates in TLM; this aligns with the 
behavior of these estimates observed in the simulation experiments. The 
TLM biomass predictions are on average 11% below the estimates from 
the AIM model and the maximum difference in any year was 32%. The 
overall trends for the TLM model were always within the 95% credible 
interval of the AIM model. These similarities arise despite the significant 
reduction in the number of parameter constraints in TLM (1 vs dozens 
for AIM). 

4. Discussion 

There are traditionally two main areas of focus around biomass dy
namics models. To improve assessment advice, the focus is often on 
creating the best possible index using survey stratification, sampling 
designs or novel modelling approaches (Chyan-Huei Lo et al., 1992; 
Smith, 1996; Kimura and Somerton, 2006; Kotwicki et al., 2014; 
Nasmith et al., 2016), or to explore demographic parameters of the stock 
assessment model itself (e.g. catchability) with little attention paid to 
the model indices (Wilberg et al., 2010; Pedersen and Berg, 2017). While 
understanding both of these aspects is essential for reliable stock 
assessment, the disconnect between the two has resulted in overlooking 
an alternative model formulation. Here we demonstrate that using 
tow-level data directly improved the model fit and lowered the uncer
tainty for the biomass predictions and several key parameters, while 
drastically reducing the number of assumptions required by AIM (i.e. 
informative priors and fixing the parameters for the distributions of 
recruitment and instantaneous natural mortality). 

TLM was able to reliably predict biomass and track biomass changes 
over time without the use of an aggregated index. The TLM biomass 
predictions had less uncertainty than the existing stock assessment 

Table 2 
Parameters used for first three simulation experiments and their starting values.  

Parameter True Value Starting Value 

στ  0.1 exp( − 1) 
σϕ  0.1 exp( − 1) 
ση  0.1 exp( − 1) 
σϵ  0.1 exp( − 1) 
συ  0.1 exp( − 1) 
qI  0.4 exp( − 1) 
qR  0.2 exp( − 1) 
S  0.6 exp( − 1) 
pI  0.8 0.5 
pR

I   0.4 0.5  

Table 3 
Number of simulations that converged, gave false convergence, gave singular 
convergence, or failed to converge.  

Experiment Convergence False 
Convergence 

Singular 
Convergence 

Failed to 
converge  

1  999  0  1  0  
2  1000  0  0  0  
3  1000  0  0  0  
4  967  24  0  9  
5  960  0  4  36  
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model while capturing the temporal dynamics observed in the area. 
Furthermore, the combined effect of recruitment and instantaneous 
natural mortality was well captured in both the simulations and the case 
study. This conceptually straightforward modification to a traditional 
delay difference stock assessment model improved estimation and pre
diction, maintained the advantages traditionally associated with these 
models and avoided the separation of the stock assessment models and 
their indices. Furthermore, the apparent difficulties related to catch
ability parameters, recruitment and instantaneous natural mortality 
wherein they are estimated with very large standard errors were unre
lated to the incorporation of tow-level data, but were instead related to 
the removal of strict assumptions implicitly used in AIM. 

Our approach was able to propagate uncertainties directly from the 
raw data into the final model outputs while accounting for zero-inflation 

and providing results in line with the operational stock assessment all 
while using a single informative prior distribution in qI. In comparison, 
AIM required dozens of prior distributions (a number of which are 
informative or semi-informative) and an expected mean level for both 
the instantaneous natural mortality and recruitment. The simulation 
study confirmed the accuracy of the relative biomass predictions while 
clearly demonstrating the ability of TLM to capture the relative overall 
productivity, despite some confounding between recruitment and 
instantaneous natural mortality. Incorporating all of these processes 
inside a unified framework strengthens the confidence in the model 
predictions and should improve the science advice provided to 
managers. 

This state-space hierarchical framework has widespread applica
bility since its only requirement for implementation is that the stock 

Fig. 2. Density plots of parameter estimates from first three simulation experiments (black line denotes true value). Estimates of S larger than 1 and estimates of qI for 
experiment 2 are not shown. 

R.R. McDonald et al.                                                                                                                                                                                                                           



Fisheries Research 246 (2022) 106152

7

assessment model utilizes indices. While the strata and stratified random 
sampling design (Nasmith et al., 2016) of SPA 3 appear to successfully 
help TLM overcome potential correlations between observations that are 
not incorporated (e.g. spatial correlations), modelling areas with less 
appropriate survey designs may prove problematic. However, this 
approach could easily be extended for almost any general case, 
including more difficult situations where a survey design does not ac
count for correlated observations. For example, instead of modifying a 

model that utilizes design-based indices (Smith, 1996; Nasmith et al., 
2016), model-based methods to index standardization (e.g. Maunder 
et al., 2006a; Kotwicki et al., 2014) could replace the current observa
tion equations and directly propagate uncertainties from these 
sub-models to the final stock assessment model outputs to account for 
correlated observations. Overall, the direct incorporation of tow-level 
data within a stock assessment model could be extended to virtually 
any type of stock assessment model that tends to aggregate information 

Fig. 3. Tukey boxplots of the difference between the predicted process and the true value for all 5 experiments (outliers not shown for visual clarity). Bt and Rt are 
shown as a percentage of the true value, while mt is the point-wise difference. 

Table 4 
Parameter estimates for AIM and TLM fitted to SPA 3 (standard error in parentheses). TLM was fitted twice, once freely estimating qI and once constraining it with a 
beta distribution.  

AIM TLM TLM (qI informed) 

Parameter Estimate Parameter Estimate Parameter Estimate 

K  663.902(20.190) στ  0.213(0.058) στ  0.215(0.058) 
q  0.328(0.083) σϕ  0.340(0.082) σϕ  0.337(0.081) 
S  0.265(0.067) ση  0.661(0.095) ση  0.661(0.095) 
σκ  0.291(0.065) σϵ  0.991(0.019) σϵ  0.991(0.019) 
στ  0.246(0.188) συ  1.065(0.028) συ  1.066(0.028)    

qI  0.240(0.342) qI  0.424(0.104)    
qR  0.051(0.054) qR  0.066(0.027)    
S  0.220(0.099) S  0.221(0.101)    
pI  0.920(0.007) pI  0.921(0.007)    
pR

I   0.497(0.013) pR
I   0.497(0.013)  
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prior to the modelling exercise. These models would inherently incor
porate temporal and spatial patterns of population productivity. 

One of the currently underutilized sources of information present in 
datasets used for fishery assessments are the locations of individual 
observations. Methods to incorporate spatial and spatio-temporal in
formation have recently been developed to improve survey indices (e.g. 
Thorson et al., 2015), biomass predictions (e.g. Cadigan et al., 2017) and 
understanding of biological drivers (e.g. Pedersen et al., 2018) in rela
tion to fisheries. A spatial pattern in the residuals is present in some 
years (see Supplementary Materials). While it is possible that this is 
caused by the lack of data in St. Mary’s Bay in the early years, it also 
suggests that the inclusion of spatial structure could be of some benefit 
for this model. To build on the approach presented in this study, and in 
the broad move towards an ecosystem approach to fisheries (Ruckel
shaus et al., 2008; Guo et al., 2019), future work could explicitly model 
these locations to get at the latent spatial information contained within 
them. This could implicitly capture the spatial variability in productivity 
due to environmental and ecological processes in which the population 
lives without requiring additional (expensive) data collection. 

Since many management approaches to fisheries, from ecosystem- 
based multispecies approaches (Ruckelshaus et al., 2008) to the use of 
biological reference points (Caddy and Mahon, 1995; Shertzer et al., 
2010), rely on models that accurately capture true population trends, 
the unbiased biomass predictions with reduced uncertainty in final 
predictions inherently lowers the risk associated with any 
decision-making process. This modelling framework demonstrates how 
stock assessments can better harness existing data in a simple and 
straightforward manner even in the presence of significant variation. 
Our approach enables the expansion of existing models to account for 
variability and zero-inflation, avoid averaging, and improves our ability 
to track changes in populations over time without requiring new in
vestments in sampling intensity or the development of new conceptual 
tools. This approach has the potential to decrease uncertainty and sub
sequently increase the confidence that managers and stakeholders have 
in the science advice provided by these modelling frameworks, ulti
mately leading to better decision making in support of long-term sus
tainable fisheries. 
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online version at doi:10.1016/j.fishres.2021.106152. 

References 

Aeberhard, W.H., Flemming, J.M., Nielsen, A., 2018. Review of state-space models for 
fisheries science. Annu. Rev. Stat. Its Appl. 5, 215–235. 
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