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Japanese Spanish mackerel (Scomberomorus niphonius) is an important fish species
in the China Seas with wide distribution, extensive migration, and high economic
value. This species has been yielding high fisheries production despite experiencing
continuously high fishing pressure and the conversion from gillnet to trawl harvesting.
Meanwhile, changes in life-history traits have been observed, including earlier maturation
and smaller size at age. Here, we build an individual-based eco-genetic model
parameterized for Japanese Spanish mackerel to investigate the population’s response
to different fishing scenarios (fishing by trawl or by gillnet). The model allows
evolution of life-history processes including maturation, reproduction and growth. It
also incorporates environmental variability, phenotypic plasticity, and density-dependent
feedbacks. Our results show that different gear types can result in different responses
of life-history traits and altered population dynamics. The population harvested by
gillnet shows weaker response to fishing than that by trawl. When fishing ceases,
gillnet-harvested population can recover to the pre-harvest level more easily than that
harvested by trawl. The different responses of population growth rate and evolution
to different fishing gears demonstrated in this study shed light on the sustainable
management and utilization of Japanese Spanish mackerel in the over-exploited China
Seas.

Keywords: fisheries-induced evolution, eco-genetic model, gear selectivity, life history traits, fisheries
management

INTRODUCTION

Fishing is recognized as a potential evolutionary force, described as a “large-scale size-selective
experiment on life-history evolution” (Rijnsdorp, 1993; Stokes and Law, 2000). Usually, commercial
fisheries harvest large-sized individuals, because fisheries management regulations are enacted
to protect small individuals and larger-sized individuals tend to have higher economic values
(Holland and Sutinen, 1999; Salas et al., 2004; Andersen et al., 2012). Consequently, smaller-sized
individuals survive better from selective harvest, and earlier-matured individuals are more likely
to reproduce. When these affected traits possess genetic variability, the resultant harvest selection
will alter the population’s gene frequencies. Conclusive evidence for adaptive evolution has been
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obtained through controlled experiments [reviewed by Conover
and Baumann (2009); Díaz Pauli and Heino (2014)]. Controlled
experiments show that the removal of larger individuals from a
population leads to changes in phenotypic traits, typically leading
to reduced body size and smaller size at maturation (Edley and
Law, 1988; Conover and Munch, 2002; van Wijk et al., 2013).
In the wild, evidence for FIE is less conclusive because it can
be difficult to disentangle fisheries-induced evolution (FIE) from
phenotypically plastic or demographic changes (Ricker, 1981;
Rijnsdorp, 1993; Heino and Dieckmann, 2008; Heino et al., 2015).
FIE experiments in the laboratory also revealed dramatic shifts
in allele frequencies, loss of genetic diversity, and increases in
linkage disequilibrium at specific locations in the genome (van
Wijk et al., 2013; Uusi-Heikkilä et al., 2017; Therkildsen et al.,
2019). However, the magnitude and frequency of FIE may be
quite small in the wild (Andersen and Brander, 2009). A recent
study analyzed genome-wide data obtained from two exploited
Atlantic cod populations and found little evidence of rapid
evolution (Pinsky et al., 2021).

In order to understand the mechanisms of FIE and
guide empirical work, eco-genetic models have emerged as
indispensable tools. Eco-genetic models permit the incorporation
of salient genetic detail such as a population’s genetic variances
and covariances and the corresponding heritabilities, as well
as the probabilistic inheritance and phenotypic expression of
quantitative traits (Dunlop et al., 2009a). Eco-genetic models
integrate principles of life-history and quantitative genetics
theories to account for life-history and genetic variability and
have been used to explore the eco-evolutionary consequences
of harvesting on fish populations (e.g., Baskett et al., 2005;
Marty et al., 2015; Mollet et al., 2016). Such eco-genetic models
focus on the evolution of life-history traits, their correlation
structure, bioeconomic consequences, and the effects of different
exploitation strategies. These models have generated insights
into the influence of FIE on populations (Dunlop et al., 2009b,
2015; Enberg et al., 2009; Marty et al., 2015), differences in
selection pressures caused by different gear types (Jørgensen et al.,
2009), and the bioeconomic consequences of FIE (Eikeset et al.,
2013; Zimmermann and Jørgensen, 2015). These insights provide
guidance to managers to help mitigate adverse effects of FIE
and achieve the sustainable management of fisheries resources
(Dunlop et al., 2009a; Jørgensen et al., 2009; Heino et al., 2013;
Laugen et al., 2014; Mollet et al., 2016).

Theoretical modeling affirms that decreasing fishing mortality
can weaken the evolutionary response to harvest (Law and Grey,
1989; Ernande et al., 2004; Marty et al., 2015; Kuparinen et al.,
2016). But reducing fishing effort in a fishery is generally known
to be difficult (Hilborn and Walters, 1992), considering its short-
term social and economic effects, which makes managing fishing
gear and their size-selectivity an attractive alternative avenue
(Law, 2000; Jørgensen et al., 2009; Zimmermann and Jørgensen,
2017). The selectivity of fishing gears is determined by gear type
(Watson et al., 2006) and properties of individual gear, such as
mesh size (Hamley, 1975). Trawls, seines and stow nets with
sigmoid size-selectivity curves target big individuals. Gillnets
with bell-shaped selectivity curve exclude fish below or above a
target size range. The difference of selection landscape between

sigmoid and bell-shaped selectivity curves causes different
responses of life-history traits to fishing (Jørgensen et al., 2009;
Mollet et al., 2016; Zimmermann and Jørgensen, 2017).

Japanese Spanish mackerel is an epipelagic, neritic species,
widely distributed throughout the subtropical and temperate
waters of the western North Pacific and playing an important role
in the commercial fisheries of China. Since the 1950s, Japanese
Spanish mackerel has been extensively exploited; however, its
catch has shown an increasing trend, maintaining above 4 × 105

t in recent years (Ministry of Agriculture and Rural Affairs,
1998–2020). Japanese Spanish mackerel was mainly exploited by
gillnets from the 1950s to 1970s. Since then, the catch proportion
harvested by gillnets has declined, and trawl has become the
main harvesting gear (Qiu et al., 2009). The sustained high
catch of Japanese Spanish mackerel under continuous fishing
pressure by trawl fisheries is contrary to the common pattern that
commercial fish populations tend to decline after an extended
period of fishing pressure (Law, 2000; Hutchings, 2005). At the
same time, the population characteristics of Japanese Spanish
mackerel have changed, including age structure dominated by
1- and 2-year-old individuals, earlier maturation, and prolonged
spawning season (Qiu and Ye, 1996; Mu et al., 2018). So it will
be worth studying the influence of different gear types on the
evolution of life-history traits, the effects of life-history evolution
on population characteristics, and the possibility of reversing
evolution by managing fishing gear and its size-selectivity.

Here, we constructed an individual-based eco-genetic model
(Dunlop et al., 2009b) parameterized for Japanese Spanish
mackerel in the China Seas and investigated two contrasting
scenarios—evolutionary and non-evolutionary—in order to
assess the consequences of genetic trait evolution under
exploitation with different gears. Specifically, by comparing
the evolutionary and non-evolutionary scenarios during the
exploitation phase as well as the subsequent moratorium period,
we can address the role of FIE in population dynamics under
different fishing gear types. The main objectives of this study
are to (a) explore the role of evolution during population
exploitation and moratorium phases, (b) identify the influence
of different gear types and levels of fishing mortality on the
adaptive evolution, and the response of genetic traits to trawl-
and gillnet-harvesting, and (c) provide guidance to mitigate the
adverse effects of FIE.

MODEL DESCRIPTION

We constructed an individual-based eco-genetic model to
study the influence of selective harvest on evolution of life-
history traits for Japanese Spanish mackerel. The model
combines the quantitative genetics of evolving life-history
traits with individual-level ecological processes of growth,
survival and reproduction, as well as with population-
level ecological processes such as density dependence and
environmental variability.

In our model, each individual is characterized by five traits,
which affect its life history through growth rate, maturation
schedule, and reproductive investment. The expression of these
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genetic traits can be influenced by environmental variation.
Eventually, the phenotypic traits are determined by the value
of genetic traits and environmental variation together. The
individuals grow, mature, reproduce, and die from natural or
fishing mortality. When many such interacting individuals share
a common ecological environment, population dynamics emerge.
The factors affecting population dynamics are present as density
dependence and environmental stochastic fluctuations, which
act on recruitment and growth conditions. In this competitive
and stochastic environment, some genetic traits improve an
individual’s chances to survive and produce offspring more
than others and are therefore more likely to be transmitted to
future generations.

Genetic Traits and Their Expression
Each individual i in year t possesses five inherited quantitative
genetic traits: juvenile growth rate g (i, t), growth investment
at maturation onset α (i, t), rate of decay in post-maturation
growth investment χ (i, t), intercept γ (i, t), and slope s (i, t)
of probabilistic maturation reaction norm (PMRN; Heino
et al., 2002; Dieckmann and Heino, 2007). The genetic
trait g (i, t) affects its resource acquisition, while α (i, t) and
χ (i, t) determine the trade-off between somatic growth and
reproductive investment. The genetic traits γ (i, t) and s (i, t)
specify an individual’s maturation schedule through the PMRN
intercept γ and slope s.

Given that the actual distribution of genetic variation among
our five inherited quantitative genetic traits is unknown for
Japanese Spanish mackerel, we assumed the same coefficient of
genetic variation (CVG = 12%) for all evolving traits. CVG is given
by,

CVG = 100
√

σ2
G/T̄ (1a)

Where σ2
G is the genetic variance of the initial population, and

T̄ is the mean value of genetic trait.
All initial individuals are assigned with trait values from

a normal distribution with a mean equal to the population-
level genetic value and a coefficient of genetic variation of 12%.
Offspring inherit the genetic traits of their parents from a normal
distribution with mean equal to the mid-parental value and
variance σ2

o; the latter is assumed to held constant through time
at half the genetic variance σ2

G of the initial population, i.e.,
σ2

o = 0.5σ2
G (Dunlop et al., 2009b). The phenotypic variance σ2

P of
genetic traits was determined by assuming that individual-level
phenotypic can be described by a Gaussian distribution with a
mean equal to the individual’s genetic trait value and a constant
environmental variance σ2

E, with the latter calculated by assuming
a conservative heritability h2 of 0.2 in the initial population; thus
σ2

P = σ2
G + σ2

E. The relationship among σ2
E, σ2

G, and h2 is given by,

σ2
E = σ2

G(h−2
− 1) (1b)

Besides expression noise, population-level density dependence
also can affect the juvenile growth rate g(i, t),

g (i, t) =
g(i)

1+ ρB(t)
(1c)

Where B(t) is the population biomass in year t and ρ is the
strength of density dependence in growth.

Life-History Processes
In addition to the five genetic traits [g (i, t), α (i, t), χ (i, t),
γ (i, t), s (i, t)], an individual i in year t is also characterized
by its phenotypic life-history traits including age a (i, t),
length l (i, t), age at maturation am(i), and fecundity Q (i, t).
All these life-history traits determine the life-history
processes including somatic and gonadic growth, maturation,
reproduction and mortality.

Energy Allocation to Somatic and Gonadic Growth
Energy allocation between growth and reproduction is described
following the biphasic seasonal growth model (Quince et al.,
2008). Before maturation, an individual allocates all net energy,
which is assumed to scale with its somatic weight w (i, t) as
wβ(i, t), where β denotes the allometric exponent, to somatic
growth. For adults, net energy is allocated between somatic and
gonadic growth after a fraction p (i, t) of the productive season
and p(i, t) is given by,

p (i, t) =
{

1 for a(i, t) < am (i, t)
α (i) χ (i)a(i,t)−(am(i)+1) for a(i, t) ≥ am (i, t)

(2a)
Where α (i) gives the proportion of the growing season in

the first adult year that is devoted to somatic growth, and χ (i)
measures the annual decrease of this proportion in the adult
stage. Both parameters range from 0 to 1 (Quince et al., 2008).
This is consistent with von Bertalanffy adult growth.

We assume an allometric exponent β of 2/3 (Kozlowski and
Wiegert, 1986; Kozłowski and Wiegert, 1987; Lester et al., 2004)
and relationship between somatic weight and body length of w =
�l3. An individual length-at-age trajectory is given by,

l (i, t) = l (i, t − 1)+ p (i, t) g(i, t) (2b)

Before maturation, the gonad weight equals 0. After
maturation, it is a function of body length at the end of each
productive season,

G (i, t) = 3γ�l2 (i, t)
(
1− p (i, t)

)
g(i, t) (2c)

Where γ is the ratio of the wet-weight energy density of
somatic tissue to gonad tissue.

Maturation
We model the maturation process using the PMRNs (Heino
et al., 2002; Dieckmann and Heino, 2007). The probability that
an immature individual matures in a given year probabilistically
depends on its age and size. We assume a linear PMRN with a
constant width. The PMRN is thus determined by its intercept
γ and slope s. The maturation probability is then given by the
logistic equation:

m (i, t) =
1

1+ exp(−
l(i,t)−lp50(i,t)

δ
)

(3a)
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Where l (i, t) is the length of individual i in year t, and
lp50 (i, t) defines the reaction-norm midpoints, i.e., the body
length at which the probability of maturing reaches 50%,
calculated as lp50 (i, t) = y(i) + s(i) a(i, t). The parameter δ is
determined by the PMRN envelope width w,

δ =
w

logit
(
pup
)
− logit(plow)

(3b)

With logit
(
p
)
= ln

(
p

1−p

)
, where pup and plow specify the

lower and upper probability bounds, respectively, chosen for
defining the PMRN width (in our model, we chose quartiles
pup = 0.25 and plow = 0.75).

We use a stochastic process of Bernoulli trials to model an
individual maturation process. If a number randomly drawn
from a uniform distribution between 0 and 1 is smaller than
m (i, t), maturation takes place.

Reproduction
An individual’s fecundity is defined by dividing its gonad weight
by an egg weight, Q (i, t) = G(i, t)/wegg . The total number of
newborns in each year, N0, is density-dependent and determined
by a Beverton–Holt recruitment function (Beverton and Holt,
1957) that depends on the total fecundity

∑
i

Q(i, t) of the

population.

N0(t) =
η1
∑

i Q(i, t)
1+ η2

∑
i Q(i, t)

e−εR(t) (4)

Here, e−εR(t) describes population-level inter-annual
environmental variability in recruitment modeled as a lognormal
process, where εR(t) is normally distributed, which represents
the influence of environmental fluctuations (e.g., temperature or
larval food supply) on recruitment. The parameter η1 specifies
the survival of recruits when total fecundity is low, while η2
measures the strength of density dependence; the asymptotic
number of recruits at high total fecundity is given by η1/η2
(Quinn and Deriso, 1999).

The female parent of newborns is selected in proportion to
female gonad size through a stochastic process of Bernoulli trials.
Firstly, we determine the female which has the largest gonad
weight. And then, a number is drawn randomly from a uniform
distribution between 0 and this maximal gonad weigh. If this
number is less than the gonad weight of the drawn individual,
this individual will be selected as female parent. The other
parent will be selected randomly from amongst the mature males.
Eventually, all newborns will be assigned two parents through the
random draws. Therefore, an individual having higher fecundity
will, on average, produce more offspring (Marty et al., 2015).

For each female in the population, the model records the
number of offspring that survive to reach maturity. Then we
calculate the average number of offspring that reach maturity
for each cohort R0, which represents the average lifetime
reproductive output of females in a cohort. For each cohort we
calculate the population growth rate per unit time as r ≈ ln[R0]

G ,
where G is the generation time, estimated by the mean age

at maturation for the cohort (Kuparinen and Hutchings, 2012;
Dunlop et al., 2015).

Natural and Fishing Mortality
Natural mortality consists of three components: (i) size-
independent mortality d0 originating from diseases, senescence,
parasites or any stochastic source of mortality; (ii) size-dependent
predation mortality ds that decreases with the increase in body
size according to,

ds (i, t) = csexp
(
−

l (i, t)
ls

)
(5a)

Where cs denotes the (hypothetical) maximum instantaneous
predation mortality rate at size zero and ls is the size at which
the predation mortality is decreased by the factor 1/e; and (iii) a
growth-dependent mortality,

dg (i, t) = cg exp
(

g (i, t)
g0

)
(5b)

With cg denoting the minimum instantaneous growth-
dependent mortality rate and g0 the growth rate at which the
growth-dependent mortality is increased by factor e. Growth-
dependent mortality accounts for the trade-off between growth
and survival. Faster growth is achieved at the cost of less energy
being available for maintenance (Ernande et al., 2004) and/or a
higher exposure to predation (Abrams, 1991; Werner and Anholt,
1993; Walters and Korman, 1999) through more active foraging.

In addition to the natural mortality components, individuals
may also experience fishing mortality at an instantaneous rate
H. Fishing is size-selective with gillnet-like or trawl-like fishing
selectivity curves (Figure 1). Gillnet-like selectivity curve kG is
defined as:

kG,t (a, m) = e
−

(
l(a,m)−Lmax
2·(sγ ·Lmax)2

)2

(6a)

Where Lmax specifies the size at which the selectivity curve
peaks and fish become fully vulnerable to fishing. To increase
comparability, we introduce a modified trawl-like selectivity
curve kT by replacing the descending leg of the curve by a
constant equal to the maximum selectivity:

kT,t (a, m) =

{
kG,t (a, m) , Lt(a, m) < Lmax

1, Lt(a, m) ≥ Lmax
(6b)

The instantaneous fishing mortality rate is determined by this
selectivity 0 < k ≤ 1 and the maximum instantaneous harvest
rate H,

dF (i, t) = k (a, m) ·H (6c)

The total instantaneous mortality rate is then given by,

Z (i, t) = d0 + ds (i, t)+ dg (i, t)+ dF(i, t) (7)

The resultant individual-specific annual probability of dying
is D (i, t) = 1− exp(−Z (i, t) · 1 year), which again is realized
through Bernoulli trials.
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FIGURE 1 | Fork length distribution of Japanese Spanish mackerel populations and size-selectivity curves used to impose selection on Japanese Spanish mackerel
life histories. At maximum selectivity, fish of that size are harvested at the rate specified by the parameter H. The bell-shaped size-selectivity curve is for gillnet. The
peak of the Gaussian function is at 600 mm. In each case the standard deviation is 1.5% of the mean. Sigmoid trawl selectivity was modeled based on the same
probability distribution as for gillnet, maximum selectivity for all fish with lengths larger than that at the peak selectivity.

Model Parameterization and Model Runs
We model a Japanese Spanish mackerel population with
parameters taken from the historical survey data. Whereas some
parameters are unknown or cannot be estimated from available
data, we assume these values to ensure that the emergent model
properties qualitatively and quantitatively resemble the natural
patterns (Grimm et al., 2005). To do so, we first run our model to
reach an equilibrium with likely parameter values and compare
the output with data available. Parameters were adjusted until the
modeled patterns (e.g., growth curves, age and size distributions,
and fecundity) resemble the real patterns observed for Japanese
Spanish mackerel, and all parameters are shown in Table 1.

After running for 5,000 years without harvesting, the
population approaches a demographic and evolutionary
equilibrium, that is, all genetic traits and the correlations among
them have converged close to an evolutionarily stable strategy.
We display all results from this time onward. Model is then run
without fishing for 100 extra years. Harvesting then starts and
lasts another 100 years, followed by a 100 years’ moratorium. All
results presented are averages of 30 replicate models runs, carried
out with different random seeds.

Evolutionary and Non-evolutionary
Model
Given the unknown evolvability of the evolving traits in
Japanese Spanish mackerel population, following Houle (1992)
and Dunlop et al. (2009b), we set the CVG at either 0%
(i.e., purely ecological dynamics with no evolution) or 12%
(i.e., with a high evolvability), respectively, to construct the
non-evolutionary and evolutionary scenarios. The comparison
between the non-evolutionary and evolutionary scenarios can
help understand the influence of gear types on life-history

evolution qualitatively, and the role of evolution in population
exploitation and recovery phase.

RESULTS

Dynamics of Population Biomass and
Population Traits in Evolutionary and
Non-evolutionary Scenarios
The response of population biomass to fishing is determined
by harvest patterns and evolutionary assumptions (Figure 2).
With the trawl-harvesting, increasing fishing intensity magnifies
the evolutionary response of population biomass, which can be
seen by comparing time series of total biomass for the evolving
population with its hypothetical non-evolving counterpart
(Figures 2A,C,E). When fishing begins, biomass of evolving
population declines dramatically at the early phase of harvest,
and then rebounds; this rebound is more obvious at high fishing
pressure (Figure 2E). When fishing ceases, biomass of evolving
population increases rapidly at the early phase of moratorium,
but then the pace of recovery slows down and the biomass
does not recover to the pre-harvest level during a 100-year
moratorium. In contrast, biomass of non-evolving population
does not rebound during the fishing period, but it quickly
recovers to the pre-harvest level during the moratorium.

Compared to trawl fishing, populations exposed to gillnet
fishing show weaker but qualitatively similar biomass responses
to fishing and its termination (Figures 2B,D,F). The responses
are weaker also when evolution is allowed. Importantly,
however, the biomasses of the evolving populations do not
systematically differ from their hypothetical non-evolving
counterparts (Figures 2B,D,F). In other words, there is no

Frontiers in Ecology and Evolution | www.frontiersin.org 5 February 2022 | Volume 10 | Article 844693

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-844693 February 22, 2022 Time: 14:10 # 6

Sun et al. Selective Harvest Induced Evolution

TABLE 1 | Model parameters.

Parameter group Description Value Symbol Unit Equations Source

Genetics Heritability 0.2 h2 – 1b (1)

Coefficient of genetic variation 0.12 CVG – 1a (1)

Evolving traits Growth rate 400 g(i) mm year−1 1a, 1c, 2b, 2c, 5b (2)

Growth investment at maturation onset 0.6 α(i) – 1a, 2a (3)

Rate of decay in post-maturation growth investment 0.6 χ(i) – 1a, 2a (3)

PMRN intercept 600 y(i) mm 1a (3)

PMRN slope 10 s(i) mm year−1 1a (3)

Growth Strength of density dependence in growth 1 × 10−7 ρ g−1 1c (3)

Production exponent 2/3 β – (3)

Constant in allometric weight-length relationship 2 × 10−5 � g mm−3 2c (4)

Initial length 4.5 l0 mm (2)

Maturation PMRN envelope width 200 ω mm 3b (3)

Lower bound of PMRN envelope 0.25 pup – 3b (5)

Upper bound of PMRN envelope 0.75 plow – 3b (5)

Reproduction Ratio of somatic to gonadic wet-weight energy densities 0.62 γ – (6)

Weight of an egg 4 × 10−3 Wegg g (6)

Maximum survival probability of recruits 3 × 10−4 η1 – 4 (7)

Strength of density dependence in recruitment 5 × 10−9 η2 – 4 (7)

Noise coefficient of recruitment 1 (0.1) εR(t) – 4 (8)

Natural mortality Size-independent instantaneous natural mortality rate 0.3 d0 year−1 7 (9)

Maximum instantaneous predation mortality rate 0.6 cs year−1 5a (9)

Scaling factor of predation mortality rate 200 ls mm 5a (9)

Minimum instantaneous growth-dependent mortality rate 0.02 cg year−1 5b (9)

Scaling factor of growth-dependent mortality rate 200 g0 mm year−1 5b (9)

Fishing mortality Gillnet selectivity parameter 0.015 sy – 6a (2)

Length at which the selectivity curve peaks 600 Lmax mm 6b (2)

Maximum instantaneous harvest rate [0.2, 0.8] H year−1 6c

–, dimensionless parameters.
(1) within the range reported by Gjedrem (1983); Mousseau and Roff (1987), Houle (1992), and Carlson and Seamons (2008); (2) values taken from You et al. (2014) and
slightly modified when necessary; (3) values chosen such that the life-history characteristics resemble those of Japanese Spanish mackerel (e.g., Liu et al., 1982; Qiu
and Ye, 1996; Mu et al., 2018); (4) values obtained from http://www.fishbase.org; (5) definition of PMRN width based on quartiles; (6) set such that individual fecundity
is in the range reported by Qiu and Ye (1994, 1996); (7) set to create a population of large yet computationally manageable size (ca. 10,000–12,000 individuals) in which
recruitment is roughly one half of the asymptotic level η1/η2; (8) values taken from Marty et al. (2015); (9) total natural mortality within the range reported by Chen et al.
(2018).

rebound during the fishing period, nor lack of recovery
during the moratorium.

Parallel with changes in population biomass, also population-
and individual-level phenotypic traits are changing. In absence of
evolution, these changes reflect only demographic changes and
equilibrate quickly to a new level after changes in fishing pressure
(Figure 3), similarly as already seen for population biomass
(Figure 2). Traits in evolving trawl-harvested populations
show rapid initial responses similar to those seen for non-
evolving populations, but also somewhat slower, sustained trait
changes (Figure 3). These sustained changes occur during
both harvest and recovery periods but are reversed and slower
during the harvest period. Because of the slow change during
the moratorium, population traits are not restored to their
pre-harvest levels during the time horizon considered here
(100 years). Notably, while the differences in traits between
evolving and non-evolving populations are at their greatest
in the end of the harvest period, even after 100 years of
recovery, evolving populations that adapted to harvesting are
characterized by earlier maturation at smaller sizes, but also by

higher productivity, higher fecundity, and higher proportion of
mature individuals, compared to the pre-harvest levels or those
seen in the recovered non-evolving population.

Differences in Responses to Harvest
Between Trawl-Harvested and
Gillnet-Harvested Populations Under the
Same Maximum Fishing Mortality
When the trawl-harvested and gillnet-harvested populations are
exposed to fishing with the same maximum instantaneous
harvest rate (here 0.6 yr−1), all genetic traits show
stronger responses to trawl-harvesting than to gillnet-
harvesting (Figure 4), with the exception of growth
rate (Figure 4E). The difference is the starkest for the
PMRN intercept, which declines by about 30% under
trawl-harvest, but increases by about 5% under gillnet-
harvest (Figure 4A). In contrast, the PMRN slope, growth
investment at maturation onset, and the ratio of decay in
post-maturation growth investment show less drastic declining
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FIGURE 2 | Decrease and subsequent recovery of population biomass (of individuals aged 1 year and older) in dependence on instantaneous harvest rate
(increasing from top to bottom). Black curves, evolutionary model; gray curves, non-evolutionary model; gray shading, harvest period. (A,C,E) Panels with sigmoid
size-selectivity curves as is typical for trawl, and (B,D,F) panels with bell-shaped size-selectivity curves for examples with gillnet.

trends during the early phase of fishing (Figures 4B–D).
Contrary to other genetic traits, growth rate increases
during the fishing phase, and furthermore, does not show
markedly divergent responses between the trawl-harvest and
gillnet-harvest (Figure 4E).

Compared to the genetic traits, population traits show
more consistently large harvest-induced divergence between
trawl-harvested and gillnet-harvested populations (Figure 5).
During the moratorium, because genetic changes in individual-
level genetic traits are relatively modest in gillnet-harvested
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FIGURE 3 | Decrease and subsequent recovery of population traits under 0.6 of instantaneous harvest rate by trawl. Black curves, evolutionary model; gray curves,
non-evolutionary model; gray shading, harvest period. (A) Mean age at maturation; (B) fork length at 50% maturation; (C) productivity; (D) population size; (E)
relative population total fecundity; (F) proportion of mature individuals.

populations (Figure 4), traits in these population are able to
quickly recover near to their pre-harvest levels. In contrast,
trawl-harvested populations show consistently large responses
during the harvest period and only partial recovery during
the moratorium (Figure 5). Notable exceptions to this pattern

are population size and population fecundity: in trawl-
harvested populations the former recovers to its preharvest level
(Figure 5D), while the latter overshoots to a level that exceeds its
pre-harvest level by about 10% (Figure 5E). For these same cases,
the gillnet-harvested populations fail to reach a full recovery.
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FIGURE 4 | Dynamics of the mean genotypic values of evolving traits before, during and after harvest. Harvest (gray shading) starts at t = 100 years and stop at
t = 200 years. Dynamics are shown for two harvest patterns: H = 0.6 year-1 for trawl (solid points) and H = 0.6 year-1 for gillnet (hollow points). (A) PMRN intercept
y; (B) PMRN slope s; (C) Growth investment α at maturation onset; (D) Annual ratio χ of decay in post-maturation growth investment; (E) Juvenile growth rate g.

The large differences in the evolutionary responses between
the trawl-harvested and gillnet-harvested populations are
probably largely driven by the much lower overall harvest-
induced mortality in the gillnet-harvested populations than in

the trawl-harvested populations: the former experience near-
maximal levels of mortality only over a narrow range of sizes,
whereas the latter have a prolonged exposure. To make a fairer
comparison between these two fishing gear types, we conduct
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below comparisons where total catch instead of maximum
fishing mortality is standardized.

Differences in Responses to Harvest
Between Trawl-Harvested and
Gillnet-Harvested Populations Under the
Same Biomass Removal
When the same amount of biomass is removed from the
population, the evolutionary responses to different fishing gears
again diverge (Figure 6), but the difference are less than under
the same maximal fishing mortality (Figure 4). While the
responses under gillnet harvesting are similar as before (catch
standardization was done using gillnet catch as the baseline),
responses under trawling are greatly reduced. The response is
larger for trawling compared to gillnet fishery only for the
PMRN intercept (Figure 6A) and is similar (genetic PMRN
intercept, genetic annual ratio of decay in post-maturation
growth investment; Figures 6B,D) or less (growth investment
at maturation, genetic growth rate; Figures 6C,E). Recovery is
modest, except for growth investment at maturation after trawl
fishing and for genetic growth rate after gillnet fishing.

The population traits also respond differently to trawl- and
gillnet-harvesting (Figure 7). As for the genetic traits, catch-
standardization results in a weaker response than maximum
fishing mortality standardization under trawl but not under
gillnet fishing. Nevertheless, the effect of trawl fishing is larger
than that of gillnet fishing for three population traits, mean
age at maturation, length at 50% maturity, and productivity
(Figures 7A–C). For the other three traits, the response after
fishing is larger, but the differences diminish following the 100-
year recovery.

Importance of the Level of Instantaneous
Harvest Rate
When fishing intensity increases, the responses of genetic traits
under both trawl- and gillnet-harvesting generally, but not
always, increase (Figure 8). However, the large differences
between fishing gears and between traits are evident. Among
all combinations of gears and traits, the PMRN intercept shows
the highest degree of response to trawl-harvesting, declining
by almost 40% after 100-year harvest under the instantaneous
harvest rate of 1.0 yr−1. In contrast, under the same harvest rate
with gillnet-harvesting, the PMRN intercept increases by about
5%. Similar pattern, but of lesser magnitude, is observed for the
growth investment at maturation onset and annual ratio of decay
in post-maturation growth investment; note, however, that the
response for the latter is markedly non-linear. The response in
the growth coefficients is qualitatively similar under both trawl-
and gillnet-harvesting, although the effect is saturating for the
trawl harvesting. The responses of the PMRN slope under trawl-
and gillnet-harvesting show no obvious trends as the fishing
intensity increases.

Compared with genetic traits, the population traits show much
stronger responses to increasing harvest intensity (Figure 9).
The absolute magnitude of the responses is always larger under
trawl-harvesting than under gillnet-harvesting. Moreover, the

responses are qualitatively similar between trawl- and gillnet
harvesting for all but one population trait, fork length at 50%
maturation, which shows responses of opposing signs. With the
remarkable exception of productivity for both gears and fork
length at 50% maturation for gillnet harvesting, the responses are
generally negative.

DISCUSSION

Dynamics of Fisheries-Induced
Population Declines and Population
Recovery Under Selective Harvest
Prior to exploitation, the population will approach a
demographic and evolutionary equilibrium with stable
population traits. When harvest begins, mature and large
individuals are removed from the population, resulting in
rapid demographic changes and subsequent changes in
genetic traits that take place at slower, generational time scale.
Changes in population-level characteristics reflect changes at
both time scales.

When fishing is ceased, individuals that would have previously
been harvested survive and influence population dynamics. This
is observed as a sharp increase in biomass at the beginning of
moratorium, but also as rapid changes in population traits. These
effects result from the restoration of an age and size structure in
which previously fished size groups are dying off at a slower rate.
This demographic restoration is mainly observed in terms of very
rapid initial recoveries of most of the population characteristics
shown in Figures 3, 5, 7. The recovery of genetic traits occurs
at a much slower and more constant rate (Figures 4, 6). As the
total biomass increases, also density-dependent effects begin to
alter the phenotypic composition of the population by affecting
individual rates of growth and reproduction until the population
dynamic reaches a new demographic equilibrium.

Studies have shown that FIE is not always negative for
exploited population (Christie et al., 2018; Ahti et al., 2020).
Especially for the populations under high fishing mortality,
adaptation may allow population biomass to increase while
fishing still continues at the same, high intensity (Figure 2E).
A more extreme scenario is that of an evolutionary rescue,
where a population that does not adapt (or is not adapting
fast enough) would be driven to extinction, but under FIE,
the population survives high fishing intensity owing to the
survival of favorable genotypes (Jusufovski and Kuparinen,
2020; Kuparinen and Uusi-Heikkilä, 2020). Non-evolutionary
populations collapse under high-intensity fishing pressure, while
evolutionary populations can still maintain a certain biomass
level under high-intensity fishing pressure (Kaitala and Getz,
1995; Heino, 1998; Dunlop et al., 2015). In this study, when
the instantaneous harvest rate H = 1.0, the biomass of non-
evolutionary population is significantly lower than that of
evolutionary population, and the difference between the biomass
will gradually increase with the increasing fishing pressure
(Figures 2, 3). At the beginning of moratorium, the biomass
and population characteristics of the evolutionary population
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FIGURE 5 | Dynamics of the mean values of population traits before, during and after harvest. Harvest (gray shading) starts at t = 100 years and stop at
t = 200 years. Dynamics are shown for two harvest patterns: H = 0.6 year-1 for trawl (solid points) and H = 0.6 year-1 for gillnet (hollow points). (A) Mean age at
maturation; (B) Fork length at 50% maturation; (C) Population growth rate; (D) Population size; (E) Population fecundity; (F) Proportion of mature individuals.

gradually decrease in the recovery phase, and cannot return
to pre-harvest levels within 100 years, especially with trawl
fishing. This is attributable to the earlier maturation and smaller
size at age, despite fecundity and population size return back
to pre-harvest levels. This difference between evolutionary and
non-evolutionary population change process could be used as
a reference to judge whether the population evolves under the
fishing effects.

Selection can be manipulated to help populations, and is
a demographic process that can alter birth and death rates,

and so it can have an immediate influence on population
dynamics (Boukal et al., 2008; Hendry et al., 2011). The exploited
population is directly affected by harvest selection, rather
than indirectly affected through human-induced environment.
Current studies have concluded that both phenotypic plasticity
and genetic changes lead to the phenotypic changes observed
in the population (Dieckmann and Heino, 2007; Crispo et al.,
2010). When exploitation is reduced, the population may initially
recover fast (Kaitala and Getz, 1995; Heino, 1998; Enberg et al.,
2009). This beneficial aspect of FIE is not guaranteed though,
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FIGURE 6 | Dynamics of the mean genotypic values of evolving traits before, during and after harvest. Harvest (gray shading) starts at t = 100 years and stop at
t = 200 years. Dynamics are shown for two harvest patterns: H = 0.2 year-1 for trawl (solid points) and H = 0.8 year-1 for gillnet (hollow points). (A) PMRN intercept
y; (B) PMRN slope s; (C) Growth investment α at maturation onset; (D) Annual ratio χ of decay in post-maturation growth investment; (E) Juvenile growth rate g.

and under 70% harvest rate adaptive evolution can lead to yellow
perch (Perca flavescens) extinction (Dunlop et al., 2015).

Differences in Evolution Under
Size-Selective Trawl- and
Gillnet-Harvesting
Fishing mortality levels and gear types influence the size structure
of fish stocks and the evolution of life-history traits over time.
Evolutionary change occurs even if fishing mortality is low, but

the magnitude of response markedly differs between trawl and
gillnet selectivity (Figures 8, 9), which implies that a suitable
management strategy based on gear selectivity could reduce the
effect of FIE. The different response of genetic traits to fishing
depends on which size group is preserved to reproduce next
generation (Roff, 1992; Heino and Kaitala, 1999; Lester et al.,
2004).

The exploited population will show different evolutionary
trends to different fishing gears over decades of fishing. Under
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FIGURE 7 | Dynamics of the mean values of population traits before, during and after harvest. Harvest (gray shading) starts at t = 100 years and stop at
t = 200 years. Dynamics are shown for two harvest patterns: H = 0.2 year-1 for trawl (solid points) and H = 0.8 year-1 for gillnet (hollow points). (A) Mean age at
maturation; (B) Fork length at 50% maturation; (C) Population growth rate; (D) Population size; (E) Population fecundity; (F) Proportion of mature individuals.

the gillnet-harvesting, individuals that manage to pass the size
range vulnerable to fishing have high survival and can grow
big and fecund, eventually producing high numbers of offspring
that carry their parents’ genetic traits. But with trawl-harvesting
removing large and fecund individuals, the offspring are mainly
reproduced by small-sized mature individuals.

Under trawl-harvesting, fishing induces decreased PMRN,
larger genetic growth capacity, less growth investment at
maturation, and slower rate of decay in post-maturation growth

investment (Figure 4). The changes in these genetic traits
cause the population to mature earlier, grow faster, and invest
more energy into reproduction, which is consistent with the
observations in Japanese Spanish mackerel fishery since the
1980s. But when the population is harvested by gillnet, PMRN
intercept, growth investment at maturation, and genetic growth
capacity show slightly increasing trend (Figures 4A,C,D), which
makes the population to mature later and to grow faster by
investing more energy into somatic growth. Even when the
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FIGURE 8 | Effect of the maximum instantaneous harvest rate on the mean genotypic value of evolving traits. Panels show the percentage change after 100 years of
harvesting, relative to the 100 years before harvesting started. The black bars, trawl-harvested scenarios; the gray bars, gillnet-harvested scenarios.

same amount of biomass is removed from the population, the
population responds differently to trawl- and gillnet-harvesting
(Figures 6, 7). The remaining individuals influence the recovery
process of genetic traits and population traits. Compared with
trawl-harvested population, the population traits under gillnet-
harvesting recover faster to pre-harvest levels (Figure 7).

Furthermore, genomic analysis can complement conclusions
from evolutionary modeling. The whole-genome sequence

analysis of Atlantic cod (Gadus morhua) suggest that phenotypic
change in these populations is not constrained by irreversible
loss of genomic variation, which have implications for both the
model and experimental research of fisheries-induced evolution
(Pinsky et al., 2021). Broadly speaking, our results agree with
earlier results by Jørgensen et al. (2009) and Mollet et al. (2016)
that while no exploitation is evolutionarily neutral, dome-shaped
exploitation patterns can offer both high long-term yields and
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FIGURE 9 | Effect of the maximum instantaneous harvest rate on the mean value of population traits. Panels show the percentage change after 100 years of
harvesting, relative to the 100 years before harvesting started. The black bars, trawl-harvested scenarios; the gray bars, gillnet-harvested scenarios.

low evolutionary impact. The model by Mollet et al. (2016), albeit
for a demersal fish species (North Sea plaice), is broadly similar
to ours, involving similar evolving traits (apart from having a
more rigid scheme for reproductive investment) and modeling
approach (individual-based eco-genetic modeling). The model by
Jørgensen et al. (2009) is also for a demersal fish (Northeast Arctic
cod), but one with relatively rare distinction between spawner
and feeder fisheries (only mature fish are caught in the former,
while both immature and mature are caught in the latter). The

modeling framework is also different, involving fully flexible
evolution of energy allocation between growth and reproduction
but no evolution of genetic growth capacity. Note that the
evolution of growth is an important part of the evolutionary
response to fishing in both our model and in that by Mollet et al.
(2016). The model is an optimization model that can predict
long-term outcomes but no transient behaviors. Nevertheless,
the model runs that are most comparable to ours, ones without
spawner fishery, suggest that dome-shaped selectivity has better
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chances of conserving the population’s original life history than
sigmoid selectivity.

Management Implications for Japanese
Spanish Mackerel in Response to
Evolution
An important commercial fish species in the China Seas, the
annual catch of Japanese Spanish mackerel is more than 0.1
million tons (Sun, 2009). The current dominant management
measures include minimum landing size limit, minimum mesh
size of fishing gear, total allowable catch, ”Double-control” system
(the control of both the total number of marine engine-powered
fishing vessels and their total engine power), and summer
moratorium in China. The summer moratorium aims to protect
the main spawning period of marine fish in the China Seas and
stops fishing for about 4 months each year. Controlling the mesh
size of fishing gear can help protect small-sized individuals such
that they survive to grow and reproduce the next generation.

The life-history traits of Japanese Spanish mackerel have
changed since the 1980s, including changes in age at maturation,
size at age, and spawning season. As our model has shown,
adaptive evolution is expected to occur under a long-term
harvest, resulting in the loss of genotypic diversity and low
rate of recovery for genetic traits. Therefore, there is a need
to incorporate management measures that would minimize
unwanted evolutionary impacts of fisheries. Our study focusses
on the individual eco-genetic model of Japanese Spanish
mackerel, and does not consider the processes of species
interaction, and predation. In order to explore the FIE of multiple
species, primary productivity and species interaction should
be considered in future modeling studies. In addition, we set
different instantaneous mortality to harvest, this determines
the changes of harvest, which is consistent with biomass. The
sensitivity analysis is performed using different mesh sizes, and
the derivation of the selectivity curves of Japanese Spanish
mackerel depend on the actual studies on Japanese Spanish
mackerel (You et al., 2014; Supplementary Tables 4, 5). The
impact of fishing selectivity under varying mesh sizes on FIE
would be considered in the further work.

The rate of evolution in an exploited population depends
on the size groups that are removed by fishing, which are
ultimately determined by the size selectivity of gears and the
intensity of harvest (Therkildsen et al., 2019; Crespel et al.,
2021). In order to control the negative effects of FIE, low
fishing mortalities have been suggested as a general remedy
(Heino, 1998; Law, 2000; Laugen et al., 2014). Our results
agree with this prediction (Figures 8, 9). Meanwhile, our results
also suggest that changing converting exploitation pattern from
sigmoid to bell-shaped selectivity, by allowing large and fecund

individuals to survive and reproduce, could be an alternative
avenue to reduce the evolutionary responses to fishing. Japanese
Spanish mackerel have experienced heavy exploitation and
showed an obvious evolutionary shift. Therefore, limiting the
exploitation intensity and controlling fishing gear could weaken
or even reverse the evolutionary trend. In particular, harvesting
the population with gillnets could reduce the evolutionary
response to fishing and promote a more sustainable utilization
of fisheries resources. When gillnet harvesting is used to extract
similar yields as trawling, it appears less evolutionarily benign
than comparisons using similar maximum exploitation rates.
Moreover, evolutionary and plastic responses to harvest are
affected by more complex processes than those considered in any
single-species model, such as the one considered here. Fishing
affects the dynamics of target populations, changes interspecific
processes, such as predation-prey interactions, and alters natural
mortality rates (Law, 2000; Heino and Godø, 2002; Pope et al.,
2021). So, an ecosystem approach is required to explore this
kind of complex dynamics (Blanchard et al., 2005; Jørgensen and
Fiksen, 2006).
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