Natural and anthropogenic drivers of escaped farmed salmon occurrence and introgression into wild Norwegian Atlantic salmon populations

O. H. Diserud (©), ${ }^{1,}$, P. Fiske ${ }^{1}$, S. Karlsson ${ }^{1}$, K. A. Glover ${ }^{2,3}$, T. Næsje ${ }^{1}$, T. Aronsen ${ }^{1}$, G. Bakke ${ }^{2}$, B. T. Barlaup ${ }^{4}$, J. Erkinaro © ${ }^{(1)}$, B. Florø-Larsen ${ }^{6}$, A. Foldvik ${ }^{1}$, M. Heino ${ }^{\left(\mathbb{D}^{2,3}\right.}$, Ø. Kanstad-Hanssen ${ }^{7}$, H. Lo ${ }^{6}$, R. A. Lund ${ }^{8}$, R. Muladal ${ }^{9}$, E. Niemelä ${ }^{5}$, F. Økland ${ }^{1}$, G. M. Østborg ${ }^{1}$, H. Otterå ${ }^{2}$, Ø. Skaala ${ }^{2}$, H. Skoglund ${ }^{4}$, I. Solberg ${ }^{1}$, M. F. Solberg ${ }^{(1)}{ }^{\mathbf{2}}$, V. P. Sollien ${ }^{6}$, H. Sægrov ${ }^{10}$, K. Urdal ${ }^{10}$, V. Wennevik ${ }^{2}$ and K. Hindar ${ }^{1}$
'Norwegian Institute for Nature Research (NINA), PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
${ }^{2}$ Institute of Marine Research, PO Box 1870, Nordnes, NO-5817 Bergen, Norway
${ }^{3}$ Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
${ }^{4}$ NORCE Norwegian Research Centre, LFI, NO-5008 Bergen, Norway
${ }^{5}$ Natural Resources Institute Finland (LUKE), PO Box 413, FI-90570 Oulu, Finland
${ }^{6}$ Norwegian Veterinary Institute, PO Box 4024, Angelltrøa, N0-7457 Trondheim, Norway
${ }^{7}$ Ferskvannsbiologen Ltd, PO Box 127, NO-8411 Lødingen, Norway
${ }^{8}$ Environment Agency, PO Box 5672, Torgarden, N0-7485 Trondheim, Norway
${ }^{9}$ Naturtjenester i Nord AS, Holteveien 66, NO-9016, Tromsø, Norway
${ }^{10}$ Rådgivende Biologer AS, Edvard Griegs vei 3D, NO-5059 Bergen, Norway
*Corresponding author: tel: + 47 93218823; e-mail: ola.diserud@nina.no.

Abstract

Marine aquaculture of Atlantic salmon (Salmo salar) is a relatively new industry where breeding programs have led to rapid genetic change in the captive populations that were built up alongside conspecific wild individuals. Throughout its 50-years history, marine aquaculture of Atlantic salmon has been associated with escapes, and studies have shown that escapees may enter rivers, spawn successfully, and this may lead to farmed-to-wild genetic introgression and maladaptation in wild populations. Yet, an open question is what factors can best explain the variability in the proportion of farmed escapees in wild populations, and when present, which additional factors lead to introgression. Here, we combine two large-scale data sets from monitoring escaped farmed salmon and introgression in Norwegian rivers between 2006 and 2018 to model how anthropogenic, environmental, and population factors influence proportion of escapees and level of introgression. We found that increasing farming intensity and river discharge increase the expected proportions of escaped farmed salmon in rivers, whereas a larger wild salmon population size reduces the expected proportion of escapees despite increasing the expected absolute numbers of escaped farmed salmon. On a large scale, introgression is primarily a function of proportions of escaped farmed salmon, and only to a minor extent a function of local environmental factors or salmon population characteristics. This suggests that as long as salmon aquaculture is based on technologies where non-sterile fish can escape, all anadromous wild Atlantic salmon populations are at risk. Large marine protected areas without salmon aquaculture may slow down the rate of intrusion and introgression by increasing the distance between intensive aquaculture and wild populations.

Keywords: admixture, aquaculture, Atlantic salmon, escaped farmed salmon, gene flow, Salmo salar.

Introduction

The rapid domestication of fish species for aquaculture means that we are in position to follow the genetic process of domestication as it happens. We are also able to follow the sideeffects of domestication on wild populations as large-scale aquaculture, in some years, has produced as many escapees as there are wild conspecifics (Hindar et al., 1991).

Successful domestication depends on controlling the life cycle from fertilization until market size. Artificial reproduction of salmonids was mastered on a large scale from the 1850 s onwards, when unfed salmonid fry (alevins) were produced in large numbers for release into the wild (Berg, 1986). The technology to raise Atlantic salmon (Salmo salar), hereon referred to as salmon, to market size in marine net pens was developed in the 1960s and led to the growth of a salmon aquaculture industry both within and outside its natural distribution range
(Heen et al., 1993). The production of salmon in fish farms has increased from half of nominal catch of wild salmon in 1980 to outnumbering it 2000 times in 2019 (ICES, 2020).

In 1986, the first concerns about escaped farmed salmon entering rivers were published (Maitland, 1986). High proportions of farmed salmon were found in many rivers in Norway during the autumn of 1987 and 1988 (Gausen and Moen, 1991). In 1989, a nationwide monitoring system for escaped farmed salmon was implemented in Norway (Lund and Hansen, 1991; Diserud et al., 2019), and is now into its second and more comprehensive generation with annual sampling of more than 200 rivers (Glover et al., 2019). The accumulated number of individuals being classified as wild or farmed escapees, based on growth patterns in the scales (Lund and Hansen, 1991), amounts to more than 470000 since 1989.

[^0]Around 1990, methods were developed to show that escaped farmed salmon could produce offspring in the wild. The first methods were based on demonstrating that feed additives (synthetic astaxanthin and canthaxanthin) were found in salmon eggs deposited in the riverbed in Scotland and Norway (Lura and Sægrov, 1991a, b; Webb et al., 1991). Moreover, ad hoc genetic methods based on skewed allele frequencies in allozyme markers were used to show that wild salmon juveniles in Ireland had farmed parents (Crozier, 1993; Clifford et al., 1998a, b). Later, microsatellite markers were used to document temporal genetic changes in wild populations, including a reduction in wild population differentiation, that were likely a result of escaped farmed salmon interbreeding (Skaala et al., 2006; Glover et al., 2012).

In 2011, a SNP panel to distinguish farmed and wild salmon was developed in Norway based on screening 4514 SNP markers in 12 breeding lines of Norwegian aquaculture salmon and 13 wild Atlantic populations throughout Norway, sampled before the growth of the aquaculture industry (Karlsson et al., 2011). Using this method, scale samples with a confirmed wild growth pattern (Fiske et al., 2005) can be used as a source of DNA, lending themselves to genetic screening for determining the degree of farm wild admixture. More than 50000 individuals with a wild life cycle from 239 Norwegian rivers have been analyzed to estimate their probability of belonging to a wild salmon population (Karlsson et al., 2016; Diserud et al., 2020) by using the methodology developed by Karlsson et al. (2014).

In this study, we analyze the predictors that can be associated with the occurrence of escaped farmed salmon and their introgression into wild salmon in Norway, improving preliminary models presented in reports for Norwegian authorities (Fiske et al., 2013; Hindar et al., 2018). Heino et al. (2015) found that the observed proportion of escaped farmed salmon in catches and the average annual angling catch weights for rivers could provide a predictor for cumulative introgression in 20 populations, where catch served as a proxy for current population size. Sylvester et al. (2018) showed that withinriver distribution of hybrid parr was associated with the migration effort required to reach spawning sites; the hybrid proportion decreased with increasing elevation, geographic distance, and the presence of obstructions. Keyser et al. (2018) predicted the distribution of escaped farmed salmon and degree of introgression in wild populations in the Northwest Atlantic from aquaculture facility locations, production estimates, reported escape events, and in-river detections of escaped farmed salmon. Mahlum et al. (2021) found that aquaculture intensity, wild salmon abundance, mean yearly discharge, and the interaction between the distance from river mouth to open ocean and wild salmon abundance were important predictors of escapee abundance in western Norwegian rivers. Proximity to fish farms or other indices of farm production intensity had also been found by Gausen and Moen (1991) and Fiske et al. (2006) to correlate with high proportions of escapees.

In autumn 1989, Norwegian authorities established a system of 52 temporary protection zones (with 125 salmon rivers) for wild salmon populations in fjords that were attractive for further development of aquaculture. These were later formalized by the Norwegian parliament (Anon, 2006) as a system of 29 National Salmon Fjords and 52 National Salmon Rivers along the Norwegian coast intended as a general protection of the wild salmon resource. The purpose of
this protection system is to give the most important salmon populations in Norway a special protection against harmful anthropogenic activities in the rivers, and in adjacent fjord and coastal areas.

Here, we combine data sets on escaped farmed salmon and introgression from c. 200 rivers along the Norwegian coast, from $58^{\circ} \mathrm{N}$ to $71^{\circ} \mathrm{N}$, to answer the questions: (1) what determines the occurrence of escaped farmed salmon into Norwegian rivers, (2) what determines the level of introgression in Norwegian salmon populations, and (3) does the establishment of protection zones for wild salmon reduce introgression from escaped farmed salmon?

Material and methods

Materials

Data on the proportions of escaped farmed salmon in Norway come from two papers that reported the distribution of escapees in rivers from 1989 to 2013 (Diserud et al., 2019) and on a more comprehensive scale from 2014 (Glover et al., 2019). Scales from more than 470000 individuals, caught during summer recreational angling, autumn pre-spawning angling surveys, and broodstock fishing, have been analysed to determine their origin (escaped farmed or wild) according to fish scale growth pattern (Fiske et al., 2005; see also Diserud et al., 2019). Proportions estimated from summer catches may underestimate the proportion of escapees in the wild spawning populations as escaped farmed salmon often ascend rives later in the season than wild salmon (Lund et al., 1991; Crozier, 1998; Erkinaro et al., 2010), while autumn samples may give uncertain proportion estimates due to small sample sizes and biased estimates due to potentially differing catchabilities or spatial distribution close to the spawning period (Moe et al., 2016; Svenning et al., 2017). An Incidence index that combined the information from summer and autumn catch samples was, therefore, developed for management purposes to give the best possible annual estimate of the proportion of escaped farmed salmon in wild salmon populations (Fiske et al. 2006; Diserud et al., 2010).

The estimated proportions of escaped farmed salmon in the wild salmon populations were averaged over the years from 2006, when the estimates for wild population status were improved (Forseth et al., 2013), to 2018. Each annual estimate were given the same weight when calculating the average. This period covers the last two to three wild salmon generations. We analysed the Incidence index averaged over this prolonged period rather than including the temporal variation in escape proportions. This was done because genetic introgression is accumulated over time, the frequency and quality of catch reports may vary considerably, and associations can be both time-lagged and smoothed out over several years, making "correct" temporal assignments difficult. Models were fitted to 129 wild salmon populations with a minimum of 4 years of Incidence index estimates (Figure 1b). With a lower limit at 4 years of data, we focus on the more permanent characteristics of a population and its environment that may influence the proportion of escaped farmed salmon.

Data on introgression from escaped farmed to wild salmon in Norway was obtained from Karlsson et al. (2016) and the report by Diserud et al. (2020), which present information on introgression in 239 wild salmon populations and more than 50000 genetically analyzed individuals with a wild

Figure 1. Maps of Norway showing: (a) locations with sea water net pens in 2015-2016, (b) rivers with incidence indices estimates ($n=129$), and (c) rivers with genetic introgression estimates ($n=239$). Grey areas along the coast indicate the National Salmon Fjord protection zones.
growth-scale pattern confirming that individuals were hatched in the wild (Figure 1c). Historical samples collected before significant farmed salmon introgression (c. 1990) have been analyzed for 59 of the 239 wild salmon populations, to serve as wild origin references.

The underlying estimate of introgression (or lack thereof) is the probability an individual belongs to a reference of wild salmon (P (Wild)), using the SNP panel developed by Karlsson et al. (2011) and a statistical method developed by Karlsson et al. (2014). P (Wild) is, thus the unscaled proportion of wild origin and not the estimate of introgression. Introgression is a population property accumulated over time, expected to vary among cohorts depending on escape episodes and stochastic environmental variation. We have, therefore, used the population mean P (Wild) as the model response variable, estimated from a contemporary sample pooled over the last salmon generation with sufficient total sample size (Diserud et al., 2020). During model fitting, we only include populations with a genetic sample size of 20 fish or more. Most populations are represented by recent samples; 75% of the
populations are from 2014 or later, while the oldest are from 2005.

Variables that were assumed a priori to be potential predictors for occurrence of escaped farmed salmon or extent of introgression, or both, are listed in Table 1. The predictors can be divided into three categories: population, environmental, and anthropogenic. Population predictors include variables like the phylogenetic group of the wild salmon, number and density of spawners, adult body size, and juvenile growth rate in fresh water. Environmental predictors include variables such as river size (discharge), migration obstacles, and the river's location along the coast. Anthropogenic predictors include factors affecting the number of escapees along the coast and in-river human activities such as hydropower regulation, release of hatchery fish, or liming. Farming intensity was estimated based on January and June biomass (or numbers) in seawater net pens for $c .1000$ locations along the Norwegian coast 2006-2016 (Data courtesy of the Norwegian Directorate of Fisheries) and on measurement of the distances between river mouths to all farming locations (Figure

Table 1. Continued

Predictor variable	Short name	Type and unit	Data	Potential effect on ... Incidence index	Genetic introgression	References
Spawning target relative to sum of all spawning targets in proximity of river ($<60 \mathrm{~km}$ by water)	RelTarget*	Proportion	$\begin{aligned} & 153 \text { rivers, (range } \\ & 0.0025-1 \text {) } \end{aligned}$	A population may "compete" with neighbouring populations for escapees as relatively large populations are more attractive? Spawning targets used instead of actual spawner abundances since we lack abundance estimates for many populations.	Neighbouring populations may serve as a source of introgressed strayers.	Hindar (1992), Jonsson and Jonsson (2017)
Growth rate in fresh water-proxy mean smolt age	SmoltAge	Continuous [years]	176 populations, (range 2.0-5.1 years)		Younger age at smoltification indicates good juvenile growth opportunities; farmed offspring may outgrow and displace wild offspring in favorable growing conditions	Symons (1979), McGinnity et al. (2003), Fleming et al. (2000)
Adult body size-mean catch weight	BodySize	Continuous, [kg]	131 populations, (range 1.2-6.0 kg)		Large body size is associated with high fecundity (females) and dominant access to females (males); less strong relationship in farmed escapees than in wild salmon	Fleming et al. (1996, 1997)
Water discharge-mean annual water discharge	WaterDis*	$\begin{aligned} & \text { Continuous, }\left[\mathrm{m}^{3}\right. \\ & \left.\mathrm{s}^{-1}\right] \end{aligned}$	Environmental variables 223 rivers, (range $0.4-705 \mathrm{~m}^{3} \mathrm{~s}^{-1}$)	High waterflow is attractive to salmon		Hindar (1992), Diserud et al. (2019), Mahlum et al. (2021), NVE Atlas (https: //atlas.nve.no/Html5 Viewer/index.html? viewer=nveatlas\#)

Table 1. Continued

Predictor variable	Short name	Type and unit	Data	Potential effect on ... Incidence index	Genetic introgression	References
Length of anadromous stretch	AnadrStr	Continuous, [km]	$\begin{aligned} & 169 \text { rivers, (range } \\ & 1-1100 \mathrm{~km} \text {) } \end{aligned}$		Longer rivers may be harder to ascend to reach spawning grounds	Schaffer and Elson (1975)
Migration obstaclesproportion of anadromous section above first migration obstacle (rapid or fish ladder) encountered.	Obstacle*	Proportion	167 rivers, (range $0-1$)	Distribution of escaped farmed spawners limited because of poor swimming abilities through rapids/waterfalls/fish ladder that are passable only by wild salmon	Obstacles may limit access of escapees to spawning grounds and degree of interbreeding.	Svenning et al. (2021), Sylvester $e t$ al. (2018)
Distance to outer coast	CoastDist	Continuous [km]	$\begin{aligned} & 213 \text { rivers, (range } \\ & 0.6-213 \mathrm{~km} \text {) } \end{aligned}$	Straying escaped farmed salmon may choose the first river encountered when approaching coast from the ocean		Hansen et al. (1993)
River discharge relative to all rivers in proximity (< 60 km by water)	RelDis	Proportion	$\begin{aligned} & 175 \text { rivers, (range } \\ & 0.006-1 \text {) } \end{aligned}$	Large neighbouring rivers can "compete" for escapees as relatively high discharge is more attractive		Hindar (1992), Jonsson et al. (2003), Kuparinen et al. (2010)
Lakes present or not in anadromous stretch of river.	Lake	$\begin{aligned} & \text { Factor }[\mathrm{No}=0 \text {, } \\ & \text { Yes }=1] \end{aligned}$	$\begin{aligned} & 196 \text { rivers, } \\ & \left(\mathrm{n}_{\mathrm{No}}=87,\right. \\ & \left.\mathrm{n}_{\mathrm{Yes}}=109\right) \end{aligned}$	Can affect success of up-river migration and overwintering of escapes	Higher vulnerability of farmed offspring to predation from lake-dwelling species	Huitfeldt-Kaas (1923), Solberg et al. (2020)
Distance from river mouth to closest fish farm	FarmDist	Continuous [km]	Anthropogenic variables 212 rivers, (range $0.6-191 \mathrm{~km})$	Higher proportion of escaped farmed spawners in rivers $<20 \mathrm{~km}$ from fish farm; Increased distance means reduced propagule pressure		Norwegian Directorate of Fisheries data, Gausen and Moen (1991), Fiske et al. (2006), Bradbury et al. (2020), Mahlum et al. (2021)

Table 1. Continued

Predictor variable	Short name	Type and unit	Data	Potential effect on ... Incidence index	Genetic introgression	References
Farming intensity (numbers or biomass), distance weighted by a gaussian distribution.	FarmIntens .no $=$ Numbers* . $b m=$ biomass	Continuous	212 rivers and 1 377 potential farming locations	Farm production in region better predictor for proportion of escapes in river than reported escapes in region		Derived from semiannual data on standing biomass on each location (Norwegian Directorate of Fisheries data), Ford and Myers (2008), Hindar et al. (2018), Keyser et al. (2018), Mahlum et al. (2021)
Populations that were main sources to farmed strains.	FarmSource*	Factor $[\mathrm{No}=0$, Yes $=1$]	8 populations		Source populations of farmed salmon different P (Wild) levels from other wild populations?	Karlsson et al. (2014)
Proportion cultivated smolt of total smolt migration	CultSmolt	Proportion	165 populations, (range $0-0.85$)	May lead to errors in estimation of proportion of escaped farmed salmon, as cultivated released smolt are similar to farmed salmon escaping as smolt	Risk that escaped farmed salmon are taken as broodstock; high cultivated proportion may also be a proxy for wild population vulnerability	Hagen et al. (2019)
Hydropower regulation of river	RivReg	Factor [0 $=$ no to 3 = heavy impact]	$\begin{aligned} & 165 \text { rivers, } \\ & \left(\mathrm{n}_{0}=110,\right. \\ & \mathrm{n}_{1}=17, \mathrm{n}_{2}=22, \\ & \text { and } \left.\mathrm{n}_{3}=16\right) \end{aligned}$	Changed water flow regime may affect attractiveness of river to farmed escapees-some hydropower regulations reduce waterflow, others increase it	Hydropower regulation may reduce wetted area and wild population size, leaving easier access for escaped farmed salmon	$\begin{aligned} & \text { Forseth et al. (2013, } \\ & \text { 2017) } \end{aligned}$
Liming of acidified river	Liming	Factor $[\mathrm{No}=0$, Yes $=1$]	224 rivers, 19 of them limed		Younger history of introgression in recently limed rivers; proxy for population vulnerability?	Hesthagen et al. (2011)
National salmon fjords and National salmon rivers with special protection status	NSF and NSR	Factor $[\mathrm{No}=0$, $\text { Yes }=1]$	$\begin{aligned} & 224 \text { rivers, } \\ & \mathrm{n}_{\mathrm{NSF}}=33, \\ & \mathrm{n}_{\mathrm{NSR}}=52 \end{aligned}$	NSF are areas without net pens and increase distance between rivers and fish farms	The protection status may entail actions that make populations more robust	Anon (2006), Hindar et al. (2018)

1a). The contribution from the standing stock in each fish farm was weighted by a decreasing Gaussian function with a $S D$ of 60 km . This resembles the calculation of "propagule pressure" for each river by Keyser et al. (2018). It was inspired by early reports of escaped farmed salmon in rivers in relation to regional fish farms (Gausen and Moen, 1991; Fiske et al., 2006) and the dispersion of smolt and later stages of farmed salmon from known release localities (Jonsson et al., 2003; Hansen, 2006; Skilbrei et al., 2015). We also tested other alternatives for quantifying the accumulated influence from surrounding farms on wild salmon populations but found none that explained incidence of escaped farmed salmon better (see Hindar et al., 2018). Table 1 presents a short name for each variable, variable type, data quantity (number of rivers; variable range), and an a priori assumed effect on escapee proportion or introgression. It is acknowledged that there are other variables that could be included in this analysis, but those in Table 1 are the ones that we identified as biologically relevant and that we have been able to quantify with sufficient precision.

All variables were averaged over the same period as the escape proportions, i.e. from 2006 to 2018, giving each annual observation the same weight. Some variables are constant, some are already given as temporal averages (e.g. mean annual discharge), some may have large uncertainty due to small annual sample sizes, and some may reflect properties accumulated or lagged over longer periods, which makes it difficult to allocate them to appropriate years or cohorts.

Methods

Here, we logit-transformed the responses, i.e. proportions of escaped farmed salmon in wild salmon populations and introgression as proportional wild ancestry, to stabilize the variance, arguing that the resulting error distributions becomes approximately normal so that traditional multiple linear regression models can be used for the transformed responses. We could not fit generalized linear models (GLMs) with binomial error distributions because neither of the responses are direct results of binomial experiments (i.e. they cannot be expressed as ratios of two integers). To validate our assumptions when applying the logit-transform, residuals are checked for constancy of variance and normality of errors.

The wild salmon population's mean P (Wild) is partly a result of natural genetic variation, i.e. the estimated mean levels from historical samples will vary among populations (Diserud et al., 2020) and between phylogenetic groups [North-East Atlantic (NEA), Barents Sea (BS), and a transition zone (TZ) between them; Bourret et al., 2013; Wennevik et al., 2019]. A model predicting the variation in historical P (Wild) population means from phylogenetic group and other predictors is presented in the Supplementary material (S1). These associations among pre-introgression P (Wild) levels and predictors need to be accounted for before studying factors that affect introgression from escaped farmed salmon.

Some predictors may affect both the presence of escapees in salmon rivers and subsequent introgression (Table 1). To separate these two effects, we first modelled the proportion of escaped farmed salmon to identify predictors associated with presence of escapees. Finally, we modelled contemporary mean population P (Wild) and aimed to sort contributions from natural variation, presence of escapees in rivers, and potential predictors that may modify introgression, given
that escaped farmed salmon were present in the spawning population.

Our variable selection procedure was initially based on residual deviance and $\triangle \mathrm{AIC}$, but as most predictors have missing observations for some populations, two models' AIC values may not be directly comparable. Data collection for some factors were initiated by a specific event (anthropogenic intervention), so samples may be far from random. In addition, as we wanted to predict an outcome based on multiple predictors where some may covary, the variable selection procedure had to consider this correlation structure. Therefore, model selection, and interpretation of individual predictor contributions, had to be made with caution, and should, where possible, be guided by supportive information to augment confidence in the results. Some predictors could also be considered as proxies for factors hard to quantify directly.

A sizeable proportion of the variation in predictor variables may be caused by measurement and sampling uncertainty. The slope of the regression is expected to be underestimated even with unbiased measurement and sampling uncertainty, and this underestimation increases as uncertainty increases (Carroll et al., 2006). Therefore, we strived for functional simplicity and chose, among correlated variables, those with best accuracy.

Predictions based on models are often used by managers to guide mitigation of anthropogenic pressures. It is, therefore, important to validate models and evaluate their predictive performance. Model selection can be viewed as a trade-off between minimizing bias and variance for predicted values. Predictions will be biased when explanatory variables with true non-zero regression coefficient are not included in the model. To minimize prediction bias, the best strategy will be to include as many variables as possible. But as we include more variables, the prediction variance will increase. The optimal model complexity is, therefore, a model with a moderate number of parameters so that the sum of the bias and the variance (mean square prediction error) is minimized. Minimizing the AIC is in accordance with this line of thought; it strives to improve model fit (log-likelihood) and reduce model complexity (number of parameters). A model with large prediction variance can be termed "overfitted" and will be poor at predicting observations outside the calibration data set. Here, we evaluated the prediction variance by a leave-one-out cross-validation procedure, i.e. we fitted the model to all observations except one and then used this model to predict the left-out observation. By comparing the coefficient of determination $R_{\text {Cal }}^{2}$ for the model calibrated to the complete data set to $R_{V a l}^{2}$ calculated from the observed response and the corresponding leave-one-out predictions, we could evaluate the prediction variance. For an overfitted complex model, the $R_{V a l}^{2}$ will be much lower than the $R_{C a l}^{2}$. An illustration of this validation approach can be found in the Supplementary material (S2).

Interaction terms were evaluated, but none were found to improve model performance. All calculations and modelling were performed using the statistical software R , version 4.0.3 (R Core Team, 2020).

Results

We started by investigating associations between the Incidence index, i.e. the estimated mean annual proportion of escapees

Table 2. Results from the regression model used to identify predictors associated with logit(Incidence Index). Predictors were farming intensity (numbers weighted with distance), estimated wild population spawner abundance, mean annual water discharge ($\mathrm{m}^{3} \mathrm{~s}^{-1}$), and population spawning target relative to sum of all spawning targets in near proximity ($<60 \mathrm{~km}$ by water). Note that the $\log \left(\right.$) function refers to the natural logarithm. ${ }^{* *} p<0.01,{ }^{* * *} p<0.001$.

	Estimate	Std. Err	t-value
Intercept	-3.87	0.874	$-4.43^{* * *}$
$\log ($ FarmIntens.no $)$	0.21	0.043	$4.88^{* * *}$
\log (PopSize.SA)	-0.67	0.092	$-7.25^{* * *}$
\log (WaterDis)	0.59	0.085	$6.95^{* * *}$
RelTarget	0.69	0.261	$2.63^{* *}$

Figure 2. Model predictions from the calibration model presented in Table 2 (black open circles) and predictions from the corresponding leave-one-out validation models (orange filled circles) for the same observations.
in rivers, and relevant predictors (Table 1). The model for Incidence index was primarily applied as an intermediate step in the process of separating escapee attraction and introgression sensitivity, but this model could also be used as a prediction model for the proportion of escaped farmed salmon in a wild salmon population lacking data of sufficient quality. Next, we wanted to understand drivers of introgression observed in contemporary samples. A key question was if we could detect predictor variables explaining variation in the population sample mean probability of belonging to a wild salmon population P (Wild) in addition to those associated with historical variation and escapee proportions, indicating populations sensitive or robust to introgression.

Modelling the proportion of escaped farmed salmon in wild salmon spawner populations

An increase in expected Incidence index was associated with higher farming intensity FarmInten.no, smaller population size PopSize.SA, a larger water discharge WaterDis, and the population having a relatively large spawning target compared to the other rivers in the vicinity RelTarget (Table 2).

The full model with all potential predictors included (ref. Table 1) was strongly overfitted (28 out of 129 populations excluded due to missing observations: $R_{\text {Cal }}^{2}=0.51$ and
$\left.R_{\text {Val }}^{2}=0.24\right)$. After variable reduction from the full model, we got the more parsimonious model for logit-transformed Incidence index presented in Table 2 (17 populations missing, $R_{\text {Cal }}^{2}=0.43$ and $R_{\text {Val }}^{2}=0.37$). Figure 2 illustrates the model fit and validation. Note that the model underestimate all the incidence indices larger than c. 0.2 .

As an illustration of the back-transformed association between farming intensity and the Incidence index, we calculated the model predictions when varying the farming intensity from observed minimum to maximum, while keeping the other predictors fixed at their averages (Figure 3a). The expected proportion of escaped farmed salmon for an "average" population and river increased from below 0.01 to 0.08 over the range of farming intensities. Figure 3(b) shows the distributions of Farm Intensity for rivers within (upper violin plot) and outside (lower) the National salmon fjord protection zones.

We also modelled the number of escaped farmed salmon in wild salmon populations because numbers, rather than proportions, may be more directly related to mechanisms for the spread of escaped farmed salmon from fish farms into rivers. Moreover, the number of immigrants into wild populations is interesting for analyses of the balance between immigration and genetic drift (Ryman et al., 1995). Note that the numbers

Figure 3. (a) An illustration of the association between farming intensity and expected Incidence Index with the other predictors fixed at their averages. (b) The distributions of Farm Intensity (natural logarithmic scale) for rivers within vs. outside National salmon fjords shown by violin-plots.
of escapees in wild populations were calculated as the products of the two estimates Incidence index and population size, so the accumulated estimation uncertainty and potential bias may be large. The model for the number of escapees (Supplementary Table S3-1; Supplement 3) included the same predictors as the model for the proportion of escapees, although the sign of the estimated coefficient for population size changed. The expected number of escapees increases with the population's spawning target, while a dilution effect ensures that the
proportion of escapees decreases with increasing population size.

Modelling population mean $P($ Wild) for contemporary samples

We started by fitting a model for population mean P (Wild) based on predicted historical baseline levels (Supplementary Table S1-1) and predicted incidence indices (Table 2). Thereby,

Table 3. Linear regression model for logit $(P($ Wild $)$), where the populations' variance in predicted pre-introgression $P($ Wild) level and Incidence Index are accounted for. ${ }^{* *} p<0.01$, ${ }^{* * *} p<0.001$.

	Estimate	Std. Err	t-value
Intercept	-0.068	0.291	-0.23
Predicted logit(Incidence Index)	-0.341	0.061	$-5.58^{* * *}$
Predicted historical logit(P(Wild))	0.573	0.096	$5.98^{* * *}$

Table 4. Model used to identify predictors associated with the residuals from the logit($P($ Wild $)$) model (Table 3). Predictors were upriver migration obstacles (proportion of anadromous section above first migration obstacle) and phylogenetic group. ${ }^{*} p<0.05,{ }^{* * *} p<0.001$.

	Estimate	Std. Err	t-value
Intercept	0.012	0.044	0.28
logit(Obstacle)	0.025	0.012	2.05^{*}
Phyl-BS	0.254	0.117	2.18^{*}
Phyl-TZ	-0.598	0.174	$-3.44^{* * *}$

we were not dependent on, or limited to, the actual historical samples or escapee observations as long as the relevant predictors were observed. Table 3 presents the linear model for $\operatorname{logit}(P($ Wild $))$ where pre-introgression level and expected Incidence index are accounted for (133 populations used to fit the model, 91 missing; $R_{\text {Cal }}^{2}=0.45, R_{\text {Val }}^{2}=0.41$).

Next, the residuals from this model, i.e. the variation in $P($ Wild $)$ not explained by historical levels or presence of escaped farmed salmon, were modelled by the predictor variables assumed to be relevant for introgression (Table 1). We found that phylogenetic group Phyl and upriver migration obstacles Obstacle could be associated with susceptibility for introgression, after the expected Incidence index had been accounted for (Table 4; 123 populations used to fit the model, 101 missing; $\left.R_{\text {Cal }}^{2}=0.16, R_{\text {Val }}^{2}=0.08\right)$. However, the proportion of variance explained was minor. The positive association between Obstacle and P (Wild)-residuals indicated that a large proportion of the anadromous section above first migration obstacle reduces the expected introgression. Populations from the BS phylogenetic group were expected to have positive residuals and more robust against introgression compared to the NEA group, while populations from the TZ had lower P (Wild) levels, i.e. more susceptible to introgression.

The fact that a river has status as a protected National salmon river or is discharging in a National salmon fjord (Marine Protected Area) did not influence the expected P (Wild) level of a wild salmon population beyond what could be attributed to protection-relevant predictors from the Incidence index model, primarily farming intensity and population size.

Discussion

This study demonstrates that genetic introgression is primarily determined by the proportions of escaped farmed salmon in rivers, and those proportions are primarily determined by farming intensity and wild population size. The main implication of these results is clear. There are currently no other sustainable mitigations than preventing farmed salmon from escaping or using sterile fish to stop further negative genetic impact on wild Atlantic salmon populations, given the present magnitude of farmed salmon production and high straying rate of escapees.

We analyzed several potential predictors (Table 1) that could modify the number and distribution of escaped farmed salmon and the introgression from escaped farmed to wild
salmon. The effect of many predictors on the proportions of escapees and resulting introgression can only be identified by large data sets including many rivers and populations, and over a long period of time. Strengths of the present study are the large amount of data on proportion of escaped farmed salmon and the level of introgression in wild salmon populations as well as the large number of potential predictors that may be associated with introgression. These aspects allowed us to explore generic factors across a large geographical scale and over an extended period, which is essential to be able to establish robust guidelines to prevent further introgression of genetic material from escaped farmed salmon into wild populations.

Scale of analysis

A large spatial scale is necessary because of the wide distribution of fish farms and the far-reaching dispersal of farmed salmon after escapes. Escapees are found in major feeding areas near the Faroe Islands (Hansen et al., 1999) and in the Arctic Ocean at Spitsbergen, more than 1000 km from the nearest fish farm (Jensen et al., 2013). Recaptures of tagged farmed salmon released on the coast of Norway have been documented in rivers as far away as the Swedish west coast and the northern Kola Peninsula spanning a coastal distance of 3000 km (Hansen, 2006). Most escapees, however, end up in rivers in the same area as they escaped from, particularly if escaping as smolts or close to spawning time (Hansen, 2006; Skilbrei et al., 2015; Jonsson and Jonsson, 2017).

Data sets covering a large temporal scale are necessary because introgression is a population property that represents a cumulative impact over time and is expected to vary among cohorts depending on escape episodes and stochastic environmental variation. The currently observed introgression is the result of more than three decades of spawning of escaped farmed salmon in rivers (Gausen and Moen, 1991). Thus, what we study here is the effect of introgression from escapees and their first- and later-generation offspring on a wide range of wild salmon populations. Salmon hatched in the wild are physically more fit and have a higher reproductive success than hatchery-produced salmon and farmed escapees (Jonsson et al., 1990; Fleming et al., 1996, 1997); hence, wildborn offspring of farmed escapees may disperse introgression beyond physical obstacles for farmed escapees, such as difficult-to-pass waterfalls. Furthermore, first-generation off-
spring of farmed salmon showed higher straying rates than native salmon when released as smolts in the river (Jonsson and Jonsson, 2017), and may, thus spread introgression to rivers where the proportion of direct farm escapees is very low.

Another temporal component to consider is the genetic change that takes place in the farmed salmon across generations. Farmed salmon are changing genetically over time because of selective breeding for economically important traits (Gjedrem and Baranski, 2009), because of the general process of domestication, i.e. adaptation to the captive environment, and genetic drift. One might argue that selective breeding and adaptation to the captive environment will eventually lead to farmed salmon being unable to complete a life cycle in the natural environment. Theoretical models suggest that the highest impact of escaped farmed individuals on the viability of wild salmon populations is at intermediate levels of genetic difference between them (Baskett and Waples, 2012; Huisman and Tufto, 2012). Despite the reduced fitness of farmed individuals in the wild, the most recent data suggest that escaped farmed salmon are still able to enter salmon rivers and successfully reproduce (Diserud et al., 2020; Pulg et al., 2021; Karlsson et al., 2021).

We identified a priori a list of variables (Table 1) that might be important for determining the occurrence of escaped farmed salmon and level of introgression. For several reasons, not all of these variables were included in our final models. First, some were applicable to only a single or few rivers or populations and were, therefore, not suitable for modelling generic factors at the national scale but might be interesting to study in detail for a better understanding of underlying mechanisms. One example is seasonal environmental variation in rivers, such as long winters, that may affect juveniles of varying pedigree differentially as they grow older (Wacker et al., 2021). Second, other variables were excluded due to limited data quality. One example is predation pressure on juvenile salmon, as predation is one mechanism by which offspring of escaped farmed salmon may show higher mortality than offspring of wild salmon (Solberg et al., 2020), but which we cannot so far sufficiently quantify. Third, some variables are highly intercorrelated and could, thus be interchanged in the models without much change in the explanatory power of the models.

Predictors for proportions of escaped farmed salmon

We found that the Incidence index of escaped farmed salmon in rivers was associated with farming intensity as well as river and population specific features, with population size, water discharge, and the relative spawning target being the most important predictors (Table 2). This model explained 43% of the variance in the Incidence index. Farming intensity is associated with escapees during post-smolt to adult stage from ocean farms (Thorstad et al., 2008). Norway's statistics on escapes from aquaculture, based on mandatory reporting of escape events and numbers by fish farmers (http://www.fiskeridirektoratet.no/Akvakultur/T all-og-analyse/Roemmingsstatistikk), was not used as input in the models for escaped farmed salmon in rivers. There are at least two reasons for this. First, it was shown that for the years 1989-2004 the regional (county) number of farmed fish in net pens was a better predictor for escaped farmed salmon in rivers than the reported escapes in the same regions (Fiske
et el., 2006), a result later supported by Mahlum et al. (2021). Second, studies have shown that the reported number of escapees may be an underestimation of the actual number of escapees; Skilbrei et al. (2015) found the actual number of escapees to be two to four times larger than reported during the period 2005-2011. Underestimation of the reported numbers is supported by the fact that high numbers of farmed escapees can be found where no escape event has been reported (Quintela et al., 2016), and furthermore, that DNA methods to trace the source of unreported escapees have been used by the Norwegian authorities on multiple occasions (Glover et al., 2008; Glover, 2010). The Norwegian Directorate of Fisheries states on their home page that the escape statistics must be viewed as estimates and that numbers are uncertain even when based on counting fish left in the net after escape (http://www.fiskeridirektoratet.no/Akvakultur/Tall-og-a nalyse/Roemmingsstatistikk).

Estimates from the years 2010-2018 suggested that escapes from land-based facilities made up 7% and net pens 92% of the number of escapes in Norway (Føre and Thorvaldsen, 2021). Escapes from freshwater facilities may be more common in Scotland and Ireland, where more juveniles are reared to the smolt stage in net pens in lakes and where they have been shown to contribute to introgression (Clifford et al., 1998a; Gilbey et al., 2021), if not to the escape statistics.

The Incidence index of escaped farmed salmon increases with increasing average river discharge. This result was also found in an analysis of escaped farmed salmon in western Norway based on counts of escaped and farmed salmon in rivers (Mahlum et al., 2021), and in reports with preliminary modelling of the all-of-Norway analyses presented here (Fiske et al., 2013; Hindar et al., 2018). Also, Johnsen and Jensen (1994) found when studying the spread of furunculosis from an outbreak in fish farms that the disease spread faster with escaped farmed salmon to large rivers than to nearby small rivers.

The main reason for the positive association with river discharge is likely that higher discharge is an increasingly stronger signal for escaped farmed salmon, which are essentially homeless when escaping from net pens in the sea (Hansen, 2006), although most end up in rivers in the same region they escaped from. Discharge is also positively correlated with wild salmon body size (Jonsson et al., 1991) and late-escaping farmed females can be c. 40% bigger than cooccurring wild females (Hindar et al., 2006). On the other hand, offspring of escaped farmed salmon have also been found in smaller rivers than those analyzed in the present study, including those primarily dominated by sea trout Salmo trutta (Pulg et al., 2021).

Population size had a positive effect on the number of escapees ascending rivers (Supplement S3) and a negative effect on the proportion of escapees in the river (Table 2). Because population size may vary among years, the general effect on variation among rivers will only become apparent over many years. In western Norway, Mahlum et al. (2021) showed that wild salmon spawner abundance was an important predictor of escapee abundance and suggested that escaped farmed salmon, without a native river (Hansen, 2006), might follow wild migrants from the coast to the river. While this is possible, it cannot be the only explanation because some escaped farmed salmon may often enter rivers after the wild salmon run. More importantly, our model showed that population size has a "thinning effect" on the Incidence index of escaped
farmed salmon, i.e. the proportion decreases with increasing population size, and this should not be the case if escaped farmed salmon followed maturing wild salmon at random. Also, Hesthagen et al. (2011) showed that in formerly acidified rivers, salmon populations recovered more rapidly after liming in rivers with releases of juvenile salmon than in rivers with only natural colonization. The smell of salmon may, therefore, be an attractant (Jonsson et al., 2003).

The relative spawning target enters as a factor in our model by increasing the expected Incidence index in rivers that have a high spawning target relative to neighbouring populations that may compete for the same pool of escapees in a fjord or a coastal region. Whereas escaped farmed salmon may be attracted to large rivers with abundant salmon populations, they may also seek a smaller population when there are no larger populations around, i.e. the relatively largest population in the region.

Predictors for level of introgression

We found that the level of introgression was strongly related to proportion of escaped farmed salmon in the rivers and that a model for contemporary $\operatorname{logit}(P($ Wild $)$, where preintrogression level and expected Incidence index were accounted for, explained 45% of the variance in introgression (Table 3). This means that long term introgression can be modelled from the small number of predictors.

Still, a considerable amount of the variation in introgression remains unexplained. We modelled the residuals from the $\operatorname{logit}(P$ (Wild)) model (Table 3) to see which predictors that could potentially shed light on the unexplained variation and found that phylogenetic group and upriver migration obstacles could be associated with susceptibility for introgression (Table 4). They were both significant but only accounted for 16% of the residual variance. Although potentially important for some rivers, these predictors may have a low influence on a large-scale model if they vary little for most of the populations.

The association between Obstacle and P (Wild)-residuals was positive, suggesting that wild salmon populations having to pass obstacles close to the river mouth are less susceptible to introgression. The behaviour of escaped farmed salmon within rivers differs from wild salmon both in spatial distribution and within-river migration (Moe et al., 2016). Farmed escapees are known to accumulate below migration obstacles, likely because they lack a "stop signal" in the river that native salmon may recognize as a home area (Thorstad et al., 1998). Obstacles in the rivers, such as waterfalls and fish ladders, appear to prevent escaped farmed salmon from entering the upper parts (Anon, 2020). Although obstacles in the present study are pragmatically defined as proportion of anadromous section above first migration obstacle encountered, an obstacle for an escaped farmed salmon is likely to be very different between farmed salmon that escaped early and have spent a long time at sea and newly escaped one. In the River Målselva, northern Norway, fewer escaped farmed salmon have been observed above compared to below a fish ladder, but this has not translated into a lower level of introgression in adult salmon in the upper part of the river (Svenning et al., 2021). This result is somewhat different from Sylvester et al. (2018), who found that migratory challenges may restrict the introgression of escaped farmed salmon in upstream spawning sites and from Bradbury et al. (2020) who found that, in a
model-based approach, waterfalls far down in the river could play a major role in observed introgression and numbers of escapees. The most likely explanation for this difference is that, even though the functional role of obstacles for the Incidence index of escaped farmed salmon seems similar in Norwegian and Newfoundland rivers, the longer history of introgression by farmed escapees in Norway results in accumulated introgression, which spreads into the whole population and to all spawning areas in the river.

The TZ between NEA and BS salmon in Norway is very sharp (Wennevik et al., 2019; Diserud et al., 2020). Wennevik et al. (2019) suggested that local environmental conditions in the TZ, with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them. If so, farmed salmon that originate from the NEA group (Karlsson et al., 2016) should also be less successful in the BS group, which they are (Table 4). In contrast, phylogenetically admixed populations from the TZ seem more susceptible to introgression, after escapee incidence has been accounted for. Populations from the BS group have been demonstrated to migrate further east in the ocean than populations from the NEA group (Rikardsen et al., 2021), and the two phylogenetic lineages could, thereby, differ in ecology (Kjærner-Semb et al., 2016). This is supported by the finding that the marine life history changes more, or differently, with introgression in BS salmon than it does in NEA salmon (Bolstad et al., 2017).

The higher susceptibility to introgression in the TZ is harder to explain. However, the small number of population samples in the TZ means that this result should be interpreted with caution.

Limits to analysis of predictors

The limited number of factors determining introgression at the broad national scale, modelled in this study, means that we might have missed factors that are important in limiting introgression in some specific rivers and populations. This possibility is supported by the fact that our models show poor predictive ability for the lower P (wild) levels and the higher escapee proportion observations (Figure 2).

Some of the unexplained variation might be found in haphazard combinations of river and population specific predictors, and the magnitude, timing, and type of escapees (Hamoutene et al., 2018). A considerable, and variable, fraction of the escapees may be immature, affecting river migration behaviour, catchability, and reproduction. Factors like escapee acclimatization (time since escape), timing of spawning of wild salmon (Lura and Sægrov, 1991b), and spatial distribution of spawning grounds relative to migration obstacles may have to coincide to determine escaped farmed salmon spawning success. Aronsen et al. (2020) found that catches of escaped farmed salmon on the coast and in fjords came from several escape events over many years, and about half had one or more winter zones after escape. Madhun et al. (2017) showed, using fatty acid profiling and genetics, that escapees from multiple sources and ages entered a river in a single year. Some of the introgression may come from strayers from other rivers; Jonsson and Jonsson (2017) found that hybrids between wild and farmed salmon had a higher straying rate than pure wild salmon. In contrast, Skaala et al. (2019) found no difference in straying rate among offspring types. In addition to the rivers defined as salmon rivers, there are many small streams where spawning of salmon occasionally occur
and in some of these, escaped farmed salmon can be very successful and produce many offspring (Pulg et al., 2021) that may stray to larger rivers.

The regression coefficients are expected to be underestimated due to measurement and sampling uncertainty (Carroll et al., 2006), so better accuracy for presumed important variables is expected to improve model predictions. Some potential predictors were excluded from Table 1 due to limited data quality and will require more and improved collection efforts to become applicable, while other variables may be regarded as proxies for unmeasurable factors, and therefore, only partly describe the functional relationships. Populations that are excluded from the model calibration due to missing observations are on average much smaller than those included, so models may also be biased towards the situation in larger populations.

Marine protected areas

The protection of wild salmon populations in Norway was suggested in the Norwegian Official Report (NOU, 1999) to consist of general measures to protect the most important wild salmon populations combined with actions in all aspects of society that affected wild salmon negatively. The general measures were the establishment of 52 National Salmon Rivers (out of Norway's c. 450 salmon rivers) and 29 National Salmon Fjords by the Norwegian parliament in 2006 (Anon., 2006).

Karlsson et al. (2016) found that when all populations were given equal weight, average introgression levels were the same in populations within National Salmon Fjords as in rivers outside these protection areas. When averages were weighted with population size, the introgression level was almost doubled outside the protection areas. The effect of National Salmon Fjords on introgression, therefore, works through the major predictor variables listed in Table 1. The conclusion of a Norwegian report that evaluated National Salmon Rivers and National Salmon Fjords after 10 years (Hindar et al., 2018) was that the protective measures taken by the Norwegian parliament could delay the negative effects of escaped farmed salmon on wild populations but not prevent them.

In the present model, farming intensity was an important predictor for proportion of escaped farmed salmon in the rivers. We found only minor differences in the distribution of farming intensity between salmon rivers inside and outside National Salmon Fjords (Figure 3b). This is not surprising as the 29 National Salmon Fjords vary in area from 16 to 1526 km^{2} (Serra-Llinares et al., 2014). In conclusion, we believe that in order to further delay introgression into wild salmon populations, many protected areas should be increased in size, such that they could sufficiently reduce the number of escaped farmed salmon in rivers in these areas.

Supplementary data

Supplementary material is available at the ICESJMS online version of the manuscript.

Funding

The study was financed by the Norwegian Environment Agency and the Norwegian Directorate of Fisheries, the QuantEscape knowledge platform in the Research Council of Nor-
way (RCN numbers 216105 and 254852), and by internal funding in the Norwegian Institute for Nature Research. Local data were provided by a large number of anglers and landowners, and the collection of data financed by hydropower companies, fish farmers, and regional salmon management.

Data availability statement

No new data were collected in the course of this study. The data underlying this article can be accessed from sources in the public domain. The proportions of escaped farmed salmon in wild salmon populations (Incidence index) are described in Diserud et al. (2019), Glover et al. (2019), and in annual reports from the Institute of Marine Research on escaped farmed salmon in rivers (Reports | Institute of Marine Research (https://www.hi.no/en/hi/nettrapporter)). Data on genetic introgression are described in Karlsson et al. (2016) and Diserud et al. (2020). Data on salmon aquaculture locations and production are courtesy of the Norwegian Directorate of Fisheries. Additional data references can be found in Table 1. The data may be shared on reasonable request to the corresponding author, with permission of the Norwegian Directorate of Fisheries.

Authors' contributions

OHD, KH, PF, SK, and KAG conceived the ideas and designed the methodology and analyses. All co-authors participated to the data collection. OHD, PF, SK, and KH analyzed the data. OHD, KH, PF, and SK drafted the manuscript. OHD, KH, PF, SK, KAG, and TFN revised the manuscript with additional contributions from the remaining authors. This manuscript is submitted with the approval of all the authors.

Acknowledgements

We thank Lars Petter Hansen and the late Ove T. Skilbrei for their substantial contributions to the organization of sampling programs, collection of data, and experimental studies of the migratory behaviour and survival of released farmed salmon.

References

Anon. 2006. Om vern av villaksen og ferdigstilling av nasjonale laksevassdrag og laksefjorder. (On the protection of wild salmon and completion of National Salmon Rivers and Salmon Fjords: in Norwegian) Tilråding fra Miljøverndepartementet av 15. desember 2006, godkjent i statsråd samme dag (Stoltenberg II). Det Kongelige Miljøverndepartement, St.prp. nr. 32 (2006-2007): 1143. (Propositions to the Norwegian Parliament; not available in English).
Anon. 2020. Escaped farmed salmon in Norwegian rivers in 2019 Report from the national monitoring program. Report series Fisken og havet 2020-3. ISSN:1894-5031
Anon. 2021. Status of wild Atlantic salmon in Norway. Summary of 2021 report. Report from the Norwegian Scientific Advisory Committee for Atlantic Salmon No. 16. pp. 227. (In Norwegian only)
Aronsen, T., Ulvan, E. M., Næsje, T. F., and Fiske, P. 2020. Escape history and proportion of farmed Atlantic salmon Salmo salar on the coast and in an adjacent salmon fjord in Norway. Aquaculture Environment Interactions, 12: 371-383.

Baskett, M. L., and Waples, R. S. 2013. Evaluating alternative strategies for minimizing unintended fitness consequences of cultured individuals on wild populations. Conservation Biology, 27: 83-94.
Berg, M. 1986. Det norske lakse- og innlandsfiskets historie (The history of Norwegian salmon and inland fisheries). Universitetsforlaget AS, Oslo. (In Norwegian only). ISBN: 82-00-07510-9.
Bolstad, G. H., Hindar, K., Robertsen, G., Jonsson, B., Sægrov, H., Diserud, O. H., Fiske, P. et al. 2017. Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. Nature Ecology and Evolution, 1:0124.
Bourret, V., Kent, M. P., Primmer, C.R., Vasemägi, A., Karlsson, S., Hindar, K., McGinnity, P. et al. 2013. SNP-array reveals genome wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Molecular Ecology, 22: 532-551.
Bradbury, I. R., Duffy, S., Lenert, S. J., Johannsson, R., Fridrikson, J. H., Castellani, M., Brugetz, I. et al. 2020. Model-based evaluation of the genetic impacts of farm-escaped Atlantic salmon on wild populations. Aquaculture Environment Interactions, 12: 45-59.
Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. 2006. Measurement Error in Nonlinear Models - A Modern Perspective. 2nd edn. Chapman \& Hall/CRC Press, London.
Clifford, S. L., McGinnity, P., and Ferguson, A. 1998a. Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. Journal of Fish Biology, 52: 118-127.
Clifford, S. L., McGinnity, P., and Ferguson, A. 1998b. Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Canadian Journal of Fisheries and Aquatic Sciences, 55: 358-363.[CrossRef]
Crozier, W. W. 1993. Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a northern Irish river. Aquaculture, 113: 19-29.
Crozier, W. W. 1998. Incidence of escaped farmed salmon, Salmo salar L., in commercial salmon catches and fresh water in Northern Ireland. Fisheries Management and Ecology, 5: 23-29.
Diserud, O. H., Fiske, P., and Hindar, K. 2010. Regional Impact of Escaped Farm Salmon on Wild Salmon Populations in Norway. NINA Report, 622. Norwegian Institute for Nature Research, Trondheim. (In Norwegian, English summary).
Diserud, O. H., Fiske, P., Sægrov, H., Urdal, K., Aronsen, T., Lo, H., Barlaup, B. T. et al. 2019. Escaped farmed Atlantic salmon in Norwegian rivers 1989-2013. ICES Journal of Marine Science 76: 1140-1150.
Diserud, O. H., Hindar, K., Karlsson, S., Glover, K. A., and Skaala, Ø. 2020. Genetic Impact of Escaped Farmed Atlantic Salmon on Wild Salmon Populations - Revised Status 2020. NINA Report 1926. Norwegian Institute for Nature Research, Trondheim. (In Norwegian only).
Erkinaro, J., Niemelä, E., Vähä, J.-P., Primmer, C. R., Brørs, S., and Hassinen, E. 2010. Distribution and biological characteristics of escaped farmed salmon in a major subArctic wild salmon river: implications for monitoring. Canadian Journal of Fisheries and Aquatic Sciences, 67: 130-142.
Fiske, P., Diserud, O. H., Robertsen, G., Foldvik, A., Skilbrei, O., Heino, M., Helland, I. P. et al. 2013. Midtveisvurdering av nasjonale laksevassdrag og nasjonale laksefjorder. Rømt oppdrettslaks og bestandsstatus. Midway evaluation of National Salmon Rivers and National Salmon Fjords. Escaped farmed salmon and population status, NINA Minirapport 470. Norwegian Institute for Nature Research, Trondheim. (In Norwegian only)
Ed. by Fiske, P., Lund, R. A., Hansen, L. P. Cadrin, S. X., Friedland, K. D., and Waldman, J. R.. 2005. Identifying fish farm escapees. In Stock Identification Methods; Applications in Fishery Science, pp. 659-680. Elsevier Academic Press, Amsterdam.
Fiske, P., Lund, R., and Hansen, L. P. 2006. Relationships between the frequency of farmed Atlantic salmon, Salmo salar L., in wild salmon populations and fish farming activity in Norway, 1989-2004. ICES Journal of Marine Science, 63: 1182-1189.
Fleming, I. A., Hindar, K., Mjølnerød, I. B., Jonsson, B., Balstad, T., and Lamberg, A. 2000. Lifetime success and interactions of farm salmon
invading a native population. Proceedings of the Royal Society of London. Series B Biological Sciences, 267: 1517-1523.
Fleming, I. A., Jonsson, B., Gross, M. R., and Lamberg, A. 1996. An experimental study of the reproductive behaviour and success of farmed and wild Atlantic salmon (Salmo salar). The Journal of Applied Ecology, 33: 893-905.
Fleming, I. A., Lamberg, A., and Jonsson, B. 1997. Effects of early experience on the reproductive performance of Atlantic salmon. Behavioral Ecology, 8: 470-480.
Ford, J.S., and Myers, R.A. 2008. A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biology, 6: e33.
Føre, H.M., and Thorvaldsen, T. 2021. Causal analysis of escape of Atlantic salmon and rainbow trout from Norwegian fish farms during 2010-2018. Aquaculture, 532: 736002.
Forseth, T., Barlaup, B.T., Finstad, B., Fiske, P., Gjøsæter, H., Falkegård, M., Hindar, A. et al. 2017. The major threats to Atlantic salmon in Norway. ICES Journal of Marine Science 74: 1496-1513.[CrossRef]
Forseth, T., Fiske, P., Barlaup, B., Gjøsæter, H., Hindar, K., and Diserud, O.H. 2013. Reference point based management of Norwegian Atlantic salmon populations. Environmental Conservation, 40: 356366.

Gausen, D., and Moen, V. 1991. Large-scale escapes of farmed Atlantic salmon (Salmo salar) into Norwegian rivers threaten natural populations. Canadian Journal of Fisheries and Aquatic Sciences, 48: 426-428.
Gilbey, J., Sampayo, J., Cauwelier, E., Malcolm, I., Millidine, K., Jackson, F., and Morris, D. J. 2021. A national assessment of the influence of farmed salmon escapes on the genetic integrity of wild Scottish Atlantic salmon populations. Scottish Marine and Freshwater Science, 12: 12.
Gjedrem, T., and Baranski, M. 2009. Selective Breeding in Aquaculture: An Introduction. Springer, Berlin. 221pp.
Glover, K. A. 2010. Forensic identification of farmed escapees: a review of the Norwegian experience. Aquaculture Environment Interactions 1:1-10.
Glover, K. A., Quintela, M., Wennevik, V., Besnier, F., Sørvik, A.G.E., and Skaala, Ø. 2012. Three decades of farmed escapees in the wild: a spatio-temporal analysis of population genetic structure throughout Norway. Plos ONE, 7: e43129.
Glover, K. A., Skilbrei, O. T., and Skaala, Ø. 2008. Genetic assignment identifies farm of origin for a group of farmed escaped salmon in a Norwegian fjord. ICES Journal of Marine Science, 65, 912-920.
Glover, K. A., Urdal, K., Næsje, T., Skoglund, H., Florø-Larsen, B., Otterå, H., Fiske, P. et al. 2019. Domesticated escapees on the run: the second-generation monitoring program reports the numbers and proportion of farmed Atlantic salmon in >200 Norwegian rivers annually. ICES Journal of Marine Science, 76: 1151-1161.
Hagen, I. J., Jensen, A. J., Bolstad, G. H., Diserud, O. H., Hindar, K., Lo, H., and Karlsson, S. O. 2019. Supplementary stocking selects for domesticated genotypes. Nature Communications, 10: 199.

Hamoutene, D., Cote, D., Marshall, K., Donnet, S., Cross, S., Hamilton, L.C., McDonald, S. et al. 2018. Spatial and temporal distribution of farmed Atlantic salmon after experimental release from sea cage sites in Newfoundland (Canada). Aquaculture, 492: 147-156.
Hansen, L. P. 2006. Migration and survival of farmed Atlantic salmon (Salmo salar L.) released from two Norwegian fish farms. ICES Journal of Marine Science, 63: 1211-1217.
Hansen, L. P., Jacobsen, J. A., and Lund, R. A. 1999. The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon. ICES Journal of Marine Science, 56: 200-206.
Hansen, L. P., Jonsson, N., and Jonsson, B. 1993. Ocean migration in homing Atlantic salmon. Animal Behaviour, 45: 927-941.
Heen, K., Monahan, R.L., and Utter, F. (Editors) 1993. Salmon Aquaculture. Blackwell Science Publishing, Oxford. 278pp.
Heino, M., Svåsand, T., Wennevik, V., and Glover, K.A. 2015. Genetic introgression of farmed salmon in native populations: quantifying
the relative influence of population size and frequency of escapes Aquaculture Environment Interactions, 6: 185-190
Hesthagen, T., Larsen, B. M., and Fiske, P. 2011. Liming restores Atlantic salmon (Salmo salar) populations in acidified Norwegian rivers. Canadian Journal of Fisheries and Aquatic Sciences, 68: 224-231.
Hindar, K. 1992. Ecological and genetic studies on salmonid populations with emphasis on identifying causes for their variation. PhD thesis, University of Oslo, Norway.
Hindar, K., Diserud, O. H., Fiske, P., Forseth, T., Jensen, A. J., Ugedal, O., Jonsson, N. et al. 2007. Spawning targets for Atlantic salmon populations in Norway. NINA Report. 226. Norwegian Institute for nature Research, Trondheim. (In Norwegian, English summary).
Hindar, K., Diserud, O. H., Fiske, P., Karlsson, S., Bolstad, G. H., Foldvik, A., Wennevik, V. et al. 2018. Evaluering av nasjonale laksevassdrag og nasjonale laksefjorder: Rømt oppdrettslaks, genetisk innkrysning og bestandsstatus. (Evaluation of National Salmon Rivers and National Salmon Fjords: Escaped farmed salmon, genetic introgression and population status). NINA Report 1461. Norwegian Institute for Nature Research, Trondheim. (In Norwegian only).
Hindar, K., Fleming, I. A., McGinnity, P., and Diserud, O. 2006. Genetic and ecological effects of salmon farming on wild salmon: modelling from experimental results. ICES Journal of Marine Science, 63: 1234-1247
Hindar, K., Ryman, N., and Utter, F. 1991. Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Sciences, 48: 945-957.
Huisman, J., and Tufto, J. 2012. Comparison of non-Gaussian quantitative genetic models for migration and stabilizing selection. Evolution Internation Journal of Organic Evolution, 66: 3444-3461.
Huitfeldt-Kaas, H. 1923. Einwanderung und verbreitung der süsswasserfische in Norwegen mit einem anhang über den krebs. Sonderabdr. Archiv für Hydrobiologie, 14: 223-314.
ICES. 2020. Working group on North Atlantic salmon (WGNAS). ICES Scientific Reports. 2: 358.
Jensen, A. J., Karlsson, S., Fiske, P., Hansen, L. P., Hindar, K., and Østborg, G. 2013. Escaped farmed Atlantic salmon grow, migrate and disperse throughout the Arctic Ocean like wild salmon. Aquaculture Environment Interactions, 3: 223-229
Johnsen, B. O., and Jensen, A. J. 1994. The spread of furunculosis in salmonids in Norwegian rivers. Journal of Fish Biology, 45: 47-55.
Jonsson, B., and Jonsson, N. 2017. Maternal inheritance influences homing and growth of hybrid offspring between wild and farmed Atlantic salmon. Aquaculture Environment Interactions, 9: 231238.

Jonsson, B., Jonsson, N., and Hansen, L. P. 1990. Does juvenile experience affect migration and spawning of adult Atlantic salmon?. Behavioral Ecology and Sociobiology, 26: 225-230.
Jonsson, B., Jonsson, N., and Hansen, L. P. 2003. Atlantic salmon straying from the river Imsa. Journal of Fish Biology, 62: 641-657.
Jonsson, N., Hansen, L. P., and Jonsson, B. 1991. Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. The Journal of Animal Ecology, 60: 937-947.
Karlsson, S., Diserud, O. H., Fiske, P., and Hindar., K. 2016. Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES Journal of Marine Science, 73: 24882498.

Karlsson, S., Diserud, O. H., Moen, T., and Hindar, K. 2014. A standardized method for quantifying unidirectional genetic introgression. Ecology and Evolution, 4: 3256-3263.
Karlsson, S., Florø-Larsen, B., Sollien, V. P., Andersskog, I. P. Ø., Brandsegg, H., Eriksen, L. B., and Spets, M. H. 2021. Stamlakskontroll 2020 (Salmon brood stock control 2020). NINA Report 1973. Norwegian Institute for Nature Research, Trondheim, Norway. (In Norwegian only)
Karlsson, S., Moen, T., Lien, S., Glover, K., and Hindar, K. 2011. Generic genetic differences between farmed and wild Atlantic salmon identified from a 7K SNP-chip. Molecular Ecology Resources, 11: 247253.

Keyser, F., Wringe, B. F., Jeffery, N. W., Dempson, J. B., Duffy, S., and Bradbury, I. R. 2018. Predicting the impacts of escaped farmed Atlantic salmon on wild salmon populations. Canadian Journal of Fisheries and Aquatic Sciences, 75: 506-512.
Kjærner-Semb, E., Ayllon, F., Furmanek, T., Wennevik, V., Dahle, G., Niemela, E., Ozerov, M. et al. 2016. Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection. Bmc Genomics [Electronic Resource], 17:610.
Kuparinen, A., Tufto, J., Consuegra, S., Hindar, K., Merilä, J., and Garcia de Leániz, C. 2010. Effective size of an Atlantic salmon (Salmo salar L.) metapopulation in Northern Spain. Conservation Genetics, 11: 1559-1565.
Lund, R. A., and Hansen, L. P. 1991. Identification of wild and reared Atlantic salmon, Salmo salar L., using scale characters. Aquaculture and Fisheries Management, 22: 499-508.
Lund, R. A., Økland, F., and Hansen, L. P. 1991. Farmed Atlantic salmon (Salmo salar) in fisheries and rivers in Norway. Aquaculture 98: 143-150.
Lura, H. 1995. Domesticated female Atlantic salmon in the wild: spawning success and contribution to local populations. DSc thesis, University of Bergen, Bergen.
Lura, H., and Sægrov, H. 1991a. A method of separating offspring from farmed and wild Atlantic salmon (Salmo salar) based on different ratios of optical isomers of astaxanthin. Canadian Journal of Fisheries and Aquatic Sciences, 48: 429-433.
Lura, H., and Sægrov, H. 1991b. Documentation of successful spawning of escaped farmed female Atlantic salmon, Salmo salar, in Norwegian rivers. Aquaculture, 98: 151-159.
McGinnity, P., Prodöhl, P., Ferguson, A., Hynes, R., Ó Maoiléidigh, N., Baker, N., Cotter, D. et al. 2003. Fitness reduction and potential extinction of wild populations of Atlantic salmon Salmo salar as a result of interactions with escaped farm salmon. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270: 24432450.

Madhun, A. S., Wennevik, V., Skilbrei, O. T., Karlsbakk, E., Skaala, Ø., Fiksdal, I. U., Meier, S. et al. 2017. The ecological profile of Atlantic salmon escapees entering a river through an entire season: diverse in escape history and genetic background, but frequently virus-infected. ICES Journal of Marine Science, 74: 1371-1381.
Mahlum, S., Vollset, K. W., Barlaup, B. T., Skoglund, H., and Velle, G. 2021. Salmon on the lam: drivers of escaped farmed fish abundance in rivers. Journal of Applied Ecology, 58: 550-561.
Maitland, P. S. 1986. The potential impact of fish culture on wild stocks of atlantic salmon in Scotland. In The Status of the Atlantic Salmon in Scotland, pp. 73-78. Ed by D. Jenkins, and W. M. Shearer Institute of Terrestrial Ecology, Huntingdon. ITE Symposium No. 15.
Moe, K., Næsje, T. F., Haugen, T. O., Ulvan, E. M., Aronsen, T., Sandnes, T., and Thorstad, E. B. 2016. Area use and movement patterns of wild and escaped farmed Atlantic salmon before and during spawning in a large Norwegian river. Aquaculture Environment Interactions, 8: 77.
Naylor, R., Hindar, K., Fleming, I. A., Goldburg, R., Williams, S., Volpe, J., Whoriskey, F. et al. 2005. Fugitive salmon: assessing risks of escaped fish from aquaculture. Bioscience, 55: 427-437.
NOU. 1999. Til laks åt alle kan ingen gjera? - Om årsaker til nedgangen i de norske villaksbestandene og forslag til strategier og tiltak for å bedre situasjonen (On the causes for the decline in the Norwegian wild salmon populations and suggestions for strategies and measures to improve the situation). Norges offentlige utredninger 1999: 9. Statens forvaltningstjeneste, Oslo. (In Norwegian with English summary).
Pulg, U., Karlsson, S., Diserud, O. H., Postler, C., Stranzl, S, Espedal, E. O., and Lennox, R. 2021. Laks i sjøørretbekker - villaks eller oppdrettslaks? (Salmon in sea trout streams - wild salmon or escaped farmed salmon?). NORCE LFI rapport 376. Norwegian Research Center, Bergen(In Norwegian only)
Quintela, M., Wennevik, V., Sørvik, A. G. E., Skaala, Ø., Skilbrei, O. T., Urdal, K., Barlaup, B. T. et al. 2016. Siblingship tests connect
two seemingly independent farmed Atlantic salmon escape events together. Aquaculture Environment Interactions, 8: 497-509.
R Core Team. 2020. R: a language and environment for statistical computing, version 4.0.3. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.
Rikardsen, A. H., Righton, D., Strøm, J. F., Thorstad, E. B., Gargan, P. G., Sheehan, T. F., Økland, F. et al. 2021. Redefining the oceanic distribution of Atlantic salmon. Scientific Reports, 11: 12266.

Ryman, N., Utter, F., and Hindar, K. 1995. Introgression, supportive breeding, and genetic conservation. In Population Management for Survival and Recovery: Analytical Methods and Strategies in Small Population Conservation, pp.341-365. Ed by J. D. Ballou, M. Gilpin, and T. J. Foose Columbia University Press, New York, NY.
Schaffer, W. M., and Elson, P. F. 1975. The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology, 56: 577-590.
Serra-Llinares, R. M., Bjørn, P. A., Finstad, B., Nilsen, R., Harbitz, A., Berg, M., and Asplin, L. 2014. Salmon lice infection on wild salmonids in marine protected areas: an evaluation of the Norwegian 'National salmon fjords'. Aquaculture Environment Interactions, 5: 1-16.
Skaala, Ø., Besnier, F., Borgstrøm, R., Barlaup, B. T., Sørvik, A. G., Normann, E., Østebø, B. I. et al. 2019. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evolutionary Applications, 12: 1001-1016.
Skaala, Ø., Wennevik, V., and Glover, K. A. 2006. Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES Journal of Marine Science, 63: 1224-1233.
Skilbrei, O. T., Heino, M., and Svåsand, T. 2015. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages, from farm sites in Norway. ICES Journal of Marine Science, 72: 670-685.
Solberg, M. F., Robertsen, G., Sundt-Hansen, L. E., Hindar, K., and Glover, K. A. 2020. Domestication leads to increased predation susceptibility. Scientific Reports, 10: 1929.
Svenning, M.-A., Diserud, O., and Karlsson, S. 2021. Innkryssing av rømt oppdrettslaks i Målselva. (Introgression from escaped farmed salmon in the River Målselva). NINA Report 1971. Norwegian Institute for Nature Research, Trondheim. (In Norwegian only).

Svenning, M.-A., Lamberg, A., Dempson, B., Strand, R., Hanssen, Ø. K., and Fauchald, P. 2017. Incidence and timing of wild and escaped farmed Atlantic salmon (Salmo salar) in Norwegian rivers inferred from video surveillance monitoring. Ecology of Freshwater Fish, 26: 360-370.
Sylvester, E. V. A., Wringe, B. F., Duffy, S. J., Hamilton, L. C., Fleming, I. A., and Bradbury, I. R. 2018. Migration effort and wild population size influence the prevalence of hybridization between escaped farmed and wild Atlantic salmon. Aquaculture Environment Interactions, 10: 401-411.
Symons, P. E. K. 1979. Estimated escapement of Atlantic salmon (Salmo salar) for maximum smolt production in rivers of different productivity. Journal of the Fisheries Research Board of Canada, 36: 132140.

Thorstad, E. B., Fleming, I. A., McGinnity, P., Soto, D., Wennevik, V., and Whoriskey, F. 2008. Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. NINA Special Report 36. Norwegian Institute for Nature Research, Trondheim.
Thorstad, E. B., Heggberget, T. G., and Økland, F. 1998. Migratory behaviour of adult wild and escaped farmed Atlantic salmon, Salmo salar L., before, during and after spawning in a Norwegian river. Aquaculture Research, 29: 419-428.
Wacker, S., Aronsen, T., Karlsson, S., Ugedal, O., Diserud, O., Ulvan, E., Hindar, K. et al. 2021. Selection against individuals from genetic introgression of escaped farmed salmon in a natural population of Atlantic salmon. Evolutionary Applications, 14: 1450-1460.
Webb, J. H., Hay, D. W., Cunningham, P. D., and Youngson, A. F. 1991. The spawning behaviour of escaped farmed and wild adult Atlantic salmon (Salmo salar L.) in a Northern Scottish river. Aquaculture, 98: 97-110.
Wennevik, V., Quintela, M., Skaala, Ø., Verspoor, E., Prusov, S., and Glover, K. A. 2019. Population genetic analysis reveals a geographically limited transition zone between two genetically distinct Atlantic salmon lineages in Norway. Ecology and Evolution, 9: 69016921.

Youngson, A. F., Hansen, L. P., and Windsor, M. L. 1998. Interactions between salmon culture and wild stocks of Atlantic salmon: the scientific and management issues. In Report by the Conveners of a Symposium Organized by the International Council for the Exploration of the Sea (ICES) and the North Atlantic Salmon Conservation Organization (NASCO). Held at Bath, England, UK. Norwegian Institute for Nature Research, Trondheim.

[^0]: Received: February 8, 2022. Revised: March 18, 2022. Accepted: March 21, 2022
 © The Author(s) 2022. Published by Oxford University Press on behalf of International Council for the Exploration of the Sea. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

