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Marine aquaculture of Atlantic salmon (Salmo salar) is a relatively new industry where breeding programs have led to rapid genetic change in
the captive populations that were built up alongside conspecific wild individuals. Throughout its 50-years history, marine aquaculture of Atlantic
salmon has been associated with escapes, and studies have shown that escapees may enter rivers, spawn successfully, and this may lead to
farmed-to-wild genetic introgression and maladaptation in wild populations. Yet, an open question is what factors can best explain the variability
in the proportion of farmed escapees in wild populations, and when present, which additional factors lead to introgression. Here, we combine
two large-scale data sets from monitoring escaped farmed salmon and introgression in Norwegian rivers between 2006 and 2018 to model
how anthropogenic, environmental, and population factors influence proportion of escapees and level of introgression. We found that increasing
farming intensity and river discharge increase the expected proportions of escaped farmed salmon in rivers, whereas a larger wild salmon
population size reduces the expected proportion of escapees despite increasing the expected absolute numbers of escaped farmed salmon.
On a large scale, introgression is primarily a function of proportions of escaped farmed salmon, and only to a minor extent a function of local
environmental factors or salmon population characteristics. This suggests that as long as salmon aquaculture is based on technologies where
non-sterile fish can escape, all anadromous wild Atlantic salmon populations are at risk. Large marine protected areas without salmon aquaculture

may slow down the rate of intrusion and introgression by increasing the distance between intensive aquaculture and wild populations.

Keywords: admixture, aquaculture, Atlantic salmon, escaped farmed salmon, gene flow, Salmo salar.

Introduction

The rapid domestication of fish species for aquaculture means
that we are in position to follow the genetic process of do-
mestication as it happens. We are also able to follow the side-
effects of domestication on wild populations as large-scale
aquaculture, in some years, has produced as many escapees
as there are wild conspecifics (Hindar et al., 1991).
Successful domestication depends on controlling the life cy-
cle from fertilization until market size. Artificial reproduction
of salmonids was mastered on a large scale from the 1850s on-
wards, when unfed salmonid fry (alevins) were produced in
large numbers for release into the wild (Berg, 1986). The tech-
nology to raise Atlantic salmon (Salmo salar), hereon referred
to as salmon, to market size in marine net pens was developed
in the 1960s and led to the growth of a salmon aquaculture in-
dustry both within and outside its natural distribution range

(Heen et al., 1993). The production of salmon in fish farms
has increased from half of nominal catch of wild salmon in
1980 to outnumbering it 2000 times in 2019 (ICES, 2020).

In 1986, the first concerns about escaped farmed salmon
entering rivers were published (Maitland, 1986). High pro-
portions of farmed salmon were found in many rivers in
Norway during the autumn of 1987 and 1988 (Gausen and
Moen, 1991). In 1989, a nationwide monitoring system for
escaped farmed salmon was implemented in Norway (Lund
and Hansen, 1991; Diserud et al., 2019), and is now into its
second and more comprehensive generation with annual sam-
pling of more than 200 rivers (Glover et al., 2019). The ac-
cumulated number of individuals being classified as wild or
farmed escapees, based on growth patterns in the scales (Lund
and Hansen, 1991), amounts to more than 470 000 since
1989.
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Around 1990, methods were developed to show that es-
caped farmed salmon could produce offspring in the wild. The
first methods were based on demonstrating that feed addi-
tives (synthetic astaxanthin and canthaxanthin) were found in
salmon eggs deposited in the riverbed in Scotland and Norway
(Lura and Saegrov, 1991a, b; Webb et al., 1991). Moreover, ad
hoc genetic methods based on skewed allele frequencies in al-
lozyme markers were used to show that wild salmon juveniles
in Ireland had farmed parents (Crozier, 1993; Clifford et al.,
1998a, b). Later, microsatellite markers were used to docu-
ment temporal genetic changes in wild populations, including
a reduction in wild population differentiation, that were likely
a result of escaped farmed salmon interbreeding (Skaala et al.,
2006; Glover et al., 2012).

In 2011, a SNP panel to distinguish farmed and wild
salmon was developed in Norway based on screening 4514
SNP markers in 12 breeding lines of Norwegian aquaculture
salmon and 13 wild Atlantic populations throughout Norway,
sampled before the growth of the aquaculture industry (Karls-
son et al., 2011). Using this method, scale samples with a con-
firmed wild growth pattern (Fiske et al., 2005) can be used as
a source of DNA, lending themselves to genetic screening for
determining the degree of farm wild admixture. More than
50 000 individuals with a wild life cycle from 239 Norwegian
rivers have been analyzed to estimate their probability of be-
longing to a wild salmon population (Karlsson et al., 2016;
Diserud et al., 2020) by using the methodology developed by
Karlsson et al. (2014).

In this study, we analyze the predictors that can be associ-
ated with the occurrence of escaped farmed salmon and their
introgression into wild salmon in Norway, improving prelim-
inary models presented in reports for Norwegian authorities
(Fiske et al., 2013; Hindar et al., 2018). Heino et al. (2015)
found that the observed proportion of escaped farmed salmon
in catches and the average annual angling catch weights for
rivers could provide a predictor for cumulative introgression
in 20 populations, where catch served as a proxy for current
population size. Sylvester et al. (2018) showed that within-
river distribution of hybrid parr was associated with the mi-
gration effort required to reach spawning sites; the hybrid pro-
portion decreased with increasing elevation, geographic dis-
tance, and the presence of obstructions. Keyser et al. (2018)
predicted the distribution of escaped farmed salmon and de-
gree of introgression in wild populations in the Northwest
Atlantic from aquaculture facility locations, production esti-
mates, reported escape events, and in-river detections of es-
caped farmed salmon. Mahlum e# al. (2021) found that aqua-
culture intensity, wild salmon abundance, mean yearly dis-
charge, and the interaction between the distance from river
mouth to open ocean and wild salmon abundance were impor-
tant predictors of escapee abundance in western Norwegian
rivers. Proximity to fish farms or other indices of farm pro-
duction intensity had also been found by Gausen and Moen
(1991) and Fiske et al. (2006) to correlate with high propor-
tions of escapees.

In autumn 1989, Norwegian authorities established a sys-
tem of 52 temporary protection zones (with 125 salmon
rivers) for wild salmon populations in fjords that were at-
tractive for further development of aquaculture. These were
later formalized by the Norwegian parliament (Anon, 2006)
as a system of 29 National Salmon Fjords and 52 National
Salmon Rivers along the Norwegian coast intended as a gen-
eral protection of the wild salmon resource. The purpose of
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this protection system is to give the most important salmon
populations in Norway a special protection against harmful
anthropogenic activities in the rivers, and in adjacent fjord
and coastal areas.

Here, we combine data sets on escaped farmed salmon and
introgression from c. 200 rivers along the Norwegian coast,
from 58°N to 71°N, to answer the questions: (1) what de-
termines the occurrence of escaped farmed salmon into Nor-
wegian rivers, (2) what determines the level of introgression
in Norwegian salmon populations, and (3) does the establish-
ment of protection zones for wild salmon reduce introgression
from escaped farmed salmon?

Material and methods

Materials

Data on the proportions of escaped farmed salmon in Nor-
way come from two papers that reported the distribution of
escapees in rivers from 1989 to 2013 (Diserud et al., 2019)
and on a more comprehensive scale from 2014 (Glover et al.,
2019). Scales from more than 470 000 individuals, caught dur-
ing summer recreational angling, autumn pre-spawning an-
gling surveys, and broodstock fishing, have been analysed to
determine their origin (escaped farmed or wild) according to
fish scale growth pattern (Fiske et al., 20035; see also Diserud
et al.,2019). Proportions estimated from summer catches may
underestimate the proportion of escapees in the wild spawning
populations as escaped farmed salmon often ascend rives later
in the season than wild salmon (Lund et al., 1991; Crozier,
1998; Erkinaro et al., 2010), while autumn samples may give
uncertain proportion estimates due to small sample sizes and
biased estimates due to potentially differing catchabilities or
spatial distribution close to the spawning period (Moe et al.,
2016; Svenning et al., 2017). An Incidence index that com-
bined the information from summer and autumn catch sam-
ples was, therefore, developed for management purposes to
give the best possible annual estimate of the proportion of es-
caped farmed salmon in wild salmon populations (Fiske et al.
2006; Diserud et al., 2010).

The estimated proportions of escaped farmed salmon in the
wild salmon populations were averaged over the years from
2006, when the estimates for wild population status were im-
proved (Forseth et al., 2013), to 2018. Each annual estimate
were given the same weight when calculating the average.
This period covers the last two to three wild salmon genera-
tions. We analysed the Incidence index averaged over this pro-
longed period rather than including the temporal variation in
escape proportions. This was done because genetic introgres-
sion is accumulated over time, the frequency and quality of
catch reports may vary considerably, and associations can be
both time-lagged and smoothed out over several years, making
“correct” temporal assignments difficult. Models were fitted
to 129 wild salmon populations with a minimum of 4 years
of Incidence index estimates (Figure 1b). With a lower limit
at 4 years of data, we focus on the more permanent character-
istics of a population and its environment that may influence
the proportion of escaped farmed salmon.

Data on introgression from escaped farmed to wild salmon
in Norway was obtained from Karlsson et al. (2016) and
the report by Diserud et al. (2020), which present informa-
tion on introgression in 239 wild salmon populations and
more than 50 000 genetically analyzed individuals with a wild
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Figure 1. Maps of Norway showing: (a) locations with sea water net pens in 2015-2016, (b) rivers with incidence indices estimates (n = 129), and (c)
rivers with genetic introgression estimates (n = 239). Grey areas along the coast indicate the National Salmon Fjord protection zones.

growth-scale pattern confirming that individuals were hatched
in the wild (Figure 1c¢). Historical samples collected before sig-
nificant farmed salmon introgression (c. 1990) have been an-
alyzed for 59 of the 239 wild salmon populations, to serve as
wild origin references.

The underlying estimate of introgression (or lack thereof)
is the probability an individual belongs to a reference of wild
salmon (P(Wild)), using the SNP panel developed by Karls-
son et al. (2011) and a statistical method developed by Karls-
son et al. (2014). P(Wild) is, thus the unscaled proportion of
wild origin and not the estimate of introgression. Introgres-
sion is a population property accumulated over time, expected
to vary among cohorts depending on escape episodes and
stochastic environmental variation. We have, therefore, used
the population mean P(Wild) as the model response variable,
estimated from a contemporary sample pooled over the last
salmon generation with sufficient total sample size (Diserud
et al., 2020). During model fitting, we only include popula-
tions with a genetic sample size of 20 fish or more. Most
populations are represented by recent samples; 75% of the

populations are from 2014 or later, while the oldest are from
200S.

Variables that were assumed a priori to be potential pre-
dictors for occurrence of escaped farmed salmon or extent
of introgression, or both, are listed in Table 1. The predic-
tors can be divided into three categories: population, envi-
ronmental, and anthropogenic. Population predictors include
variables like the phylogenetic group of the wild salmon, num-
ber and density of spawners, adult body size, and juvenile
growth rate in fresh water. Environmental predictors include
variables such as river size (discharge), migration obstacles,
and the river’s location along the coast. Anthropogenic pre-
dictors include factors affecting the number of escapees along
the coast and in-river human activities such as hydropower
regulation, release of hatchery fish, or liming. Farming inten-
sity was estimated based on January and June biomass (or
numbers) in seawater net pens for ¢. 1000 locations along the
Norwegian coast 2006-2016 (Data courtesy of the Norwe-
gian Directorate of Fisheries) and on measurement of the dis-
tances between river mouths to all farming locations (Figure
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1a). The contribution from the standing stock in each fish farm
was weighted by a decreasing Gaussian function with a SD of
60 km. This resembles the calculation of “propagule pressure”
for each river by Keyser et al. (2018). It was inspired by early
reports of escaped farmed salmon in rivers in relation to re-
gional fish farms (Gausen and Moen, 1991; Fiske et al., 2006)
and the dispersion of smolt and later stages of farmed salmon
from known release localities (Jonsson ef al., 2003; Hansen,
2006; Skilbrei et al., 2015). We also tested other alternatives
for quantifying the accumulated influence from surrounding
farms on wild salmon populations but found none that ex-
plained incidence of escaped farmed salmon better (see Hin-
dar et al., 2018). Table 1 presents a short name for each vari-
able, variable type, data quantity (number of rivers; variable
range), and an g priori assumed effect on escapee proportion
or introgression. It is acknowledged that there are other vari-
ables that could be included in this analysis, but those in Table
1 are the ones that we identified as biologically relevant and
that we have been able to quantify with sufficient precision.
All variables were averaged over the same period as the
escape proportions, i.e. from 2006 to 2018, giving each an-
nual observation the same weight. Some variables are con-
stant, some are already given as temporal averages (e.g. mean
annual discharge), some may have large uncertainty due to
small annual sample sizes, and some may reflect properties
accumulated or lagged over longer periods, which makes it
difficult to allocate them to appropriate years or cohorts.

Methods

Here, we logit-transformed the responses, i.e. proportions of
escaped farmed salmon in wild salmon populations and intro-
gression as proportional wild ancestry, to stabilize the vari-
ance, arguing that the resulting error distributions becomes
approximately normal so that traditional multiple linear re-
gression models can be used for the transformed responses.
We could not fit generalized linear models (GLMs) with bino-
mial error distributions because neither of the responses are
direct results of binomial experiments (i.e. they cannot be ex-
pressed as ratios of two integers). To validate our assumptions
when applying the logit-transform, residuals are checked for
constancy of variance and normality of errors.

The wild salmon population’s mean P(Wild) is partly a re-
sult of natural genetic variation, i.e. the estimated mean levels
from historical samples will vary among populations (Diserud
etal.,2020) and between phylogenetic groups [North-East At-
lantic (NEA), Barents Sea (BS), and a transition zone (TZ) be-
tween them; Bourret et al., 2013; Wennevik et al., 2019]. A
model predicting the variation in historical P(Wild) popula-
tion means from phylogenetic group and other predictors is
presented in the Supplementary material (S1). These associa-
tions among pre-introgression P(Wild) levels and predictors
need to be accounted for before studying factors that affect
introgression from escaped farmed salmon.

Some predictors may affect both the presence of escapees
in salmon rivers and subsequent introgression (Table 1). To
separate these two effects, we first modelled the proportion
of escaped farmed salmon to identify predictors associated
with presence of escapees. Finally, we modelled contemporary
mean population P(Wild) and aimed to sort contributions
from natural variation, presence of escapees in rivers, and
potential predictors that may modify introgression, given

0. H. Diserud et al.

that escaped farmed salmon were present in the spawning
population.

Our variable selection procedure was initially based on
residual deviance and AAIC, but as most predictors have miss-
ing observations for some populations, two models’ AIC val-
ues may not be directly comparable. Data collection for some
factors were initiated by a specific event (anthropogenic inter-
vention), so samples may be far from random. In addition, as
we wanted to predict an outcome based on multiple predictors
where some may covary, the variable selection procedure had
to consider this correlation structure. Therefore, model selec-
tion, and interpretation of individual predictor contributions,
had to be made with caution, and should, where possible, be
guided by supportive information to augment confidence in
the results. Some predictors could also be considered as prox-
ies for factors hard to quantify directly.

A sizeable proportion of the variation in predictor variables
may be caused by measurement and sampling uncertainty. The
slope of the regression is expected to be underestimated even
with unbiased measurement and sampling uncertainty, and
this underestimation increases as uncertainty increases (Car-
roll et al., 2006). Therefore, we strived for functional simplic-
ity and chose, among correlated variables, those with best ac-
curacy.

Predictions based on models are often used by managers to
guide mitigation of anthropogenic pressures. It is, therefore,
important to validate models and evaluate their predictive
performance. Model selection can be viewed as a trade-off
between minimizing bias and variance for predicted values.
Predictions will be biased when explanatory variables with
true non-zero regression coefficient are not included in the
model. To minimize prediction bias, the best strategy will be
to include as many variables as possible. But as we include
more variables, the prediction variance will increase. The
optimal model complexity is, therefore, a model with a
moderate number of parameters so that the sum of the bias
and the variance (mean square prediction error) is minimized.
Minimizing the AIC is in accordance with this line of thought;
it strives to improve model fit (log-likelihood) and reduce
model complexity (number of parameters). A model with
large prediction variance can be termed “overfitted” and will
be poor at predicting observations outside the calibration
data set. Here, we evaluated the prediction variance by a
leave-one-out cross-validation procedure, i.e. we fitted the
model to all observations except one and then used this
model to predict the left-out observation. By comparing the
coefficient of determination RZ ; for the model calibrated to
the complete data set to R{ calculated from the observed
response and the corresponding leave-one-out predictions,
we could evaluate the prediction variance. For an overfitted
complex model, the R} ; will be much lower than the R? .
An illustration of this validation approach can be found in
the Supplementary material (S2).

Interaction terms were evaluated, but none were found to
improve model performance. All calculations and modelling
were performed using the statistical software R, version 4.0.3
(R Core Team, 2020).

Results

We started by investigating associations between the Incidence
index, i.e. the estimated mean annual proportion of escapees
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Factors explaining farmed salmon introgression

Table 2. Results from the regression model used to identify predictors associated with logit(/ncidence Index). Predictors were farming intensity (numbers
weighted with distance), estimated wild population spawner abundance, mean annual water discharge (m® s~'), and population spawning target relative
to sum of all spawning targets in near proximity (< 60 km by water). Note that the log() function refers to the natural logarithm. ** p < 0.01, *** p < 0.001.

Estimate Std. Err t-value
Intercept —-3.87 0.874 —4.43%
log(FarmlIntens.no) 0.21 0.043 4.88%*
log(PopSize.SA) —0.67 0.092 —7.25%
log(WaterDis) 0.59 0.085 6.95%*
RelTarget 0.69 0.261 2.63*
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Figure 2. Model predictions from the calibration model presented in Table 2 (black open circles) and predictions from the corresponding leave-one-out

validation models (orange filled circles) for the same observations.

in rivers, and relevant predictors (Table 1). The model for In-
cidence index was primarily applied as an intermediate step in
the process of separating escapee attraction and introgression
sensitivity, but this model could also be used as a prediction
model for the proportion of escaped farmed salmon in a wild
salmon population lacking data of sufficient quality. Next,
we wanted to understand drivers of introgression observed
in contemporary samples. A key question was if we could de-
tect predictor variables explaining variation in the population
sample mean probability of belonging to a wild salmon pop-
ulation P(Wild) in addition to those associated with histori-
cal variation and escapee proportions, indicating populations
sensitive or robust to introgression.

Modelling the proportion of escaped farmed
salmon in wild salmon spawner populations
An increase in expected Incidence index was associated with
higher farming intensity Farmlnten.no, smaller population
size PopSize.SA, a larger water discharge WaterDis, and the
population having a relatively large spawning target com-
pared to the other rivers in the vicinity RelTarget (Table 2).
The full model with all potential predictors included
(ref. Table 1) was strongly overfitted (28 out of 129 popu-
lations excluded due to missing observations: Réalz 0.51 and

R%,al: 0.24). After variable reduction from the full model, we
got the more parsimonious model for logit-transformed In-
cidence index presented in Table 2 (17 populations missing,
Réalz 0.43 and R%,alz 0.37). Figure 2 illustrates the model
fit and validation. Note that the model underestimate all the
incidence indices larger than ¢. 0.2.

As an illustration of the back-transformed association be-
tween farming intensity and the Incidence index, we calcu-
lated the model predictions when varying the farming inten-
sity from observed minimum to maximum, while keeping the
other predictors fixed at their averages (Figure 3a). The ex-
pected proportion of escaped farmed salmon for an “aver-
age” population and river increased from below 0.01 to 0.08
over the range of farming intensities. Figure 3(b) shows the
distributions of Farm Intensity for rivers within (upper violin
plot) and outside (lower) the National salmon fjord protection
zones.

We also modelled the number of escaped farmed salmon in
wild salmon populations because numbers, rather than pro-
portions, may be more directly related to mechanisms for the
spread of escaped farmed salmon from fish farms into rivers.
Moreover, the number of immigrants into wild populations is
interesting for analyses of the balance between immigration
and genetic drift (Ryman ez al., 1995). Note that the numbers
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0.04 0.06 0.08
| | |

Expected Incidence index

0.02
|

0.00
|

T T
3,000 30,000

T T T
3e+05 3e+06 3e+07

Farm intensity

1 1 1

Yes

National salmon fjord

No F——r—_"

3,000 30,000

3e+05 3e+06 3e+07

Farm intensity

Figure 3. (a) An illustration of the association between farming intensity and expected Incidence Index with the other predictors fixed at their averages.
(b) The distributions of Farm Intensity (natural logarithmic scale) for rivers within vs. outside National salmon fjords shown by violin-plots.

of escapees in wild populations were calculated as the prod-
ucts of the two estimates Incidence index and population size,
so the accumulated estimation uncertainty and potential bias
may be large. The model for the number of escapees (Supple-
mentary Table S3-1; Supplement 3) included the same predic-
tors as the model for the proportion of escapees, although the
sign of the estimated coefficient for population size changed.
The expected number of escapees increases with the popula-
tion’s spawning target, while a dilution effect ensures that the

proportion of escapees decreases with increasing population
size.

Modelling population mean P(Wild) for
contemporary samples
We started by fitting a model for population mean P(Wild)

based on predicted historical baseline levels (Supplementary
Table S1-1) and predicted incidence indices (Table 2). Thereby,

220z 1Mdy Lz uo Jasn Aleiqi ‘BuiusiounieN Joj nnisu| %sIoN Agq 6951 259/0900ES)/Swilseol/e601 "0 | /I0p/aonie-aoueApe/swiseol/woo dno-olwapeose//:sdiy Woll papeojumo(]



Factors explaining farmed salmon introgression

"

Table 3. Linear regression model for logit(P(Wild)), where the populations’ variance in predicted pre-introgression P(Wild) level and Incidence Index are

accounted for. ** p < 0.01, ** p < 0.001.

Estimate Std. Err t-value
Intercept —0.068 0.291 —-0.23
Predicted logit(Incidence Index) —0.341 0.061 —5.58%*
Predicted historical logit(P(Wild))  0.573 0.096 5.98%*

Table 4. Model used to identify predictors associated with the residuals from the logit(P(Wild)) model (Table 3). Predictors were upriver migration obstacles
(proportion of anadromous section above first migration obstacle) and phylogenetic group. * p < 0.05, ** p < 0.001.

Estimate Std. Err t-value
Intercept 0.012 0.044 0.28
logit(Obstacle) 0.025 0.012 2.05*
Phyl-BS 0.254 0.117 2.18*
Phyl-TZ —0.598 0.174 —3.44%*

we were not dependent on, or limited to, the actual historical
samples or escapee observations as long as the relevant pre-
dictors were observed. Table 3 presents the linear model for
logit(P(Wild)) where pre-introgression level and expected In-
cidence index are accounted for (133 populations used to fit
the model, 91 missing; Réalz 0.45, R%,al= 0.41).

Next, the residuals from this model, i.e. the variation in
P(Wild) not explained by historical levels or presence of es-
caped farmed salmon, were modelled by the predictor vari-
ables assumed to be relevant for introgression (Table 1). We
found that phylogenetic group Phyl and upriver migration ob-
stacles Obstacle could be associated with susceptibility for in-
trogression, after the expected Incidence index had been ac-
counted for (Table 4; 123 populations used to fit the model,
101 missing; R% ;= 0.16, Ry, = 0.08). However, the propor-
tion of variance explained was minor. The positive associa-
tion between Obstacle and P(Wild)-residuals indicated that a
large proportion of the anadromous section above first migra-
tion obstacle reduces the expected introgression. Populations
from the BS phylogenetic group were expected to have posi-
tive residuals and more robust against introgression compared
to the NEA group, while populations from the TZ had lower
P(Wild) levels, i.e. more susceptible to introgression.

The fact that a river has status as a protected National
salmon river or is discharging in a National salmon fjord (Ma-
rine Protected Area) did not influence the expected P(Wild)
level of a wild salmon population beyond what could be at-
tributed to protection-relevant predictors from the Incidence
index model, primarily farming intensity and population size.

Discussion

This study demonstrates that genetic introgression is primar-
ily determined by the proportions of escaped farmed salmon
in rivers, and those proportions are primarily determined by
farming intensity and wild population size. The main impli-
cation of these results is clear. There are currently no other
sustainable mitigations than preventing farmed salmon from
escaping or using sterile fish to stop further negative genetic
impact on wild Atlantic salmon populations, given the present
magnitude of farmed salmon production and high straying
rate of escapees.

We analyzed several potential predictors (Table 1) that
could modify the number and distribution of escaped farmed
salmon and the introgression from escaped farmed to wild

salmon. The effect of many predictors on the proportions of
escapees and resulting introgression can only be identified by
large data sets including many rivers and populations, and
over a long period of time. Strengths of the present study are
the large amount of data on proportion of escaped farmed
salmon and the level of introgression in wild salmon popula-
tions as well as the large number of potential predictors that
may be associated with introgression. These aspects allowed
us to explore generic factors across a large geographical scale
and over an extended period, which is essential to be able to
establish robust guidelines to prevent further introgression of
genetic material from escaped farmed salmon into wild pop-
ulations.

Scale of analysis

A large spatial scale is necessary because of the wide distri-
bution of fish farms and the far-reaching dispersal of farmed
salmon after escapes. Escapees are found in major feeding ar-
eas near the Faroe Islands (Hansen et al., 1999) and in the
Arctic Ocean at Spitsbergen, more than 1000 km from the
nearest fish farm (Jensen et al., 2013). Recaptures of tagged
farmed salmon released on the coast of Norway have been
documented in rivers as far away as the Swedish west coast
and the northern Kola Peninsula spanning a coastal distance
of 3000 km (Hansen, 2006). Most escapees, however, end up
in rivers in the same area as they escaped from, particularly if
escaping as smolts or close to spawning time (Hansen, 2006;
Skilbrei et al., 2015; Jonsson and Jonsson, 2017).

Data sets covering a large temporal scale are necessary be-
cause introgression is a population property that represents a
cumulative impact over time and is expected to vary among
cohorts depending on escape episodes and stochastic environ-
mental variation. The currently observed introgression is the
result of more than three decades of spawning of escaped
farmed salmon in rivers (Gausen and Moen, 1991). Thus,
what we study here is the effect of introgression from escapees
and their first- and later-generation offspring on a wide range
of wild salmon populations. Salmon hatched in the wild are
physically more fit and have a higher reproductive success
than hatchery-produced salmon and farmed escapees (Jon-
sson et al., 1990; Fleming et al., 1996, 1997); hence, wild-
born offspring of farmed escapees may disperse introgres-
sion beyond physical obstacles for farmed escapees, such as
difficult-to-pass waterfalls. Furthermore, first-generation off-
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spring of farmed salmon showed higher straying rates than na-
tive salmon when released as smolts in the river (Jonsson and
Jonsson, 2017), and may, thus spread introgression to rivers
where the proportion of direct farm escapees is very low.

Another temporal component to consider is the genetic
change that takes place in the farmed salmon across gener-
ations. Farmed salmon are changing genetically over time be-
cause of selective breeding for economically important traits
(Gjedrem and Baranski, 2009), because of the general process
of domestication, i.e. adaptation to the captive environment,
and genetic drift. One might argue that selective breeding and
adaptation to the captive environment will eventually lead to
farmed salmon being unable to complete a life cycle in the nat-
ural environment. Theoretical models suggest that the highest
impact of escaped farmed individuals on the viability of wild
salmon populations is at intermediate levels of genetic differ-
ence between them (Baskett and Waples, 2012; Huisman and
Tufto, 2012). Despite the reduced fitness of farmed individuals
in the wild, the most recent data suggest that escaped farmed
salmon are still able to enter salmon rivers and successfully
reproduce (Diserud et al., 2020; Pulg et al., 2021; Karlsson et
al.,2021).

We identified a priori a list of variables (Table 1) that
might be important for determining the occurrence of escaped
farmed salmon and level of introgression. For several reasons,
not all of these variables were included in our final models.
First, some were applicable to only a single or few rivers or
populations and were, therefore, not suitable for modelling
generic factors at the national scale but might be interesting to
study in detail for a better understanding of underlying mech-
anisms. One example is seasonal environmental variation in
rivers, such as long winters, that may affect juveniles of vary-
ing pedigree differentially as they grow older (Wacker ez al.,
2021). Second, other variables were excluded due to limited
data quality. One example is predation pressure on juvenile
salmon, as predation is one mechanism by which offspring of
escaped farmed salmon may show higher mortality than off-
spring of wild salmon (Solberg et al., 2020), but which we
cannot so far sufficiently quantify. Third, some variables are
highly intercorrelated and could, thus be interchanged in the
models without much change in the explanatory power of the
models.

Predictors for proportions of escaped farmed
salmon

We found that the Incidence index of escaped farmed
salmon in rivers was associated with farming intensity as
well as river and population specific features, with popu-
lation size, water discharge, and the relative spawning tar-
get being the most important predictors (Table 2). This
model explained 43% of the variance in the Incidence in-
dex. Farming intensity is associated with escapees during
post-smolt to adult stage from ocean farms (Thorstad et al.,
2008). Norway’s statistics on escapes from aquaculture, based
on mandatory reporting of escape events and numbers by
fish farmers (http://www.fiskeridirektoratet.no/Akvakultur/T
all-og-analyse/Roemmingsstatistikk), was not used as input
in the models for escaped farmed salmon in rivers. There are
at least two reasons for this. First, it was shown that for the
years 1989-2004 the regional (county) number of farmed fish
in net pens was a better predictor for escaped farmed salmon
in rivers than the reported escapes in the same regions (Fiske
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et el.,2006), a result later supported by Mahlum ez al. (2021).
Second, studies have shown that the reported number of es-
capees may be an underestimation of the actual number of
escapees; Skilbrei ez al. (2015) found the actual number of es-
capees to be two to four times larger than reported during
the period 2005-2011. Underestimation of the reported num-
bers is supported by the fact that high numbers of farmed es-
capees can be found where no escape event has been reported
(Quintela et al., 2016), and furthermore, that DNA methods
to trace the source of unreported escapees have been used
by the Norwegian authorities on multiple occasions (Glover
et al., 2008; Glover, 2010). The Norwegian Directorate of
Fisheries states on their home page that the escape statistics
must be viewed as estimates and that numbers are uncertain
even when based on counting fish left in the net after es-
cape (http://www.fiskeridirektoratet.no/Akvakultur/Tall-og-a
nalyse/Roemmingsstatistikk).

Estimates from the years 2010-2018 suggested that escapes
from land-based facilities made up 7% and net pens 92%
of the number of escapes in Norway (Fere and Thorvald-
sen, 2021). Escapes from freshwater facilities may be more
common in Scotland and Ireland, where more juveniles are
reared to the smolt stage in net pens in lakes and where they
have been shown to contribute to introgression (Clifford ez
al., 1998a; Gilbey et al., 2021), if not to the escape statistics.

The Incidence index of escaped farmed salmon increases
with increasing average river discharge. This result was also
found in an analysis of escaped farmed salmon in western
Norway based on counts of escaped and farmed salmon in
rivers (Mahlum ef al., 2021), and in reports with preliminary
modelling of the all-of-Norway analyses presented here (Fiske
et al., 2013; Hindar ef al., 2018). Also, Johnsen and Jensen
(1994) found when studying the spread of furunculosis from
an outbreak in fish farms that the disease spread faster with
escaped farmed salmon to large rivers than to nearby small
rivers.

The main reason for the positive association with river
discharge is likely that higher discharge is an increasingly
stronger signal for escaped farmed salmon, which are es-
sentially homeless when escaping from net pens in the sea
(Hansen, 2006), although most end up in rivers in the same
region they escaped from. Discharge is also positively corre-
lated with wild salmon body size (Jonsson et al., 1991) and
late-escaping farmed females can be c. 40% bigger than co-
occurring wild females (Hindar ef al., 2006). On the other
hand, offspring of escaped farmed salmon have also been
found in smaller rivers than those analyzed in the present
study, including those primarily dominated by sea trout Salmo
trutta (Pulg et al., 2021).

Population size had a positive effect on the number of es-
capees ascending rivers (Supplement S3) and a negative effect
on the proportion of escapees in the river (Table 2). Because
population size may vary among years, the general effect on
variation among rivers will only become apparent over many
years. In western Norway, Mahlum et al. (2021) showed that
wild salmon spawner abundance was an important predic-
tor of escapee abundance and suggested that escaped farmed
salmon, without a native river (Hansen, 2006), might follow
wild migrants from the coast to the river. While this is possi-
ble, it cannot be the only explanation because some escaped
farmed salmon may often enter rivers after the wild salmon
run. More importantly, our model showed that population
size has a “thinning effect” on the Incidence index of escaped
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farmed salmon, i.e. the proportion decreases with increasing
population size, and this should not be the case if escaped
farmed salmon followed maturing wild salmon at random.
Also,Hesthagen et al. (2011) showed that in formerly acidified
rivers, salmon populations recovered more rapidly after lim-
ing in rivers with releases of juvenile salmon than in rivers with
only natural colonization. The smell of salmon may, therefore,
be an attractant (Jonsson et al., 2003).

The relative spawning target enters as a factor in our model
by increasing the expected Incidence index in rivers that have
a high spawning target relative to neighbouring populations
that may compete for the same pool of escapees in a fjord or
a coastal region. Whereas escaped farmed salmon may be at-
tracted to large rivers with abundant salmon populations, they
may also seek a smaller population when there are no larger
populations around, i.e. the relatively largest population in the
region.

Predictors for level of introgression

We found that the level of introgression was strongly re-
lated to proportion of escaped farmed salmon in the rivers
and that a model for contemporary logit(P(Wild)), where pre-
introgression level and expected Incidence index were ac-
counted for, explained 45% of the variance in introgression
(Table 3). This means that long term introgression can be mod-
elled from the small number of predictors.

Still, a considerable amount of the variation in introgres-
sion remains unexplained. We modelled the residuals from the
logit(P(Wild)) model (Table 3) to see which predictors that
could potentially shed light on the unexplained variation and
found that phylogenetic group and upriver migration obsta-
cles could be associated with susceptibility for introgression
(Table 4). They were both significant but only accounted for
16% of the residual variance. Although potentially important
for some rivers, these predictors may have a low influence on
a large-scale model if they vary little for most of the popula-
tions.

The association between Obstacle and P(Wild)-residuals
was positive, suggesting that wild salmon populations having
to pass obstacles close to the river mouth are less suscepti-
ble to introgression. The behaviour of escaped farmed salmon
within rivers differs from wild salmon both in spatial distri-
bution and within-river migration (Moe et al., 2016). Farmed
escapees are known to accumulate below migration obstacles,
likely because they lack a “stop signal” in the river that native
salmon may recognize as a home area (Thorstad et al., 1998).
Obstacles in the rivers, such as waterfalls and fish ladders,
appear to prevent escaped farmed salmon from entering the
upper parts (Anon, 2020). Although obstacles in the present
study are pragmatically defined as proportion of anadromous
section above first migration obstacle encountered, an obsta-
cle for an escaped farmed salmon is likely to be very different
between farmed salmon that escaped early and have spent a
long time at sea and newly escaped one. In the River Mal-
selva, northern Norway, fewer escaped farmed salmon have
been observed above compared to below a fish ladder, but
this has not translated into a lower level of introgression in
adult salmon in the upper part of the river (Svenning et al.,
2021). This result is somewhat different from Sylvester et al.
(2018), who found that migratory challenges may restrict the
introgression of escaped farmed salmon in upstream spawn-
ing sites and from Bradbury ez al. (2020) who found that, in a
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model-based approach, waterfalls far down in the river could
play a major role in observed introgression and numbers of es-
capees. The most likely explanation for this difference is that,
even though the functional role of obstacles for the Incidence
index of escaped farmed salmon seems similar in Norwegian
and Newfoundland rivers, the longer history of introgression
by farmed escapees in Norway results in accumulated intro-
gression, which spreads into the whole population and to all
spawning areas in the river.

The TZ between NEA and BS salmon in Norway is very
sharp (Wennevik et al., 2019; Diserud et al., 2020). Wen-
nevik et al. (2019) suggested that local environmental con-
ditions in the TZ, with no obvious barriers to gene flow, are
strong enough to maintain the genetic differentiation between
them. If so, farmed salmon that originate from the NEA group
(Karlsson et al., 2016) should also be less successful in the BS
group, which they are (Table 4). In contrast, phylogenetically
admixed populations from the TZ seem more susceptible to
introgression, after escapee incidence has been accounted for.
Populations from the BS group have been demonstrated to mi-
grate further east in the ocean than populations from the NEA
group (Rikardsen et al., 2021), and the two phylogenetic lin-
eages could, thereby, differ in ecology (Kjerner-Semb et al.,
2016). This is supported by the finding that the marine life
history changes more, or differently, with introgression in BS
salmon than it does in NEA salmon (Bolstad et al., 2017).

The higher susceptibility to introgression in the TZ is
harder to explain. However, the small number of population
samples in the TZ means that this result should be interpreted
with caution.

Limits to analysis of predictors

The limited number of factors determining introgression at the
broad national scale, modelled in this study, means that we
might have missed factors that are important in limiting in-
trogression in some specific rivers and populations. This pos-
sibility is supported by the fact that our models show poor
predictive ability for the lower P(wild) levels and the higher
escapee proportion observations (Figure 2).

Some of the unexplained variation might be found in hap-
hazard combinations of river and population specific pre-
dictors, and the magnitude, timing, and type of escapees
(Hamoutene et al., 2018). A considerable, and variable, frac-
tion of the escapees may be immature, affecting river migra-
tion behaviour, catchability, and reproduction. Factors like es-
capee acclimatization (time since escape), timing of spawning
of wild salmon (Lura and Sagrov, 1991b), and spatial distri-
bution of spawning grounds relative to migration obstacles
may have to coincide to determine escaped farmed salmon
spawning success. Aronsen et al. (2020) found that catches
of escaped farmed salmon on the coast and in fjords came
from several escape events over many years, and about half
had one or more winter zones after escape. Madhun et al.
(2017) showed, using fatty acid profiling and genetics, that
escapees from multiple sources and ages entered a river in a
single year. Some of the introgression may come from strayers
from other rivers; Jonsson and Jonsson (2017) found that hy-
brids between wild and farmed salmon had a higher straying
rate than pure wild salmon. In contrast, Skaala et al. (2019)
found no difference in straying rate among offspring types. In
addition to the rivers defined as salmon rivers, there are many
small streams where spawning of salmon occasionally occur
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and in some of these, escaped farmed salmon can be very suc-
cessful and produce many offspring (Pulg er al., 2021) that
may stray to larger rivers.

The regression coefficients are expected to be underesti-
mated due to measurement and sampling uncertainty (Carroll
et al., 2006), so better accuracy for presumed important vari-
ables is expected to improve model predictions. Some poten-
tial predictors were excluded from Table 1 due to limited data
quality and will require more and improved collection efforts
to become applicable, while other variables may be regarded
as proxies for unmeasurable factors, and therefore, only partly
describe the functional relationships. Populations that are ex-
cluded from the model calibration due to missing observations
are on average much smaller than those included, so models
may also be biased towards the situation in larger populations.

Marine protected areas

The protection of wild salmon populations in Norway was
suggested in the Norwegian Official Report (NOU, 1999) to
consist of general measures to protect the most important
wild salmon populations combined with actions in all as-
pects of society that affected wild salmon negatively. The gen-
eral measures were the establishment of 52 National Salmon
Rivers (out of Norway’s c. 450 salmon rivers) and 29 National
Salmon Fjords by the Norwegian parliament in 2006 (Anon.,
2006).

Karlsson et al. (2016) found that when all populations
were given equal weight, average introgression levels were
the same in populations within National Salmon Fjords as
in rivers outside these protection areas. When averages were
weighted with population size, the introgression level was
almost doubled outside the protection areas. The effect of
National Salmon Fjords on introgression, therefore, works
through the major predictor variables listed in Table 1. The
conclusion of a Norwegian report that evaluated National
Salmon Rivers and National Salmon Fjords after 10 years
(Hindar et al., 2018) was that the protective measures taken
by the Norwegian parliament could delay the negative effects
of escaped farmed salmon on wild populations but not pre-
vent them.

In the present model, farming intensity was an important
predictor for proportion of escaped farmed salmon in the
rivers. We found only minor differences in the distribution
of farming intensity between salmon rivers inside and outside
National Salmon Fjords (Figure 3b). This is not surprising as
the 29 National Salmon Fjords vary in area from 16 to 1526
km? (Serra-Llinares et al., 2014). In conclusion, we believe
that in order to further delay introgression into wild salmon
populations, many protected areas should be increased in size,
such that they could sufficiently reduce the number of escaped
farmed salmon in rivers in these areas.
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