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A B S T R A C T   

The objective of this study was to evaluate if the intestinal RTgutGC cell line could be suitable for research on 
dietary ingredients and their function as modulators of inflammation during lipopolysaccharide (LPS) induced 
stress. 

The RTgutGC cells cultured together with RNA from baker’s yeast, reached confluency after 72 h. The cells 
were grown in either compete L-15 (CM) or nutrient deprived L-15 (DM). Then, the RTgutGC cells were exposed 
to LPS or RNA from baker’s yeast, either alone, or in combination, in CM or DM. All cultures were harvested 
following LPS challenge for 48 h and 72 h. 

LPS induced transcription of Interleukin 1β (IL-1β), Interleukin − 8 (IL-8), Toll like receptor 3 (TLR3), inter-
feron regulating factor 3 (irf3), Nuclear factor ĸβ (NFĸβ), one of the multidrug transporters, ABCC2, and 
glutamine synthase 1 (GLS01) in RTgutGC cells at one or both sampling points (48 h and/or 72 h post LPS 
challenge). RNA from baker’s yeast in culture alone, (cultured 120 h and 144 h with RTgutGC cells and harvested 
at the respective LPS sampling points) induced transcription of INF1, TNFα and ticam/trif, not induced by LPS. In 
addition, RNA from baker’s yeast affected IL-1β, TLR3, irf3 and NFĸβ, comparable to the responses triggered by 
LPS. RNA from baker’s yeast alone did not affect ABCC2 or GLS01 transcriptions in this set up. So, LPS and RNA 
from baker’s yeast affects distinct but also common gene transcripts in this intestinal cell line. 

Culturing RTgutGC cells in DM, adding a combination of LPS and RNA from baker’s yeast, reduced IL-1β 
transcription compared to cells grown in CM, 48 h and 72 h post LPS challenge. Also, in RTgutGC cells, grown in 
DM, the LPS induced transcription of ABCC2 declined, measured 48 h post LPS challenge. Possibly indicating that 
optimal transcription of IL-1β and ABBC2 in RTgutGC cells, cultured over time, requires access of adequate 
nutrients under stressful condition. 

RNA from baker’s yeast induced INF1 transcription in the RTgutGC cells, regardless if the medium was 
complete or deprived of nutrients. However, culturing RTgutGC cells in DM enriched with RNA from baker’s 
yeast for a longer period of time (120 h, 144 h), seemed beneficial for INF1 transcription.   

1. Introduction 

The increasing demand for high-quality feed ingredients for aqua-
culture and how these nutrients are affecting the fish intestine and the 
immune cells residing in this channel, can be studied in the recently 
developed RTgutGC cell line from rainbow trout (Oncorhynchus mykiss). 
The RTgutGC cell line origin from the distal portion of the intestine 
isolated from a female rainbow trout and is the only fish derived intes-
tinal epithelial cell line available for in vitro research purposes [1]. The 
RTgutGC cell line is considered as a tool for a broad variety of research 

purposes like ecotoxicology [2]; Minghetti et al. 201,7), inflammation 
[1] and nutrient deprivation [3]. 

Fish intestine interacts with the environment during nutrient intake 
and osmoregulation and possible contaminants in the feed and water. 
Teleostan gut is different from mammalian gut as they lack organized 
lymphoid tissues such as lymph nodes, Peyers’s patches and isolated 
lymphoid follicles. Instead fish intestine has mucosa-associated 
lymphoid tissue called GALT (gastrointestinal lymphoid tissue) 
included in lamina propria and intraepithelial structures [4]. These 
structures produce leukocytes and are important for antigen recognition 
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and local immune responses. In the intestine of rainbow trout the 
presence of two types of B cells, executing phagocytic activity [5], T 
lymphocytes [6–9], dendritic cells co-expressing CD8α and MHCII and 
also executing a high phagocytic activity [10,11] have been demon-
strated. These structures are probably regulators of gut immune toler-
ance [12]. Microorganims are in constant contact with the intestinal 
mucosa, and when harming the mucosa, the underlaying glycocalyx and 
finally the integrity of the epithelium would represent a way for the 
entry of pathogens [13,14]. Research on fish intestines and 
host-microorganism interaction has increased over the years [15–18] 
and a method for GALT leukocyte isolation from salmonid intestine has 
recently been established [10] and refined [18]. It has been demon-
strated that fish intestine can produce a diversity of cytokines upon 
challenge [10,15,18]. 

LPS is the main component of external membrane of gram-negative 
bacteria is recognized by a highly conserved pathogen coded molecu-
lar structures termed pathogen associated molecular patterns (PAMPs). 
The PAMPs are recognized by pattern recognizing receptors (PRRs) and 
are the first line of cellular defense against pathogens. PRRs triggers 
downstream signaling pathways like transcription factors adaptors and 
kinases. There are five major families of PRRs investigated in verte-
brates: the Toll like receptors, (TLRs), retinoic acid inducible gene I (RIG 
I)-like receptors (RLRs), nucleotide-binding oligomerization domain 
(NOD) like receptors (NLRs), C-type lectin receptors (CLRs) and absent 
in melanoma 2 (AIM2)-like receptors (ALRs) [19–21]. There are func-
tional similarities between PRRs in fish and mammals, but there are 
distinct features in some downstream signaling mechanisms [22–24]. 
The presence and type of specific immune cells and PRRs residing in 
RTgutGC intestinal cell line are not well characterized. However, the cell 
line clearly responded towards lipopolysaccharide (LPS) and poly-
inosinic: polycytidylic acid (PIC) stress producing pro and anti -in-
flammatory cytokines and interferons [19,25]. Stimuli exposure also 
affected regulation of intestinal barrier markers [26,27]. 

Polynucleotides found in baker’s yeast RNA can be a dietary source 
of bases, nucleosides and nucleotides. Main dietary sources of nucleo-
tides are nucleoproteins and nucleic acids which are converted to nu-
cleosides and bases which are transported into enterocytes via 
facilitated diffusion and specific Na + dependent carrier mediated 
mechanisms [28]. Nucleotides and their metabolites have received 
attention in recent years as they are active in various physiological 
functions and may be of particular significance for growth and devel-
opment of tissues with rapid turnover, such as cells in the immune 
system and intestinal cells. Poly-ribonucleotides encode genetic infor-
mation, have a role in energy metabolism and signal transduction [29, 
30]. Requirements for nucleotides are by a large part met by endogenous 
metabolic pathways of synthesis and salvage [29,30]. However, in some 
conditions endogenous synthesis of nucleotides is not enough to fulfil 
physiological demands [31,32]. In rodent nucleotide free diets decrease 
cellular and humoral immune responses [33,34] and resistance to bac-
terial and fungal pathogens [35,36]). Dietary nucleotides ingested by 
humans and terrestrial animals has been shown to enhance immune 
responses towards bacterial and viral infections [37–41]. Oral admin-
istration of nucleotide supplementation for fish such as Atlantic salmon 
(Salmo salar) [42,43]) common carp (Cyprinus carpio) [44], Nile tilapia 
(Oreochromis niloticus) [38], turbot (Scophtalmus maximus) [45], and 
rainbow trout [43] has shown beneficial effects on immune functions 
and disease resistance. Also, proliferation of salmonid cell lines was 
stimulated by adding bases, nucleosides and nucleotides to culture 
media [46,47]. [48]; using germ free zebrafish, showed that dietary 
nucleotides directly can stimulate the immunity of zebrafish indepen-
dent of the intestinal microbiota. 

So, functioning as immunostimulants, nucleotides in the shape of 
oligonucleotides, ssRNA from baker’s yeast, imitations of dsRNA virus 
(poly I:C) and synthetic structures from DNA based bacteria and virus 
(CpG-ODN) can be used as ligands for receptors in the immune system. 
In fish different receptors can recognized nucleotides besides the purine 

and pyrimidine receptors. Toll like receptors like TLR3, 7, 8, 9 and 22 
can recognize different structures of nucleotides [49]. 

In the current trial, the effect of RNA from baker’s yeast, with and 
without the presence of the inflammation inducer LPS, were examined 
on the rainbow trout, RTgutGC intestinal cell line. Depriving nutrients 
from the culture media were introduced as an additional stressor in some 
of the cultures. 

2. Materials and methods 

2.1. Fish cell line 

The RTgutGC cell line was isolated from rainbow trout (Onco-
rhynchus mykiss). This cell line origin from the distal portion of the in-
testine, isolated from a female rainbow trout, and is the only fish 
intestinal epithelial cell line available for research purposes [1]. The cell 
line was routinely cultivated as described by Ref. [1]. In short, cells were 
cultured in Leibovitz − 15 medium (L-15) without phenol red 
(21083027, Gibco, Basel, Switzerland) supplemented with 10% fetal 
bovine serum (FBS, F7524, Merck, Darmstadt, Germany), 2% 2 mM 
glutamax™ 100X (Gibco cat # 35056) and 1% Antibiotic Antimycotic 
Solution (A5955, Merck, Darmstadt, Germany). The cells were grown in 
Nunc EasY 75 cm2 flasks (156499, ThermoFisher Scientific) at 19 ◦C, 
and split 1:2 when confluent by 0.25% trypsin in PBS (P10-021100, Pan 
Biotech, Aidenbach, Germany). 

600 000 cells/well were seeded into 6 well plates (CS3506, Corning 
Costar, Arizona, USA) for this experiment. After 24 h, media were 
changed to either complete medium (CM) L15 (L5520, Sigma-Aldrich, 
Buchs, Switzerland) containing 10% FBS (F7524, Merck, Darmstadt, 
Germany), 2% 2 mM glutamax and 1% Antibiotic Antimycotic Solution 
(A5955, Merck, Darmstadt, Germany), or a nutrient deprived (DM) 
version containing 5% FBS (F7524, Merck, Darmstadt, Germany), no 
added glutamax, and 1% Antibiotic Antimycotic Solution (A5955, 
Merck, Darmstadt, Germany). After medium change, some of the cell 
cultures were exposed to 1 mg/mL RNA from baker’s yeast (R6750, 
Sigma-Aldrich, Buchs, Switzerland).The cells reached 90–95% con-
fluency after 72 h, cultured with and without RNA from baker’s yeast, 
and LPS 100 μg/mL (L7018, Merck, Darmstadt, Germany) was added to 
selected wells. Control cultures without addition of RNA from baker’s 
yeast or LPS were included. The cells were harvested 48 h and 72 h 
following LPS challenge. 

2.2. Harvesting for RNA isolation 

RTgutGT cells were homogenized directly in 600 μl RTL-Plus buffer 
(RNeasy ®Plus kit Qiagen) using a syringe and frozen at − 80 ◦C before 
RNA extraction. 

2.3. RNA extraction and conversion into cDNA 

Total RNA was extracted using RNeasy ®Plus kit (Qiagen) according 
to the manufacturer’s instructions, and frozen at − 80 ◦C. The quantity 
and quality of RNA was assessed using the NanoDrop ND-1000 UV 
Spectrophotometer (NanoDropTechnologies, Wilmington, DE, USA) and 
the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, 
USA). RNA integrity was assessed using the RNA 6000 Nano LabChip® 
kit (Agilent Technologies, Palo Alto, CA, USA) following the instructions 
from the supplier. The samples used in this experiment had 260/280 nm 
absorbance ratios of 2.0 ± 0.1 and 260/230 nm ratios of 2.4 ± 0.1 
(mean ± STDEV, n = 24) and RIN-values between 8 and 10 indicating 
RNA samples suitable for RT-qPCR. Reverse transcriptase was used to 
convert the RNA template into the more stable cDNA for use in quan-
titative PCR. A standard curve was made of pooled samples and serial 
dilutions from 500 to 10 ng were run in triplicates into 96 well PCR 
plates (VWR, AB06000). The remaining samples were individually 
diluted and added the RT reaction mix (TaqMan reverse transcription 
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reagents) prepared. A nonamplification control (nac) and a non- 
template control (ntc) were added to the PCR plates. The RT reaction 
was performed with a CFX96™ Thermal Cycler (Bio-RAD system) 
starting with an incubation step for 10 min at 25 ◦C, continuing with RT 
reaction at 48 ◦C for 60 min by using oligo dTprimers (2.5 μM) in 30 μL 
total volume, and finally with 5 min inactivation at 95 ◦C. The PCR 
plates were stored at − 20 ◦C. 

2.4. RT-QPCR 

Gene expression was quantified with qPCR on the Light Cycler 480 
(Roche Applied Sciences, Basel Switzerland). Real Time plates were run 
on qPCR with a CF384™ Real-Time system (Bio-RAD system, C1000 
Touch Thermal Cycler) and the following program: 5 min activation and 
denaturizing step at 95 ◦C followed by 45 cycles of 10s denaturizing step 
at 95 ◦C, 20s annealing step at 60 ◦C and a 30s synthesis step at 72 ◦C, 
followed by a melt curve analysis and cooling to 4 ◦C. The Bio-RAD CFX 
MAESTRO system was used to determine a normalization factor from 
two reference genes and used to calculate mean normalized expression 
for the target genes. The stability of the reference genes was calculated 
by the Bio-RAD system. Elf1 and mucin were the most stable genes in this 
experiment and used as reference genes (Table 1). 

2.5. Statistical analyses 

Gene transcription differences between RTgutGC cells cultured in 
complete L15 medium (cL15), in L-15 medium deprived of nutrients and 
treatment differences under these conditions, were analyzed by Two 
Ways ANOVA, with Tukey’s multiple comparison test (α = 0.05) as 
indicated. GraphPad Prisms version 8.0 software was used. Significant 
differences between CM and DM and between treatments are indicated 
by letters: a∕=b∕= c. Treatment differences compared to respective con-
trols not treated with LPS or RNA from baker’s yeast, are indicated by *. 

3. Results 

At the cell harvesting points, 48 h and 72 h post LPS challenge, RNA 
from baker’s yeast (with or without LPS) had been cultured with 
RTgutGC for 120 h (5 days) and 144 h (6 days) respectively. 

3.1. Transcription of immune related genes (IL-1β, IL-8, INF1, TNFα, 
TLR3) in RTgutGC cells 

Challenging RTgutGC cells with LPS for 72 h induced significantly (p 
= 0.0062) IL-1β transcription above the respective control cultures. RNA 
from baker’s yeast induced IL-1β transcription when measured 48 h (p =
0.0098) and 72 h (p = 0.0467) post LPS challenge. Combining RNA from 
baker’s yeast and LPS, further increased IL-1β transcription 48 h and 72 
h post LPS challenge, but only in RTgutGC cells grown in CM (p < 
0.0001). Interaction p = 0.0002. (Fig. 1A). 

LPS was the only treatment that induced IL-8 transcription in these 
cells, significantly only 72 h (p < 0.0001) post LPS challenge. 
Combining LPS and RNA from baker’s yeast did not increase the LPS 
induced transcription but the responses were significantly different from 
respective controls both at 48 h (p = 0.0001) and 72 h (p = 0.0005) post 
LPS challenge (Fig. 1B). 

RNA from baker’s yeast, with or without the presence of LPS, 
induced INF1 transcription (p < 0.0004) in RTgutGC cells measured 48 
h and 72 h following LPS treatment. RTgutGC cells grown in DM and 
added RNA from baker’s yeast increased INF1 expression 72 h post LPS 
challenge when compared to cells grown in CM (a∕= b, p = 0.0159, b ∕= c, 
p < 0.0001). Interaction p = 0.0020. (Fig. 1C). 

TNFα was transcribed in RTgutGC cells when exposed to RNA from 
baker’s yeast and in the combination RNA from baker’s yeast + LPS 
following 48 h and 72 h post LPS challenge (p < 0.0001) (Fig. 1D). 

TLR3 transcription was induced by LPS or RNA from baker’s yeast, 
and in combination, in RTgutGC cells when measured 48 and 72 h 
following LPS challenge (p < 0.0054) (Fig. 1E). 

3.2. Gene transcription of immune related signaling molecules (irf3, 
Myd88, Nfĸβ, ticam/trif) in RTgutGC cells 

In RTgutGC cells, the interferon regulatory factor, irf3, was equally 
induced by LPS or RNA from baker’s yeast, or in combination, compared 
to the respective controls (p < 0.0004), measured 48 h and 72 h 
following LPS treatment (Fig. 2A). 

RTgutGC cells transcribed Myd88 constitutively, but the transcrip-
tion was not affected by any of the treatments measured at 48 h and 72 h 
post LPS treatments (Fig. 2B). 

RNA from baker’s yeast cultured with or without LPS induced sig-
nificant Nfĸβ transcription in RTgutGC cells when measured 48 h and 
72 h post LPS challenge (p < 0.0155) compared to respective controls. 

Table 1 
Primer sequences.  

Primers Forward Reverse Accesion number 

INF1a CTTGAGCGCAGAATACCTT TCCTCAAACTCAGCATCATC FJ184371.1 
AY788890.1 

GST-π TATTGTGGGCTAATGTGTAAGAT CCCYGAAGAGCTTTGTCG AB026119.1 
ABCC2 CGCTTCCTCAAACACAACGAG GAACTCTAGACGGATGGCCAG NM_001124655 
IL-1β TCCCCATTGAGACTGAAGCC TTGAGACGGAAAGCAGACGA AJ223954.1 
FAS ATGCGTATCCAAGCCCAAA CCCACCAATCCTGGTCATCC BT073300 
GDH TGTCGGTCGATGAGGTGAAA TGGCTCCTCCAAATGGAACA AJ556997 
GLS01 TGGGCCATGTGAAGGTATA ACGCCAAAGTCTTCACACAC AF390021 
IL-8 ATTGAGACGGAAAGCAGAC CTCAGAGTGGCAATGATCTC NM_001140710.2 

NM_001124362.1 
tnfα GTGATGCTGAGTCCGAAAT GTCTCAGTCCACAGTTTHTC AJ277604.2 

AJ401377.1 
TLR3 CTCATCCTCAGCCCTATGT GCTTGAACGGAGAGGTATTC DQ459470.1 
irf3 AAGCTCACTTCAGGGTTTC CAGAAGCGGTTGTGTAAGT NM_001257262.1 

HF565492.1 
Myd88 GATGCCTTCATCTGCTACTG CAAACACACACAGCTTCAAC AJ878918.1 

NM_001124421.1 
nfĸβ CACAGCCAGTTCAGTAACC TTGCCTCCTCTTCTCATCTC [27] 
trif GCTAACCATCTGGCTGAAA CACGGTACACTCTTGGAAAG [27] 
Elf1 TGCCCCTGGACACAGAGATT CCCACACCACCAGCAACAA NM_ 001124339 
mucin TCAACACATTCTCTGACACC GGCAGTTACTGTACCAAGTC [27]  

a Primer pair detects long and short forms of interferons [27]. 
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LPS alone induced significant Nfĸβ expression when measured 72 h post 
LPS challenge (p = 0.0038) (Fig. 2C). 

RNA from baker’s yeast added to RTgutGC cells significantly induced 
ticam/trif transcription when harvested 48 h post LPS challenge. In these 
cells, the general ticam/trif transcription seemed to decline when 
measured 72 h post LPS challenge, but only significantly in control 
cultures (p = 0.0027) (Fig. 2D). 

3.3. Gene transcription of a multidrug transporter (ABCC2), 
detoxification enzyme glutathione transferase (GST-π), glutamate 
dehydrogenase (GDH), fatty acyl synthase (fas) and glutamine synthase 1 
(GLS01) in RTgutGC cells 

Gene transcription of the transporter protein ABCC2 was induced at 
48 h (p < 0.0001) and 72 h (p < 0.0001) after LPS treatments, 
compared to controls at 48 h and 72 h. When the RTgutGC cells were 

cultured in CM, LPS induced transcription of ABCC2 was significantly 
higher than gut cells cultured in DM (a∕= b,p = 0.0038) 48 h post LPS 
treatment. Interaction p = 0.0472. (Fig. 3A). 

GST-π transcription was down-regulated (p = 0.0004) when 
RTgutGC cells were treated with LPS for 48 h (p = 0.0004) compared to 
the respective controls. Reducing L-15 medium of glutamine and less 
FBS seemed to give a general reduction in the transcription of GST, but 
significantly only in control cultures measured at 48 h (a∕= b,p<0.0001) 
and 72 h (a∕= b, p = 0.0098) post LPS challenge. Interaction p = 0.031 
(Fig. 3B). 

Glutamate dehydrogenase (GDH) and fatty acyl synthase (fas) was 
transcribed constitutively and equally in all cultures tested (Fig. 3C and 
Fig. 3D, respectively). 

GLS01 was induced at 48 h (p = 0.0121) and 72 h (p < 0.0001) 
following LPS challenge as compared to control RTgutGC cultures 
(Fig. 3E). 

Fig. 1a. Transcription of immune 
related genes in RTgutGC cells. (A) 
Challenging RTgutGC cells with LPS for 
72 h induced significantly (p = 0.0062) 
IL-1β transcription above respective 
control cultures. RNA from baker’s 
yeast induced IL-1β transcription when 
measured 48 h (p = 0.0098) and 72 h (p 
= 0.0467) post LPS challenge. 
Combining RNA from baker’s yeast and 
LPS further increased IL-1β transcrip-
tion 48 h and 72 h post LPS challenge, 
but only in RTgutGC cells grown in CM 
(p < 0.0001). Interaction, p = 0.0002.   

Fig. 1b. LPS was the only treatment that induced IL-8 transcription in these cells, significantly only 72 h (p < 0.0001) post LPS challenge. Combining LPS and RNA 
from baker’s yeast did not increase the LPS induced transcription but the responses were significantly different from respective controls both at 48 h (p = 0.0001) and 
72 h (p = 0.0005) post LPS challenge. 

E. Holen et al.                                                                                                                                                                                                                                   



Fish and Shellfish Immunology 119 (2021) 397–408

401

4. Discussion 

The lack of cell lines for studying signaling pathways in fish make the 
intestinal cell line a valuable tool. Especially since experiments in whole 
fish are to be avoided due to fish welfare. Signaling pathways cannot be 
evaluated in vivo in a controllable way, which means that too many other 
biological cues influence the results, making it difficult to understand 
the pathways. 

Antigen uptake in the gastrointestinal tract may induce tolerance, 
lead to an immune response or to infections [37,49–52]. 

In this experiment, both RNA from baker’s yeast and LPS induced 
expression of several mRNA transcripts in the RTgutGC cell line. LPS 
stimulated transcription of IL-1β, IL-8, TLR3, NFĸβ, irf3, and the efflux 
transporter ABCC2 and glutamine synthase 1, GLS01. LPS signaling in 
teleost seems to differ from mammals as mammalian TLR4 binding to 
microbial ligand requires MD-2 and CD14 costimulatory molecules [53]. 

Fig. 1c. RNA from baker’s yeast, with or without the presence of LPS, induced INF1 transcription (p < 0.0004) in RTgutGC cells measured 48 h and 72 h following 
LPS treatment. RTgutGC cells grown in DM and supplemented with RNA from baker’s yeast, with or without LPS, increased INF1 expression 72 h post LPS challenge 
when compared to cells grown in CM (a ∕= b,p = 0.0159) (b∕=c, p < 0.0001). Interaction p = 0.0020. 

Fig. 1d. TNFα was transcribed in RTgutGC cells when exposed to RNA from baker’s yeast and in the combination RNA from baker’s yeast + LPS following 48 h and 
72 h post LPS challenge (p < 0.0001). 
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MD2 and CD14 are absent from all fish and amphibian genomes exam-
ined to date [54,55]. Interestingly, TLR4 has recently been cloned and 
characterized in several fish species [56–60]. Still, it seems that LPS is 
not recognized by fish TLR4 but may be recognized via other, presently 
unidentified receptors [61]. In mammals LPS activates TLR4 connected 
to MD2 and CD14 and activates myeloid differentiation adaptor mole-
cule, Myd88, which activates MAPK and NFĸβ downstream. Myd88 is a 
key adaptor protein required for signaling through all Toll like receptors 
except Toll like receptor 3 [62,63]. Also, the TIR domain containing 
adaptor inducing interferon β (TRIF) -dependent pathway is initiated 

from TLR4 containing endosomes and results in irf3 activation [64]. In 
fish the signaling pathway starting with LPS binding to its unknown 
ligand and possible adapters has not yet been fully understood. How-
ever, it is well known that LPS can activate Myd88 inducing downstream 
activation of MAPK and NFĸβ. In the present experiment, Myd88 tran-
scription was not activated by LPS although NFĸβ transcription was 
significantly upregulated when measured 48 h and 72 h post LPS chal-
lenge. These observations could be due to the prolonged RTgutGC cell 
culturing and harvesting as LPS challenge for 24 h was reported to 
trigger Myd88 induction in RTgutGC cells [27]. Neither did LPS induce 

Fig. 1e. TLR3 transcription was induced by LPS or RNA from baker’s yeast, and in combination, in RTgutGC cells when measured 48 and 72 h following LPS 
challenge (p < 0.0054). (LPS 72 h had only one suitable value therefore no SD in this particular measurement). 

Fig. 2a. Transcription of immune related signaling molecules in RTgutGC cells. (A) In RTgutGC cells, irf3 was equally induced by LPS or RNA from baker’s yeast, or 
in combination, compared to respective controls (p < 0.0004), measured 48 h and 72 h following LPS treatment. 
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any trif transcription at 48 h and 72 h post LPS challenge, even though 
irf3 transcription was detected at these points. Again, these observations 
may be due to prolonged culturing as control cultures and RNA from 
baker’s yeast exposed cells harvested at 72 h (144 h for baker’s yeast) 
downregulated trif expression compared to the expression at 48 h, 
respectively. Different immune genes have also different “peaks” 
depending on specie, tissue, stimulant and stimulation time. Other 

groups of genes may have different time frames for optimal expression. 
RNA from baker’s yeast did not induce Myd88 transcription but 

triggered transcription of TLR3, NFĸβ, trif, irf3, TNFα and INF1. In 
mammals, viral TLRs (TLRs 3, 7, 8, 9) are located within endosomes and 
recognize viral RNA and DNA, TLR 7/8 sense ssRNA and TLR3 recognize 
dsRNA [65]. However, in zebrafish the modulation of TLR3 gene 
expression was reported following infection with a single stranded virus 

Fig. 2b. RTgutGC cells transcribed Myd88 constitutively, and the transcription was not affected by any of the treatments measured at 48 h and 72 h post 
LPS treatments. 

Fig. 2c. RNA from baker’s yeast cultured with or without LPS induced significant Nfĸβ transcription in RTgutGC cells when measured 48 h and 72 h post LPS 
challenge (p < 0.0155) compared to respective controls. LPS alone induced significant Nfĸβ expression when measured 72 h post LPS challenge (p = 0.0038). 
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(ssRNA hemorrhagic septicemia virus VHSV) [66] and the double 
stranded RNA mimic, Poly I:C, protected Japanese flounder (P.oliva-
ceous) following VHSV infection as reported in Ref. [67]. Suggesting that 
RNA from baker’s yeast may be recognized by TLR3 in this RTgutGC cell 
line and/or possibly to other TLRs [22]. Another option is that the TLR3 
primer pairs used in this experiment could also be designed to recognize 
both single stranded and double stranded RNA. TRIF (TICAM-1) is the 
functional adapter for both TLR3 and TLR4 in mammals [67], and TLR3 
in teleost [68] that may induce NFĸβ, irf3, type1interferons and Myd88 
independent dendritic cell maturation. 

In RTgutGC cell line, only RNA from baker’s yeast triggered 

transcription of TNFα, trif and INF1 and maintained the transcription of 
INF1 during prolonged culturing and when nutrients were depleted in 
the medium. For further studies, RNA from baker’s yeast should be 
examined together with virus or virus mimic to elucidate the presence 
and role of different TLRs in the gut cell line and their role in the anti-
viral response. 

Besides functioning in immune responses against pathogens, cyto-
kines have been suspected to interact with the tight-junction complexes 
by rearrangements, down-regulation or internalization of tight junction 
related proteins. Changes in tight junction have been shown to affect the 
barrier permeability of the intestinal epithelium and often leads to 

Fig. 2d. RNA from baker’s yeast added to RTgutGC cells significantly induced ticam/trif transcription when harvested 48 h post LPS challenge. In these cells, the 
general ticam/trif transcription seemed to decline when measured 72 h post LPS challenge, but only significantly in control cultures (p = 0.0027). 

Fig. 3a. Transcription of transporter 
(ABCC2), detoxification enzyme 
(GST), glutamate dehydrogenase 
(GDH), Fatty acid metabolism 
enzyme (Fas) and glutamine synthase 
1 (GLS01) in RTgutGC cells. (A) Gene 
transcription of the transporter protein 
ABCC2 was induced 48 h (p < 0.0001) 
and 72 h (p < 0.0001) after LPS treat-
ment, compared to controls at 48 h and 
72 h. When the RTgutGC cells were 
cultured in CM, LPS induced transcrip-
tion of ABCC2 was significantly higher 
than gut cells cultured in DM ( a ∕= b, p 
= 0.0038). When harvested 48 h 
following LPS challenge. Interaction p 
= 0.0472.   
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diseased intestinal states [69,70]. Information on the connection be-
tween immune parameters and intestinal barrier in the RTgutGC cell line 
as well in whole fish is scarce. However, the evidence of a functional 
barrier in the trout RTgutGC cell line [71] is emerging. In salmonids, 
whole fish, IL-1β and IL-6 decrease physical barrier tightness while in-
terferons strengthen barrier functionality [72]. The effect of proin-
flammatory cytokines and how RNA from baker’s yeast may modulate 
intestinal barriers functions should be investigated further in this cell 
line. 

Transcription of ABBC2 transporter was induced 48 h and 72 h post 
LPS challenge in the RTgutGC cell line, indicating a function also in 

inflammatory responses. This was not observed challenging the cells 
with RNA form baker’s yeast and LPS together. Probably RNA form 
baker’s yeast inhibited the LPS induced response of this gene. This was 
also observed for the GLS01 transcript. Efflux activities are probably 
mediated by ABBC1-3 [73] and are catalogized as phase three cellular 
detoxification proteins. GST is also a detoxification protein present in 
rainbow trout intestines as GST activity was increased when arsenite III 
was included in the feed. The arsenite III was transported by ABCC and 
was expressed in rainbow trout middle intestine and liver [74]. How-
ever, cell lines, derived from different tissues have often a high consti-
tutively expression of these transporters compared to respective tissues 

Fig. 3b. GST-π transcription was down-regulated (p = 0.0004) when RTgutGC cells were treated with LPS for 48 h (p = 0.0004) compared to respective controls. 
Depriving L-15 medium of glutamine and less FBS seemed to give a general reduction in the transcription of GST π, but significantly only in control cultures measured 
at 48 h (a∕= b, p<0.0001) and 72 h (a∕= b, p = 0.0098) post LPS challenge. Interaction p = 0.0311. 

Fig. 3c. Glutamate dehydrogenase (GDH) was transcribed constitutively and equally in all cultures tested.  
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[75]. The functional significance of these ABC efflux transporters must 
be further addressed particularly before using these cells for toxicolog-
ical studies. 

Previously it was noticed that after seven days of severe depletion of 
nutrient, only L-15 with salts, the RTgutGC cell line still adhered to the 
plastic surface where the cells were grown, indicating that the cell line 
not are particularly sensitive to nutrient depletion [76]. Although the 
cells got wounded, adding complete L-15 to the cells resulted in rapid 
repair. In the present experiment, culturing cells in DM reduced, and 
prolonged culturing with RNA from baker’s yeast did not increase the 
IL-1β transcription. In contrast, culturing RTgutGC cells in DM but in the 

presence of RNA from baker’s yeast for a prolonged period of time (120 
h and 144 h) seemed beneficial for INF1 transcription. Again, suggesting 
that RNA from baker’s yeast may be protective during viral infections. 
The detoxification enzyme, GST, transcription was affected by DM but 
only significantly in control cultures compared to RTgutGC cells 
cultured in CM. This is interesting since the expression of this detoxifi-
cation enzyme seemed to be dependent on optimal nutrition during LPS 
challenge, (which is known to interfere with detoxification signals [77, 
78]. 

Fig. 3d. fas was transcribed constitutively and equally in all cultures tested.  

Fig. 3e. GLS01 was induced 48 h (p = 0.0121) and 72 h (p < 0.0001), following LPS challenge as compared to control RTgutGC cultures.  
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5. Summary 

The results indicate that RNA from baker’s yeast alone affects im-
mune gene expression and can modulate bacterial and viral induced 
inflammatory responses. 

The RTgutGC cell line provides a convenient, control-able and cost- 
effective way to study fish intestinal signaling pathways following in-
testinal cell challenging with dietary poly-ribonucleotides, the inflam-
matory inducer LPS and their interactions. In the RTgutGC cell line, LPS 
is recognized by its yet unknown ligand(s) and RNA from baker’s yeast 
seem to be recognized by TLRs initiating downward signaling through 
MAPK and NFĸβ, irf3 and ticam/trif, regulating the transcription of 
proinflammatory cytokines and markers. 
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