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Anthropogenic climate change is a significant driver of change in marine ecosystems

globally. To improve mechanistic understanding of the impact of climate-related

stressors, experimental work on marine organisms has intensified in recent decades.

A previous synthesis paper published nearly a decade ago established that Marine

Climate Change Experiments (MCCEs) published from 2000–2009 were primarily

laboratory-based and focused on single stressors and individual focal temperate

species. Using consistent methodology, we compared the 2000–2009 analysis to

experiments published in the following decade (i.e. 2010–2019) to assess recent trends

in MCCEs and to determine to what extent knowledge gaps and research priorities

have been addressed. The search returned 854 papers, vs. 110 from the 2000s,

indicating considerable intensification of research effort and output. We found again

that single species studies were most common, particularly with benthic invertebrates

as model organisms, and that laboratory-based research comprised over 90% of all

studies. However, multiple stressor experiments increased substantially, where tests for

interaction effects between ocean acidification (i.e., increased pCO2) and warming were

particularly common. Furthermore, a wider range of model species were studied and

more community-level experiments were conducted in the 2010s compared with the

2000s. In addition, studies on behavioral responses, transgenerational effects, genetic

adaptation and extreme climatic events increased markedly. These recent advances in

MCCEs have undoubtedly improved understanding of how climate change will affect

marine organisms and the communities and ecosystems they underpin. Going forward,

biases in the type and distribution of model organisms should be addressed to enhance

general understanding of responses to environmental change. Similarly, experiments

should manipulate a greater number and range of climate and non-climate factors and

increase the number of target organisms to increase realism. Finally, where possible,

further research should be combined and contextualized with field-based experiments

and observations to better reflect the complexity of marine ecosystems and yield more

representative responses to ocean climate change.
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INTRODUCTION

Anthropogenic climate change is recognized as a serious threat
to natural systems and human societies across the world (IPCC,
2014; Lee et al., 2015; Pecl et al., 2017). Changes to the Earth’s
climate over time have modified properties of the ocean. For
example, the global ocean has absorbed over 90% of the excess
heat generated by atmospheric warming and ∼30% of carbon
dioxide emissions (IPCC, 2013, 2019). To date, burning of fossil
fuels has led to a 0.89◦C increase in the global average sea surface
temperature from 1901–2012, a decrease of 0.1 pH units since
preindustrial era and reduced dissolved oxygen concentrations
(Andrews et al., 2013; IPCC, 2013, 2019). These stressors are
predicted to intensify over this century (IPCC, 2014, 2019) with
major implications for marine ecosystems, including species
range shifts (Perry et al., 2005; Cheung et al., 2009; Last et al.,
2011; Wernberg et al., 2011; Poloczanska et al., 2013), local
extinctions (Parmesan, 2006; Cheung et al., 2009; Smale and
Wernberg, 2013; Wernberg et al., 2016; Thomsen et al., 2019),
biodiversity losses (Sala and Knowlton, 2006; Wernberg et al.,
2013) and disruption to ecosystem structure and functioning
(Sala and Knowlton, 2006; Worm et al., 2006; Doney et al., 2012).

Lowered pH, high temperature, reduced oxygen
concentration and food availability are the four principal
climate change stressors that have affected marine ecosystem
structure and functioning and the adaptive capacity of marine
biota (Duarte, 2014; IPCC, 2014). However, for ecosystems to be
conserved and managed more effectively, a deeper mechanistic
understanding of the impacts of co-occurring stressors have
on organisms and communities is required (Parmesan, 2006;
Benton et al., 2007; Poloczanska et al., 2013). Current evidence
for climate change impacts should be underpinned by scientific
experiments because only experimental approaches can reveal
a cause-effect relationship, of crucial importance to predicting
future changes (Tilman, 1989; Underwood, 1996; Sutherland,
2006).

A literature review by Wernberg et al. (2012) identified 110

Marine Climate Change Experiments (MCCEs) published in
the decade spanning 2000 to 2009. The review revealed that

studies published in this decade demonstrated that manipulated
and controlled climate change test-factors can impact marine

organisms in numerous ways, for example causing increased

mortality (Anestis et al., 2007), increased coral bleaching
(Anthony et al., 2008), decreased calcification rates (Gazeau et al.,
2007), impaired growth and development (Berge et al., 2006,
Arnold et al., 2009) and altered community structure (Dashfield
et al., 2008) and ecosystem functioning (Sommer and Lengfellner,
2008). From 2000 to 2009, there was a steady year-on-year
increase in the number of MCCEs published. The review also
highlighted a marked publication bias toward laboratory-based
experiments, particularly those that examined impacts of a single
climate change variable and a single species at a time, and that
focused primarily on model organisms from temperate climatic
regions. In addition, over 40% of papers had an element of
pseudoreplication or experimental caveat, such as using multiple
aquaria within a single (unreplicated) large tank with elevated
pCO2 (e.g., Dupont et al., 2008) or temperature (e.g., Peck et al.,

2008). The study concluded that progress in five areas were
required to achieve a more holistic, accurate and representative
assessment of how climate change affects individuals, populations
and communities. The five areas proposed were: (i) conduct
experiments on multiple stressors; (ii) examine a wider range of
species to represent more climatic regions and different types
of study organism, (iii) conduct multi-species/community-level
experiments to incorporate ecological interactions; (iv) increase
replication and representativeness of experimental treatments;
and (v) conduct more in situ experiments.

We followed the procedure and analysis of Wernberg et al.
(2012) to examine the most recent decade of MCCEs (2010–
2019) to determine the extent to which the knowledge gaps
identified have been addressed.

METHODS

The methods used in this study were largely consistent with
the initial study (Wernberg et al., 2012) to allow for direct
comparisons between the two time periods. MCCEs were collated
by searching Web of Science, Google Scholar and reference lists
from peer-reviewed papers, limited to studies published from
2010 to 2019. Search terms included combinations of “marine,”
“climate change,” “temperature,” “warming,” “heatwave,” “ocean
acidification,” “CO2,” “carbon dioxide,” “deoxygenation” and
“stressors.” Only papers clearly stating climate change as the
motivation for the study were included. Papers were also included
only if the climate variables were experimentally manipulated in
the field or laboratory. For example, time-series analyses, studies
purely using modeling or natural gradients in the environment
(e.g., volcanic vents) were not examined. The climatic variables
of interest were temperature, pCO2/pH and other climate change
related stressors reasoned by the authors, such as UV, oxygen
concentration and food availability. Papers were also limited
to include only those examining biological responses at the
individual, population or community level, rather than sub-
organismal level or below, in order to focus on response variables
that can be more reliably used to infer ecological relevance.

The details from each study were extracted and papers were
categorized based on key characteristics as in Wernberg et al.
(2012). These were: (i) the type of climate variables that were
manipulated; (ii) the climatic region in which the targeted biota
belonged; (iii) the type of organisms (zooplankton included
only holoplanktonic species, whilst larval stages of benthic
invertebrates and fishes were placed under these categories,
respectively); and (iv) the number of species studied. The year
the paper was published, the main methods, results and whether
the study was laboratory, or field-based was also recorded. In
addition to the study characteristics evaluated in Wernberg et al.
(2012) we conducted a further analysis by categorizing studies
that examined the effects of extreme climatic events (ECEs, like
marine heatwaves), or assessed transgenerational responses (TG,
such as acclimation to future conditions experienced by parental
generation), hereditable genetic adaptation (Adaptation) or
behavioral responses (BR, such as escape responses and food
preferences). These categories were added to our analysis and
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attributes were also extracted retrospectively from the 2000–
2009 papers, because ECEs have emerged as one of the key
manifestations of recent climate change in the past decade
(e.g., Hobday et al., 2016) and TGR, adaptation and BR have
been identified as important aspects of climate change impacts
(Munday et al., 2013; Sunday et al., 2014; Donelson et al.,
2018; Wang and Wang, 2020). For each category, a χ

2 -test
was performed to examine if frequencies differed significantly
between decades or particular characteristic.

RESULTS

During the decade 2010 to 2019, 854 papers describing
MCCEs met the criteria for inclusion this study
(Supplementary Table 1). This was significantly more papers
than the previous decade (χ2

= 574.2, P < 0.0001), with over a
seven-fold increase. A maximum of 130 papers were published
in a single year (2017) compared with 39 published in 2010.
The first decade of the millennia saw a consistent increase in
publications each year from just two papers in 2000 to 37 in
2009 (Wernberg et al., 2012, Figure 1). For the 2010s, although
we found a significant difference in the frequency of studies per
year (Figure 1A, χ2

= 115.7, P < 0.0001), we did not observe a

constant year-on-year increase in publications. Overall, however,
there has been a steady increase in the cumulative number of
MCCE publications through the 2010s, whereas in the 2000s a
sharp increase in publication rate occurred in the latter few years
of the decade (Figure 1).

MCCEs in the 2000s were predominantly single factor

experiments, particularly the experiments that tested for effects of
ocean acidification (Wernberg et al., 2012, Figure 2). During the
2010s, single-factor ocean acidification experiments continued
to be the most prominent studied published with 284 papers
(33.2%). However, studies on the combined effect of elevated
temperature and ocean acidification dramatically increased,
becoming the second-most abundant type ofMCCEs (Figure 2A,
χ
2
= 93.0, P < 0.0001), with 275 papers; i.e., more than the

total amount of MCCE papers published during the previous
decade. This represented more than a 30% increase in the
proportion of studies addressing the interaction between these
two climatic factors (χ2

= 11.7, P < 0.001) (Figure 3). Despite
this increase in number of multifactorial experiments, single
factor experiments that manipulated only temperature or ocean
acidification, still accounted for 44% of studies published between
2010 and 2019. Although MCCEs that manipulated three or
more factors accounted for just∼8% of experiments in the 2010s

FIGURE 1 | (A) Frequency of Marine Climate Change Experiments (MCCEs) published each year of two decades (2000–2009 vs. 2010–2019) and (B) the cumulative

frequency of publications during each past decade.
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FIGURE 2 | Characteristics of Marine Climate Change Experiments (MCCEs) published in two decades (2000–2009 vs. 2010–2019), shown as actual number of

papers in each decade. Studies were classified by (A) the climate variables that was experimentally manipulated, (B) the climatic region of which the study organism(s)

belonged, (C) the type of organism (experiments with multiple types were recorded more than once) and (D) the number of species studied. In panel (A) “Temp” =

temperature, “OA” = ocean acidification, “Oxygen” = deoxygenation experiments. In panel (D) numerals donate number of species/taxa studied, “comm” =

community level experiment (as reported by authors).

(Figure 3), this approach still represented a 14-fold increase from
the previous decade (Figure 2).

Studies using organisms from temperate regions continued to

be the most prevalent during 2010–2019, with 62% of papers
coming from this region (χ2

= 88.7, P < 0.0001), almost

10% higher than the proportion from 2000–2009 (Figure 3).

Numerically however, studies on polar and tropical species
increased with 59 and 237 papers, respectively, compared to

10 and 22 from the 2000s (Figure 2). Furthermore, benthic

invertebrates were, again, themost commonly studied organisms,
with 50% of studies published between 2010–2019 focusing on
this group (Figure 3; χ

2
= 80.0, P < 0.0001). The absolute

number of studies on benthic invertebrates, however, increased
from 80 to 427 between the two decades (Figure 2). Research
on macrophytes and fish also intensified in the 2010s, with a
13 and 30-fold increase in publications, respectively (Figure 2).
The latter comprised 18% of studies, significantly higher than
4.5% in the previous decade (Figure 3; χ

2
= 8.0, P < 0.005).

During the 2010s, single species experiments were again by far
themost prevalent (χ2

= 73.2, P< 0.0001), although the absolute
number of multi-species studies increased more than seven-fold,
compared with the 2010s (Figure 2D). We tallied 47 studies with
a field component, four-times as many compared to the 2000s,
but laboratory-based experiments still accounted for over 90% of

all publications (Supplementary Table 1) a similar proportion to
that of the 2000s.

Most patterns in experimental efforts to understand the effects
of climate change on marine organisms were consistent across
the two decades, however, three types of MCCE not considered
by Wernberg et al. (2012) have become markedly more prevalent
during the 2010s (Figure 4). Specifically, experiments examining
biological responses to extreme climatic events increased from
<1% of papers in the 2000s (1 publication) to 2.7% in the
2010s (23 publications). Similarly, the proportion of studies
that examined transgenerational effects of climate change or
behavioral responses, doubled, to 4% and 12%, respectively, while
the numerical number of papers increased by a factor of 11 and
17 (Figure 4). Furthermore, experiments on the heritability and
genetic adaptation increased from zero papers in the 2010s to 30;
3.5% of the overall studies.

DISCUSSION

Over the last two decades, experimental research on biological
responses to marine climate change has intensified dramatically,
with a near eight-fold increase in publications in the 2010s
compared to the 2000s. In the most recent decade, multiple
stressor experiments proliferated (e.g., Russell et al., 2013;
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FIGURE 3 | Characteristics of Marine Climate Change Experiments (MCCEs) published in two decades (2000–2009 vs. 2010–2019), shown as a percentage of total

research effort in each decade. Studies were classified by (A) the climate variables that was experimentally manipulated, (B) the climatic region of which the study

organism(s) belonged, (C) the type of organism (experiments with multiple types were recorded more than once) and (D) the number of species studied. In panel (A)

“Temp” = temperature, “OA” = ocean acidification, “Oxygen” = deoxygenation experiments. In panel (D) numerals donate number of species/taxa studied, “comm” =

community level experiment (as reported by authors).

Falkenberg et al., 2015; Araújo et al., 2018) and more papers
focused on underrepresented regions and taxa, such as polar
organisms (e.g., Ericson et al., 2012; Kapsenberg and Hofmann,
2014; Spicer and Morley, 2019) and macrophytes (e.g., Andrews
et al., 2014; Burnell et al., 2014; Repolho et al., 2017). Moreover,
studies examining responses across generations, behavioral
responses, and impacts of extreme climatic events have emerged
rapidly since the initial study (e.g., Pistevos et al., 2015; Thor and
Dupont, 2015; Leggat et al., 2019). This progression in the field
of marine climate change ecology reflects the general increase in
awareness of the importance of marine ecosystems (Duarte et al.,
2013; Bennett et al., 2016) and the immediate and significant
threats posed by climate change factors in many regions (e.g.,
Smale et al., 2013; Filbee-Dexter et al., 2019; Wernberg et al.,
2019). Moreover, this study shows that significant advances have
been made to address several of the key knowledge gaps and
limitations identified by Wernberg et al. (2012).

Wernberg et al. (2012) highlighted the need to move toward
MCCEs that manipulate multiple factors. Studies from the
first decade of the millennium focused predominantly on
manipulating one factor, particularly pCO2/pH levels, probably
because this was considered the “novel” and understudied

stressor at the time that was less understood than responses
to elevated temperature (Wernberg et al., 2012). Whilst single-
factor experiments were crucial to develop a mechanistic
understanding of causal relationships, natural systems are
continually exposed to multiple co-occurring human and non-
human induced stressors (Breitburg et al., 1998; Gruber, 2011).
Furthermore, the cumulative effects of two or more factors
can be additive, synergistic or antagonistic, often with varying
responses across different levels of biological organization (Crain
et al., 2008). For example, some evidence suggests that organisms
experience increased sensitivity to ocean acidification when
concurrently exposed to elevated temperatures (Kroeker et al.,
2013). From our literature review, it is clear that research effort
over the last decade has focused more on experiments that
assessed the combined effects of multiple stressors, including
both climate and non-climate related factors (e.g., Burnell et al.,
2013; Al-Janabi et al., 2019; McMahon et al., 2020). Despite this,
single factor ocean acidification experiments, the “novel stressor”
from the 2000s (Wernberg et al., 2012) continued to be prevalent
in the 2010s.

Across the multiple stressor studies, ocean acidification and
warming was the most common combination of test factors,
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FIGURE 4 | The frequency of papers with new Marine Climate Change

Experiments (MCCEs) characteristics not considered in the original study by

Wernberg et al. (2012) in two decades (2000–2009 vs. 2010–2019). Reviewed

papers were grouped into studies that tested for impacts of extreme climatic

events (ECE), assessed transgenerational responses (TG), examined genetic

adaptation (Adapt) or measured behavioral responses (BR).

which is unsurprising given the pervasive and global co-
occurrence of these stressors (Halpern et al., 2015). Other
“additional” stressors included reduced food availability (Cheng
et al., 2018), increased metal contamination (Campbell et al.,
2014), altered grazer presence (Alsterberg et al., 2013) and
deoxygenation (Al-Janabi et al., 2019). Twelve papers focused
on the effects of change in oxygen concentration independently
and a further 19 papers on changes to oxygen levels in
combination with temperature and/or ocean acidification. In
total, 70 papers considered three or more concurrent variables,
for example, temperature, salinity, light and parasite infection
(Brakel et al., 2019), temperature, nutrient level and density
(Brooks and Crowe, 2018) and temperature, acidification, salinity
and food availability (Cole et al., 2016). These studies provided
further evidence that interactions between organisms and their
environment are complex and context-dependent, ranging from
synergistic effects of multiple stressors onmortality (Araújo et al.,
2018) to the amelioration of negative impacts when exposed to
multiple stressors (Sheppard-Brennand et al., 2010, García et al.,
2015).

Consistent with studies undertaken during the 2000s, the
majority of studies published in the most recent decade focused
on organisms from temperate regions, probably because more
marine biological laboratories are located in North America,
Europe and Australasia (Wernberg et al., 2012). Given that
tropical coral reef systems and polar ecosystems may be
particularly susceptible to climate change impacts (Gattusso et al.,
2018), geographical bias toward temperate organisms may limit
the evidence base for global threats to marine ecosystems. For
example, Arctic biota may respond strongly to warming, as
polar species tend to have narrow thermal ranges and have less
opportunities to colonize higher latitudes (Poloczanska et al.,
2016). Indeed, it has been shown that climate change factors
strongly influence the development (Hildebrandt et al., 2014),
growth (Koenker et al., 2018) and survival (Kapsenberg and

Hofmann, 2014) of polar organisms. However, with only 7%
of studies published in the 2010s focusing on polar species,
significant knowledge gaps remain. Similarly, reef-building corals
are increasingly exposed to thermal stress, which can lead to
mass bleaching and mortality (Hughes et al., 2018; Skirving et al.,
2019), and ocean acidification, which can stunt coral growth and
reduce calcification rates (Albright et al., 2018). Consequently,
75% of coral reefs globally may be threatened by climate change
(Burke et al., 2011). Despite the notable increase in experiments
conducted on polar and tropical organisms since 2009, their
vulnerability to climate changes makes it particularly pertinent
to better understand how these species might respond to climate
change, and more research effort is warranted.

Publications from the 2010s were, like the previous decade,
strongly skewed toward experiments conducted on benthic
invertebrates, which comprised 50% of all studies. This is not
surprising because invertebrates represent the most abundant
and diverse animal group and includes reef-building and
habitat-forming corals and their associated biota (Glynn, 1993;
Cesar et al., 2003; Bellwood et al., 2004; Burke et al., 2011).
Moreover, invertebrates are found across all marine habitats
and trophic levels, underpin core ecological processes, can be
highly responsive to climate change, and many are small, have
short life-spans, are accessible to researchers and are therefore
easily amendable to experimentation (Prather et al., 2012). This
focus may not reflect taxa most affected by climate change,
however, as phytoplankton and bony fish are responding most
rapidly to warming (Poloczanska et al., 2013; Montie et al., 2020),
whilst macroalgae are particularly sensitive to climatic changes
(Straub et al., 2019; Smale, 2020). Even so, the 2010s saw a
noticeable increase in the number of experiments performed on
fish, comprising 18% of all studies, while approximately 32% of
papers focused on primary producers.

In recent decades, researchers, conservationists and policy
makers have shifted their attentions in recent decades from
protecting single species to conserving the structure and
functioning of entire ecosystems (McLeod et al., 2005;
Borja, 2014; Link and Browman, 2017). An ecosystem-based
management approach represents a move away from examining
individual mechanistic responses of a single species to a single
stressor, toward understanding the holistic effects of multiple
stressors on many organisms and their functioning within entire
ecosystems (Christensen et al., 1996; McLeod et al., 2005; Curtin
and Prellezo, 2010). Given that climate change stressors strongly
influence intraspecific and interspecific ecological interactions
(Kordas et al., 2011; Nagelkerken and Munday, 2016), more
experiments should address effects on multiple species or entire
communities to better understand how climate change impacts
manifest in natural systems. Encouragingly, over six times as
many studies from 2010–2019 involved experiments conducted
on three or more organisms compared with 2000–2009. The
dramatic increase in the number of studies involving multiple
stressors and multiple species over the past couple of decades
represents significant progress.

Despite the progress acknowledged thus far toward filling
the knowledge gaps addressed by Wernberg et al. (2012),
the proportion of studies involving field-based manipulative
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experiments has remained low and relatively constant, even if the
number of studies more than doubled between the two decades.
The advantage of laboratory experiments (including mesocosms)
is that they provide a controlled environment, allowing one or
more variables to be manipulated at a time, and thereby clearly
demonstrating causal relationships. On the other hand, the
simplicity and artificiality of some laboratory-based experiments
limits their relevance to natural systems that operate at vastly
different spatiotemporal scales (Carpenter, 1996; Stewart et al.,
2013). Additionally, laboratory-basedmanipulations of CO2 have
a history of inadequate replication (Cornwall and Hurd, 2016).
Marine ecosystems are spatiotemporally dynamic, heterogeneous
and complex, and only in situ experiments have the ability to
fully capture this variability and test how climate change factors
may affect a range of interactions between organisms and their
environment, thereby obtaining more representative results and,
ultimately, developing more realistic predictions. During the
2010s, heated settlement panels have been deployed to study in
situ community responses to warming (Smale and Wernberg,
2012; Ashton et al., 2017; Smale et al., 2017; Clark et al., 2019),
and Free Ocean Carbon Enrichment (FOCE) have tested for
impacts of carbon dioxide on entire benthic communities (Barry
et al., 2014; Cox et al., 2016; Albright et al., 2018; Kline et al.,
2019). Even so, these approaches have major limitations, mostly
pertaining to the spatiotemporal scales over which treatments
can be applied, and issues with achieving adequate and true
levels of replication. Clearly, manipulating climate change factors
such as temperature and pCO2 in the marine environment is
both logistically and conceptually challenging, more so than for
terrestrial ecosystems (Arft et al., 1999; Hobbie et al., 2003), but
progress in this area will undoubtedly broaden the inference
space of MCCEs.

In addition to the temporal changes in research effort related
to the categories of MCCEs examined by Wernberg et al.
(2012), recent trends in other types of MCCEs are noteworthy.
First, there has been a marked increase in the number of
MCCEs framed within the context of extreme climatic events
as drivers of ecological change. Extreme climatic events, such
as marine heatwaves (Hobday et al., 2018), have intensified in
recent decades (Coumou and Rahmstorf, 2012; Oliver et al.,
2018), and are emerging as forceful agents of disturbance in
marine ecosystems (Babcock et al., 2019; Smale et al., 2019).
Appropriately, the number of experimental studies addressing
marine heatwaves and their impacts has increased over the
years with 23 papers examining the effect of acute, extreme
warming on marine biota from 2010–2019, compared to only
one from the previous decade (Ehlers et al., 2008). Second,
the number of transgenerational experiments, which primarily
tested if offspring can adapt and acclimate to climate changes if
their parents are exposed to stress, increased more than 11-fold
between the two decades. Transgenerational experiments from
the most recent decade have demonstrated that exposure over
generations can reduce the negative effects to ocean warming
and acidification on offspring, for example by restoring aerobic
scope (Donelson et al., 2016), body size (McMahon et al., 2020)
and alter sex ratios (Donelson and Munday, 2015). However,
transgenerational responses to climate change have also shown
to be negligible (Uthicke et al., 2013) or negative (Welch et al.,

2014; Griffith and Gobler, 2017; de Bettignies et al., 2018),
demonstrating that these effects can be very complex and difficult
to predict. Third, which partially overlaps with transgenerational
effects, is the potential role of genetic adaptation in responses to
marine climate change. Experiments from this decade revealed
that there may be some potential for adaptation (Welch and
Munday, 2017; Jury et al., 2019; Munday et al., 2019), although
trade-offs are likely (Kelly et al., 2016). Experimental testing of
evolutionary processes onmarine organisms has been historically
limited, due to methodological limitations and a lack of model
organisms (Munday et al., 2013). However, we returned 30
publications examining genetic adaptation in response to marine
climate change factors, indicating significant process in this area.
Moreover, as our study did not include experiments conducted at
the sub-organismal level, the total number of studies published
in this period will be substantially greater. Fourth, the number
of studies on behavioral changes of marine biota to climate
change factors has also risen. The first decade of the millennium
predominantly examined ecophysiological responses, with just
six out of the 110 papers examining behavioral changes. The
following decade, however, 17 times as many papers tested
effects of climate change on behavioral traits, including auditory
(Simpson et al., 2011), learning (Vila Pouca et al., 2019) and
foraging behavior (Wu et al., 2017). These types of studies are
critical because they have documented that behavioral responses
to climatic changes can have cascading effects and lead to further
detrimental impact on survivorship, ecological interactions and,
ultimately, community structure.

It is now well-established that marine organisms are
increasingly exposed to warming, extreme events, ocean
acidification, and decreased oxygen levels related to
anthropogenic greenhouse gas emissions (IPCC, 2014). Two
decades of experimental studies have dramatically increased our
mechanistic understanding of processes and causal relationships
between climate change factors and the responses of marine
organisms. This mechanistic understanding is necessary to
improve predictions of responses and how to best manage local
biota into the future. During the 2010s, significant progress was
made in the sub-discipline of marine climate change ecology,
particularly by expanding multiple stressor and multiple species
experiments, and by testing for impacts on a much wider range
or study organisms, which have increased realism and broadened
the generality of the findings.

However, our synthesis has highlighted knowledge gaps and
challenges for the coming decade, which can be summarized
through the following recommendations: (1) strong biases in
publication effort remain, such as a prevalence of studies
conducted on temperate benthic invertebrates, which should be
addressed to widen the inference space and generality of findings.
(2) Despite significant progress, the majority of experiments
manipulated one or two variables and examined the response
of a single species in isolation. Given that contemporary global
change encapsulates a number of concurrent stressors and that
communities and ecosystems are strongly influenced by species
interactions, further experimental work should seek to increase
realism through greater numbers of co-occurring stressors
and species. (3) Although logistically challenging, field-based
manipulative studies performed in marine environments lag
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way behind those conducted in the terrestrial realm; innovative
experimental approaches performed under realistic conditions
will reduce artificiality and caveats relating to experimental
venue and choice of model organism. (4) Where possible,
results of MCCEs should be combined with supplementary
approaches, such as time-series data analysis, control-impact
studies, and field observations or experiments conducted
along natural environmental gradients (e.g., space-for-time
substitutions across latitude). Such a multi-pronged approach
will improve understanding of how multiple concurrent climate
change stressors impact upon organisms, populations and
communities, so that more effective conservation, management
and adaptation measures can be developed and implemented.
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