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This paper explores the possibility of using the ensemble modelling paradigm to fully capture assessment uncertainty and improve the robust-
ness of advice provision. We identify and discuss advantages and challenges of ensemble modelling approaches in the context of scientific ad-
vice. There are uncertainties associated with every phase in the stock assessment process: data collection, assessment model choice, model
assumptions, interpretation of risk, up to the implementation of management advice. Additionally, the dynamics of fish populations are com-
plex, and our incomplete understanding of those dynamics and limited observations of important mechanisms, necessitate that models are
simpler than nature. The aim is for the model to capture enough of the dynamics to accurately estimate trends and abundance, and provide
the basis for robust advice about sustainable harvests. The status quo approach to assessment modelling has been to identify the “best” model
and generate advice from that model, mostly ignoring advice from other model configurations regardless of how closely they performed rela-
tive to the chosen model. We discuss and make suggestions about the utility of ensemble models, including revisions to the formal process of
providing advice to management bodies, and recommend further research to evaluate potential gains in modelling and advice performance.
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Introduction

Providing scientific advice to fisheries managers is a risky activity!
It is not uncommon that a model that has been performing well
suddenly fails to properly fit an additional year of data, or projec-
tions made in the past did not materialize when more recent
observations became available. Fisheries scientists have to deal
with a complex system, with many unknown or poorly under-
stood processes and limited information. The emergence or in-
creased importance of previously unmodelled processes, changes
in processes that are assumed constant, conflicting information
and data revisions, all have the insidious tendency to ruin what
had been a perfectly acceptable assessment fit, invalidating advice
and weakening confidence in future advice efforts.

The North Sea cod stock is a good example of assessment in-
stability due to new data and changed model configurations. The
2015 benchmark meeting, after a thorough exploration of various
model configurations and two different models, agreed on a sin-
gle model (ICES, 2015a). The model fit showed moderate differ-
ences with the previous assessment and slight changes in PA and
MSY reference points, but significant changes in limit reference
points. The assessment subsequently carried out in 2015 (ICES,
2015b), with the new model configuration and updated data,
doubled previous biomass estimates. For example, SSB estimates
for 2014 were revised from 68.5 tonnes in the 2014 advice (ICES,
2014), to 124.7 tonnes in the 2015 advice (ICES, 2015b). Two
years later, the 2017 assessment (ICES, 2017) revised the SSB esti-
mates again, reducing recent values by about 20%, e.g. SSB esti-
mates for 2016 were revised from 161.1 tonnes estimated in the
2016 assessment (ICES, 2016), to 133.4 tonnes estimated in the
2017 assessment (ICES, 2017). These revisions propagated
through estimates of reference points, the perception of stock sta-
tus, and catch advice, most likely impacting fishing opportunities
for the industry as well. Worst of all, the EU management plan
for cod was paused based on the new perception of stock status,
only for a few years later having fishing mortality above the limit
reference point and biomass approaching historical low levels
(ICES, 2020). Needless to say, this instability and lack of robust-
ness in the scientific advice for a major iconic stock, with large
sums invested in studying the stock and fisheries dynamics, may
have a major negative impact on the reputation of ICES and sci-
entific advice in general.

Unfortunately, the tools currently used for advice are sensitive
to alternative representations of the system, model assumptions
and new data. To deal with the potential lack of robustness of
fisheries advice, we suggest to expand the assessment modelling
basis integrating across multiple sources of uncertainty with en-
semble models. This paper presents the authors’ ruminations
about how ensemble models can be used to improve scientific ad-
vice, making it more robust to changes in data or system drivers,
while still maintaining operational feasibility. No conclusive solu-
tion is provided here! We offer suggestions and speculations that
will hopefully raise awareness about ensemble models and foster
the creativity and interest of our fellow scientists.

Ensemble models are a class of methods that combine several
individual models’ predictions into quantities of interest (Qol)
integrating across all models in the ensemble set. The same way
an ecosystem is more resilient to changes if its diversity is high
(e.g. Chapin et al, 2000; Folke et al., 2004), we are of the opinion
that scientific advice could also be more robust if it incorporates
results from more than one model (e.g. Anderson et al., 2017).
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Furthermore, in the case of substantial assessment or forecast
model uncertainty, building multiple models to better explain
and predict the target system seems a logical approach.

The ensemble model approach has been widely adopted in
other scientific fields like weather and climate science (e.g. see
Gneiting and Raftery, 2005; Tebaldi and Knutti, 2007; Semenov
and Stratonovitch, 2010; Chandler, 2013; Bauer et al, 2015),
econometrics (e.g. see Bates and Granger, 1969; Clemen and
Winkler, 1986; Wright, 2009; Cuaresma, 2010; Chakraborty and
Joseph, 2017), medicine (e.g. see Mubhlestein et al, 2018;
Caballero-Alfonso et al, 2019), and geology (e.g. see Gulden
et al., 2008; Wellmann et al., 2010).

In fisheries science, a fairly large portfolio of work using en-
semble models has been published in the peer-reviewed literature.
These papers use a variety of techniques, including simple arith-
metic averages, Bayes factors, cross-validation, and machine-
learning. Furthermore, the applications span models dealing with
single-species, multi-species, and ecosystems.

Among single-species applications of ensemble modelling,
Brodziak and Legault (2005) and Brodziak and Piner (2010) eval-
uated reference points, stock status, and rebuilding targets for
commercially harvested finfish. Brandon and Wade (2006) ex-
plored model structure and the presence of density dependence
for Bowhead whales, Balaena mysticetus. Bayes factors were used
to construct model averaged results for the ensemble of models
considered in these three studies. For Pacific halibut, Hippoglossus
stenolepis, Stewart and Martell (2015) looked at the impact of
three different weighting schemes (including equal weighting) on
the statistical distribution of management quantities, while
Stewart and Hicks (2018) explored the behaviour of model
ensembles when additional data are added (equal weights were
applied to the models in the ensemble). Scott et al. (2016) ex-
plored a range of uncertainties in model structure and biological
processes for a single species using generalized cross-validation to
weight individual models. Of these single-species studies, only
Brandon and Wade (2006) and Stewart and Martell (2015) were
used to inform managers, while the other studies focused on
demonstrating a particular approach.

Tanelli et al. (2016) considered both single- and multi-species
models, exploring temperature relationships and future climate
scenarios. Due to differences in statistical weighting and the de-
gree of data aggregation within the models, ensemble results were
calculated as a simple arithmetic average of individual models.
This study was illustrative rather than directly used to inform
managers.

In the context of multi-species models, Thorpe et al. (2015)
compared ensemble averages for reference points and response to
management action for single species and multi-species commu-
nities. Spence et al. (2018) made projections from five different
ecosystem models assuming no fishing, treating the component
models as exchangeable units in a hierarchical analysis. This
analysis decomposed Qols into discrepancies between the ensem-
ble estimate and the quantity being fit, and discrepancies between
each component model and the ensemble estimate. Neither of
these studies directly informed management advice.

Another type of ensemble models, “super-ensembles”, have re-
cently received attention in fisheries. Super-ensembles refer to a
technique where the ensemble is built by modelling the predic-
tions of the ensemble components, which may include co-variates
that were not present in any of the models. Anderson et al. (2017)
and Rosenberg et al. (2014) fitted data-limited models to data
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from hundreds of global fisheries. Super-ensembles were first
formed by fitting the data-limited models to simulated data, and
estimating a statistical relationship between the model predictions
and simulated values. The data-limited models were then fit to
empirical data, and the previously fitted statistical model was
used to create super-ensemble results from the data-limited
model fits. These studies did not inform management, but rather
they explored the super-ensemble approach and compared results
with existing studies on the same datasets (Rosenberg et al,
2014), or compared ensemble results with those from individual
models in the ensemble (Anderson et al., 2017).

The studies mentioned highlight both the interest and the abil-
ity to apply ensemble modelling approaches in fisheries science.
However, it also highlights the limited current use of ensemble
models to provide management advice. The standard process to
provide scientific advice is still strongly grounded in selecting a
single stock assessment framework, and a single configuration,
from a set of competing candidate models and configurations.

The following sections will explore methodological issues
(Ensemble models: methods and applications section) and discuss
the utilization of ensembles (Discussion section) in support of
stock assessment and provision of advice to fisheries managers
and policy makers.

Ensemble models: methods and applications
Ensemble models combine predictions of a set of models into
unified Qols, integrating across model structures and associated
uncertainties. In order to develop ensemble models, two impor-
tant subjects need to be explored (i) which models are included
in the ensemble, the ensemble members, and (ii) which method is
used to combine models’ outcomes and estimate Qols, potentially
including a decision about weighting metrics. On the other hand,
the objective of the analysis will dictate the data characteristics of
the Qols and their application for scientific advice. The following
sub-sections will describe limitations and potential solutions re-
lated with the ensemble composition, review a variety of methods
and metrics to combine models’ results, and describe ensemble
model data products and applications.

Ensemble composition

A major crux of ensemble modelling relates to the ensemble com-
position and the decision of which models should be included in
the ensemble, the ensemble members. Including models that are
too similar may end up over-weighting a particular outcome.
Whereas including very different models may generate results
without any overlap in the solution space, leading to multimodal
outcomes. Both cases would fail to provide a balanced representa-
tion of structural uncertainty.

Addressing this central issue involves identifying the core fac-
tors that affect the fisheries system. In particular, if ensembles are
used to integrate across structural uncertainty, one should try to
capture the several possible, although not necessarily equally
likely, working hypotheses about alternative states of nature
(Chamberlin, 1965). We refer to this theoretical set of models as
the model space, a complete and continuous representation of
the system dynamics by models with different structures.

Acknowledging that fisheries systems are too complex to be de-
scribed by a single model (Chatfield, 1995; Draper, 1995; Tebaldi
and Knutti, 2007; Millar et al., 2015; Stewart and Martell, 2015),
ensemble members may be chosen by their capacity to model
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different parts of the system and thus capture structural uncer-
tainty. Model structure may refer to assumed functional form of
biological or fishery processes, model complexity or observation
equations that attempt to deal with uncertainty about data. The
ensemble members should be complementary and ensemble
methods should integrate across distinct representations of the
system to estimate Qols, hopefully covering the most important
processes.

In contrast to structural uncertainty, ensemble members may
be chosen to deal with parametric uncertainty assuming different
fixed values of an uncertain model parameter, such as natural
mortality, to test the effect on Qols. In such a case, the ensemble
model integrates over the distribution of parameter values that
were deemed plausible. This type of sensitivity analyses (Palmer
et al., 2005), which may be used to test the robustness of model
results to parametric assumptions, is referred to as “perturbated-
parameter ensemble” by Flato et al. (2013).

Finally, to integrate across uncertainty related with initial con-
ditions, ensemble members may be chosen to reflect multiple
starting points, e.g. different initial year (e.g. Stewart and Martell,
2015) or fishing history. A well-known case is weather forecasting
where ensembles are built to deal with the chaotic tendency of
weather dynamics and uncertainty in initial conditions (Palmer
et al., 2005; Tebaldi and Knutti, 2007).

Understanding that structural uncertainty has a major impact
in the ensemble outcomes forces the analysts to rethink their ap-
proach to model building. Instead of choosing the “best model”
at the end of the model selection process, ensemble modelling
requires a full range of models to be defined at the beginning of
the modelling process. Figure 1 depicts simplified workflows of
model selection and ensemble modelling. The differences between
the two processes do not seem too extreme, although ensemble
modelling will require much more emphasis on choosing models,
metrics, methods, and Qols than a conventional selection pro-
cess, where models are discarded until the best one emerges.

Draper (1995) recognized the impossibility of identifying en-
semble members, which fully cover the model space. The author
suggested that instead of including every possible model only a
set of plausible models needs to be identified. The author pro-
posed a process of model expansion that extends an initial single
model to include structural uncertainties expected to have non-
zero probability of representing the true system. This model set
would be sub-optimal, although if built in a standardized process
could constitute the reference set to integrate structural
uncertainty.

Operationally, the identification of plausible sets of ensemble
models could be generalized to apply to many stocks or could be
developed individually for each stock as part of specific Terms of
Reference for the assessment work plan. Experience with either
option will provide valuable feedback for improving the identifi-
cation of ensemble model members in future applications.

Methods and metrics

There are several methods that can be used to combine models’
outcomes and estimate Qols. The most common way to compute
ensembles’ estimates is to use some version of model weighting
(Raftery et al., 2005; Dormann et al., 2018) and an analytical or
resampling approach. For example, in the former case, a weighted
average could be used to estimate a Qol, while for the latter the
weights could be transformed into probabilities to draw
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(a) Model Selection

Model 1 x0
Model 2 x 1 } = Advice
Model i x0

E. Jardim et al.

(b) Ensemble modeling

\
Model 1 x W,
Model 2 xW, )} Advice
Model i xW

/

Figure 1. Simplified conceptual workflow comparison between conventional model selection (a) and ensemble modelling (b) in the context
of stock assessment and advice provision. In the case of model selection (a), candidate models are analysed to find the “best” (weight set to
one), which is then used for advice, while all the other models are discarded (weights set to zero). For ensemble modelling (b), all candidate
models are kept and combined (curly bracket) using probabilities or weights (W;). The greenish square represents an Expert Working Group,
which lays the ground for advice. The blue arrow represents the advisory process, which tends to differ across constituency.

resamples from each model and build the Qol empirical distribu-
tion. More sophisticated methods can be designed, though. In the
machine-learning community, methods like boosting, bagging
and stacking are commonly used (Breiman, 1996; Dietterich,
2000; Hastie et al., 2001; Schapire and Freund, 2012; Yao et al,
2018). These methods are mostly related with regression and clas-
sification analysis, which are of limited value for stock assessment
and forecasting. Furthermore, super-ensembles provide a promis-
ing methodology where models’ weights are obtained through
modelling the outcomes of each member using, e.g. linear models
in a supervised learning framework (Anderson et al., 2017).

In their comprehensive review of model averaging in ecology,
Dormann et al. (2018) describe three approaches to set model
weights: Bayesian, information theory based, and tactical. Each of
these approaches differs in their assumptions, data requirements,
treatment of individual candidate models, and numerical
algorithms.

Bayesian approaches build model weights based on the poste-
rior model probabilities of each model. A Bayesian ensemble pre-
diction of a Qol can be calculated as the weighted average of
individual model predictions by posterior model probabilities
(Dormann et al, 2018). An alternative, simplified Bayesian
ensembles, can be built using the Bayesian information criterion
approximation to Bayes factors (Kass and Raftery, 1995; Brodziak
and Legault, 2005; Aho et al., 2014).

Information theory metrics are based on statistics that reflect
the information content of the model, like the Akaike informa-
tion criterion (AIC; Burnham and Anderson, 2002) or some de-
rivative of it. A disadvantage of information theory metrics is the
potential to over-penalize models in the ensemble (for the AIC
differences of more than four AIC points; Burnham and
Anderson, 2002), resulting in all the weight being given to one or
very few models. A restriction to using information theory met-
rics is that the data must be the same (Burnham and Anderson,
2002). In assessment models, this restriction would also extend to
the data weighting that is sometimes specified, i.e. scores between
models would not be comparable if different data weights are as-
sumed in each model.

Tactical weights are based on the models’ capability of fore-
casting or predicting Qols. Historical performance of each model,
hindcasts, cross-validation, experts’ opinions, or a mix of several
of the aforementioned methods can be used to compute these

metrics. The idea is to capture a model feature that is relevant for
the analysis’ objective. For example, if the ensemble is used to
forecast, then using each members’ forecast skills seems intuitive.
An advantage of this approach is that one could relax the restric-
tions for information theory metrics and potentially extend tacti-
cal metrics to encompass several modelling approaches.

Otherwise, assigning equal weights avoids the decision about
the weighting type, although it may simply shift the focus to deci-
sions about ensemble’s composition. Assuming all models are
equally likely representations of the natural system is probably
unrealistic and equal weighting of an unlikely model could de-
grade the ensemble performance.

To address the possibility that models portraying the same or
similar states of nature are over-represented in the ensemble, a
model clustering two-step combination procedure could be used
to build model weights and mitigate the impact of correlated
models in the ensemble’s composition. This is similar to what
Burnham and Anderson (2002) did to deal with model redun-
dancy. Distinct model groups were given equal prior weights
which were then shared equally among redundant models within
a group. A difficulty with these authors approach is that it
requires the analyst to identify the redundant models a priori,
which is usually not possible in fisheries science. Our suggestion
is to use a post hoc clustering procedure. In both cases, there will
be difficulties associated with the fact that the several Qols these
models produce may cluster in different ways.

An open issue related to model weights is how to take into ac-
count the historical performance of metrics. A metric could be
designed to vary along the period included in the analysis, e.g. it
may have time blocks with different values. Such approach is not
referred to in the literature, although it may be interesting to ex-
plore, considering how regime shifts or changes in fleet behaviour
affect the historical performance of individual models.

Applications

Ensemble modelling can generate several Qols, which provide di-
verse insights into the dynamics of stocks and fisheries.
Consequently several applications can be foreseen in the context
of scientific advice to fisheries managers and policy makers.
Nevertheless, it is important to bear in mind that Qols have cer-
tain numerical characteristics, which will determine both the
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complexity of their estimation and utility for applications. A sin-
gle variable and its statistical distribution are a lot simpler to
compute than a full matrix of population abundance and the
complex multi-variate distribution associated with it. On the
other hand, the utility of both cases is also very different, with
the former limiting much more the analysis than the latter.

In our opinion, the most promising applications for scientific
advice are estimating stock status, setting future fishing opportu-
nities, and building operating models. Estimating stock status,
which requires estimating fishing mortality, biomass, and refer-
ence points, combines multiple stock assessment models’ esti-
mates to derive Qols. Setting future fishing opportunities, which
in the European Union policy most of the times refers to setting
Total Allowable Catches, uses projections of future catches or
fishing effort limits estimated by several models to build an en-
semble estimation of such Qols. In this case, the distinct models
take into account their own estimates of stock dynamics and pre-
defined management options and objectives. Finally, to build op-
erating models, complementary representations of stocks and
fleets’ dynamics by multiple models and approaches can be used
in simulation testing and Management Strategies Evaluation
(MSE) analysis.

In relation to the characteristics of Qols derived from ensem-
ble models, we suggest the following classification regarding their
numerical characteristics, in the ascending order of complexity:

e Univariate: the outcome of the ensemble is a single Qol, e.g.
MSY and its distribution. These can often be derived with ana-
Iytical methods.

e Multivariate: the outcome is a set of Qols, which may be re-
lated with each other, e.g. stock status in the final year of the
model (B/Busy and F/Fysy). It is not usually possible to de-
rive such a distribution analytically; resampling methods will
typically be needed.

e Time series: the ensemble outcome is a time series, e.g. spawn-
ing stock biomass. An analytical solution may be difficult to
derive and using resampling methods may be the best option,
in which case it is important to take into account auto-
correlation.

e Matrix or array: the outcome is a matrix, e.g. population num-
bers at age. An analytical solution may be difficult to derive
and using resampling methods may be the best option, in
which case it is important to take into account within model
correlations across ages and years.

e Full stock and fisheries dynamics: the ensemble is used to build
operating models that require several matrices. In such cases,
metrics that need to have some degree of coherence across
them have to be combined, e.g. abundance in numbers at age
and fishing mortality at age. Analytical solutions are not avail-
able and using resampling methods seem to be the only alter-
native, in which case correlation structures need to be
accounted for, both internal to the variable and across
variables.

The complexity level of the different applications - stock status,
forecast, and operating models - will determine how many of
these Qols will be necessary. To estimate the status of a stock, a
single or bivariate variable may be sufficient. When it comes to
forecasts, a full understanding of the stock exploitation history
and productivity will be necessary, and Qols will be time series of
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projections under certain conditions. In data-rich situations,
forecasts will also use matrices, like population abundance and se-
lectivity by age or length. Obviously, information about the status
of the stock(s), mentioned above, will be needed to set proper
conditions for future fishing opportunities analysis. With regard
to building operating models, all of the previous will be needed
plus several age or length structures of the population, fleet selec-
tivity, population productivity, and, although less common,
socio-economic information. In this case, several correlated ma-
trices will need to be included in the ensemble results.

Discussion

In our opinion, ensemble modelling can be useful in the context
of providing scientific advice to fisheries managers and policy
makers in the following non-mutually exclusive situations: (i) to
include structural uncertainty across different models of the same
system, (ii) to better report scientific uncertainty, and (iii) to in-
tegrate across alternative, and potentially complementary, pro-
cesses or parameterisation. Furthermore, there are three main
applications that can be improved by using ensemble models: (i)
estimate stock status, (ii) forecast future fishing opportunities,
and (iii) build operating models.

Nevertheless, ensemble models are not a panacea. Dormann
et al. (2018) showed situations where use of ensembles improves
the individual models’ predictions and others where it has no ef-
fect or even degrades individual estimates. Stewart and Hicks
(2018) showed that correlation across ensemble members can
jeopardize the ensemble utility in integrating structural
uncertainty.

There are a number of challenges to overcome in order to fully
integrate ensemble models outputs in advice. Some are not differ-
ent to those faced by other methods, like how to frame probabil-
istic outcomes in the advisory context or engage stakeholders.
Communication is a key step if results are to be successfully used
and accepted (Miller et al., 2019), no matter which model is be-
hind those results. Ensemble models should make use of generic
approaches applied elsewhere. However, the added complexity of
multi-model integration may exacerbate those difficulties. A facil-
itating factor would be to fully disclose the analysis algorithm and
provide full replicable results. Although a non-technical audience
of policy makers and other stakeholders may not fully understand
the technical details of the analysis, there will clearly be more con-
fidence in the results if both data and analysis algorithm are fully
disclosed for public scrutiny.

Other challenges are specific to ensemble modelling, like
choosing ensemble members and model weights. On the one
hand, including similar models may overweight a specific model
configuration, not due to their representativeness but to biases in-
troduced in the ensemble’s composition. On the other hand, if
model predictions are correlated, despite all being legitimate rep-
resentations of relevant states of nature, one may end up penaliz-
ing realistic models and possibly biasing results to extreme or
unlikely fits. A potential solution in the context of scientific ad-
vice would be to decide the ensembles’ composition and methods
during a benchmark exercise, and keep that setting for a number
of years (see model expansion by Draper, 1995). In addition, a
two-level weighting process, where hypotheses are on the first
level and model skill nested within, would not be too complex to
implement and could create the necessary interest to further de-
velop and refine the methodology, making it more operational
for stock assessment working groups. A number of technicalities

220z Aeniga Lz uo Jasn 1ey2101|qig ‘JejesopalipLaysld AQ 2615 L9/60Z L/v/8./R101e/SWISa01/wo dno olwapeoe//:sdny wolj papeojumoq



1214

could surface, e.g. how to compute reference points from an en-
semble model, or how to provide fishing opportunities advice.
Nevertheless, these issues should not be any different from
approaches taken for other probabilistic models, risk analysis, or
analysis of scenarios.

Notably, the same careful decisions about data inclusion and
justifiable model structure that are taken to arrive at a single best
model should be maintained when deciding on an ensemble’s
members. The ensemble composition should not be treated as a
dumpster for group indecision, nor should non-credible model
structures be included with the hope that the analysis will reject
or severely penalize them. While these decisions can be difficult
or even contentious, they should be confronted at the start of the
ensemble building, and justifications clearly documented. Such
an approach, using benchmark workshops to explore the utility
of ensemble models, could foster collaboration among scientists,
promote transparency, and maintain the objectiveness of the sci-
entific process.

Moving from the current single best model approach to an en-
semble approach is not as big a step as it may seem. Current prac-
tices already require fitting and setting up several models for the
same stock. This practice could be compared to an ensemble
modelling exercise, where one model will have all the weight and
all others have none (Figure 1). For example, the work done
choosing the best model for a stock during a benchmark, or sensi-
tivity analysis carried out to evaluate if the assessment results are
robust to misspecifications of model assumptions, could both be
the starting point of an ensemble modelling exercises. It is not
common to build ensembles from these model trials, taking in-
stead a decision about the "best" model , discarding all the other
candidates and not reporting the uncertainty of the selection pro-
cess itself. It should not be a surprise that often the chosen models
fail to fit properly when new information is added. After all, one
model is just one simplified representation of a very complex sys-
tem among the several possible. Ensemble models would make
use of many models and integrate across the uncertainty of the se-
lection process itself (Chatfield, 1995; Brodziak and Legault,
2005; Raftery et al, 2005; Grueber et al, 2011; Claeskens, 2016)
avoiding overconfidence in results. This would be helpful in sit-
uations where major changes in estimates of stock status, stock
magnitude, and management advice have resulted from data revi-
sions, changes in model assumptions (e.g. natural mortality), or
changes in model structure from one assessment to the next. We
expect an ensemble model framework to be more stable than any
single model and therefore to provide a more robust advice.

The current spectrum of stock assessment methods is very di-
verse. Analytical methods, which require age- or length-based
data, range from virtual population analysis to state-space models
including statistical catch-at-age methods. Data-limited methods
include dozens of alternatives. Such diversity is important to
maintain. Limiting the scientific community to a small set of
models would definitely have a high impact on the resilience and
creativity of scientific advice. Ensembles could be used to inte-
grate across these models provided Qols are in comparable units.
In theory, there is no limitation to the types of models that can be
used in an ensemble. One should be able to combine their results
as long as their outcomes can be transformed into common varia-
bles. In practice though, if models have very different structures it
may be difficult to find a common metric (Kaplan et al., 2018)
imposing limits to the diversity of models that can be included in
an ensemble.

E. Jardim et al.

Further development of general, modular, extensible, well-
tested, and well-documented software systems is required. The
lack of consistency in the output from the plethora of available
stock assessment frameworks is probably one of the main factors
limiting an immediate trial of ensemble models. Although diffi-
culties are inevitable when dealing with real cases, having a com-
mon framework should allow solutions to be discussed and
shared within a large group of people dealing with similar prob-
lems. We therefore emphasize the importance of standardizing
formats of assessment outputs to facilitate collaboration and
model comparisons and make the process of ensemble modelling
more efficient.

Processes to build ensemble models and develop performance
metrics, algorithms, etc., require additional work before they be-
come fully functional for scientific advice. In our opinion, future
studies should explicitly test the process of building the ensemble,
comparing the feasibility of combining outcomes from models of
varying complexity, and exploring the frequency of updating
model weights. Simulation studies like those supporting MSEs
could be useful to test these methods. Operating models based on
theoretical ecology, not a particular stock assessment model fit,
could provide the data generation mechanism to test different
estimators. The estimator is the MSE component that mimics the
stock assessment working group, where pseudo-observations are
transformed into Qols for the advisory process, for example stock
status estimates to feed a harvest control rule (HCR). It can en-
compass anything, from a single data-limited methodology up to
a complex ensemble model, providing the simulation testing
framework required. Best practices on developing MSEs would
need to be followed to avoid the expected optimistic outcomes
that models generate, e.g. using more than one operating model,
testing several sampling mechanisms, adjusting the HCR to the
estimator outcome, etc. (e.g. see Punt et al, 2016).

In our opinion, pursuing these paths of research will provide
tools to improve the robustness and stability of scientific advice
and will promote transparency regarding scientific uncertainty.
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