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ABSTRACT High-quality and comprehensive reference gene catalogs are essential
for metagenomic research. The rather low diversity of samples used to construct
existing catalogs of the mouse gut metagenome limits the numbers of identified
genes in existing catalogs. We therefore established an expanded catalog of genes
in the mouse gut metagenome (EMGC) containing .5.8 million genes by integrating
88 newly sequenced samples, 86 mouse gut-related bacterial genomes, and 3 exist-
ing gene catalogs. EMGC increases the number of nonredundant genes by more
than 1 million genes compared to the so-far most extensive catalog. More than 60%
of the genes in EMGC were assigned to Bacteria, with 54.20% being assigned to a
phylum and 35.33% to a genus, while 30.39% were annotated at the KEGG orthology
level. Nine hundred two metagenomic species (MGS) assigned to 122 taxa are identi-
fied based on the EMGC. The EMGC-based analysis of samples from groups of mice
originating from different animal providers, housing laboratories, and genetic strains
substantiated that diet is a major contributor to differences in composition and func-
tional potential of the gut microbiota irrespective of differences in environment and
genetic background. We envisage that EMGC will serve as a valuable reference data
set for future metagenomic studies in mice.

IMPORTANCE We established an expanded gene catalog of the mouse gut metage-
nome not only to increase the sample size compared to that in existing catalogs but
also to provide a more comprehensive reference data set of the mouse gut micro-
biome for bioinformatic analysis. The expanded gene catalog comprises more than
5.8 million unique genes, as well as a wide range of taxonomic and functional infor-
mation. Particularly, the analysis of metagenomic species with the expanded gene
catalog reveals a great novelty of mouse gut-inhabiting microbial species. We envis-
age that the expanded gene catalog of the mouse gut metagenome will serve as a
valuable bioinformatic resource for future gut metagenomic studies in mice.

KEYWORDS diet, gene catalog, metagenomic species, mouse gut metagenome

Mice are among the most widely used animal models for biomedical studies to de-
cipher the complex interplay between the gut microbiota and host phenotypes

(1–4). Amplicon sequencing of the 16S rRNA gene has been widely used for analyses of
the gut microbiota due to low costs and short analysis cycles. However, the taxonomic
information is, in most cases, limited to the genus level, and amplicon sequencing gen-
erally provides limited information on function (5, 6). A key to the use of mouse models
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for detailed functional analyses of the gut microbiota is the availability of comprehen-
sive catalogs of microbial genes and derived metagenomic species (MGSs)/metage-
nome-assembled genomes (MAGs). The first catalog of genes in the mouse gut micro-
biome included 2.6 million nonredundant genes from fecal samples of 184 mice (7).
Subsequent studies further explored the diversity and functional potential of the
mouse gut microbiota by isolating and sequencing an increasing number of bacterial
strains from the mouse gut (8–11) and establishing a mouse intestinal bacterial collec-
tion (miBC), depositing bacterial strains and associated genomes from the mouse gut
(9). Recently, Lesker et al. generated an integrated mouse gut metagenome catalog
(iMGMC), comprising 4.6 million unique genes and 830 high-quality MAGs, and by link-
ing MAGs to reconstructed 16S rRNA gene sequences, they provided a pipeline ena-
bling improved prediction of functional potentials based on 16S rRNA gene amplicon
sequencing (12).

Here, we constructed an expanded mouse gut metagenome catalog (EMGC) by
integrating 3 published gene catalogs, including the gene catalog of the mouse gut
metagenome (MGGC) released in 2015 comprising 2,571,074 genes (7), a feed and diet
gene catalog for mice (FDGC) (13), the integrated mouse gut metagenome catalog
(iMGMC) (12), 72 available sequenced mouse gut-related bacterial genomes (8–11), 14
high-quality genomes assembled from published sequencing data of isolates (9), and
88 newly shotgun-sequenced samples. Our new nonredundant reference gene catalog
comprises 5,862,027 genes and was annotated by NR (released on 5 January 2019) and
KEGG (release 87) databases (14). Finally, we generated 902 MGSs from the gene abun-
dance profiles for 326 laboratory mice of EMGC and compared these MGSs with the
high-quality MAG collection (12) and the recent collection of bacteria isolated from the
mouse gut (11). By combining these individual data sets, we increased the number of
sequenced bacterial genes of the mouse gut microbiome by more than 1 million and
significantly increased the mapping ratio of reads obtained by shotgun sequencing of
samples from the mouse gut and fecal samples, providing a resource for future studies
on the mouse gut microbiota.

(This article was submitted to an online preprint archive [15].)

RESULTS
Construction and evaluation of EMGC. Fecal samples from 88 C57BL/6J male mice

were sequenced using the BGISEQ-500 platform providing 1,098-Gb high-quality host-
free data with an average of 12.47 Gb per sample (see Table S1A in the supplemental
material) and a catalog comprising 2,602,584 nonredundant genes (PMGC). We next
used 72 mouse gut-related bacterial genomes (8–11) from IMG and NCBI RefSeq and
14 high-quality genomes (completeness .90% and contamination ,5%) assembled
from reads accessible from PRJEB10572 (9) (Table S1B) to generate a mouse gut cul-
tured bacterial gene set (MiCB). All gene catalogs, including MGGC (7) together with
FDGC (13) and iMGMC (12), downloaded from GigaDB and the Zenodo repository
(Table S1C), respectively, were integrated to construct an expanded nonredundant
mouse gut bacterial gene catalog (EMGC) (Fig. 1). The expanded catalog comprises
5,862,027 genes, which is more than twice the number of genes in the MGGC (7) and 1
million genes more than the iMGMC catalog (12) (Table 1). Thus, 18.93% of the genes
in EMGC are not represented in either the iMGMC or MGGC (see Fig. S1).

To compare the performance of EMGC with that of MGGC and iMGMC, we mapped
sequencing reads from the FDGC, MGGC, and PMGC studies to the three catalogs. Of
the sequencing reads from PMGC, which is part of EMGC, 55.72% were mapped to
MGGC and 56.56% to the iMGMC. In contrast, the EMGC allowed mapping of 79.52% of
the reads (Fig. 2A), close to the maximum achievable mapping rate in prokaryotes (16).

A comparison of mapping rates of reads from 326 fecal samples obtained from dif-
ferent mouse strains and providers (Table S1D) to those from EMGC demonstrated that
mice from the laboratory animal center at Sun Yat-Sen University exhibited a lower
mapping rate than samples from the other providers, where the median mapping rates
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were higher than 80% (Fig. 2B). Median mapping rates of reads obtained from all
mouse strains were also higher than 80% (see Fig. S2A). Richness estimated by Chao2
indicated that our EMGC covered 98.24% of the genes in the 326 fecal samples
(Fig. S2B), whereas the incidence-based coverage estimator (ICE) suggested that
97.49% of the genes were covered.

FIG 1 Construction of the EMGC. Metagenomic sequencing data of 88 mouse gut metagenomes
were processed by the pipeline as displayed to generate nonredundant genes for PMGC.
Unassembled strains of miBC (under BioProject PRJEB10572) were assembled and filtered by genome
quality (completeness, .90%; contamination, ,5%) of assembled genomes. Qualified genomes were
used for gene prediction. CDSs from assembled genomes and downloaded genomes were gathered
and clustered to MiCB. PMGC and MiCB along with 3 downloaded gene sets, FDGC, MGGC, and
iMGMC, were merged to generate EMGC.

TABLE 1 General features of gene catalogs

Catalog
Sample
size (n)

Total no.
of ORFsa

Length (bp)

N50 N90Total Avg Max Min
PMGCb 88 2,602,584 1,920,079,578 737.76 120,489 102 981 396
MGGCc 184 2,572,074 1,959,483,705 761.83 120,489 102 1,014 408
FDGCd 54 793,847 585,096,360 737.04 23,610 102 978 396
MiCBe NA 267,801 251,087,538 937.59 79,287 100 1,206 504
iMGMCf 292 4,499,720 3,505,479,714 779.04 120,399 102 1,107 390
EMGCg 434 5,862,027 4,542,473,508 774.90 120,489 100 1,104 393
aORFs, open reading frames.
bPMGC, a sub-mouse gut gene catalog from 88 mouse gut metagenomes.
cMGGC, gene catalog of mouse gut metagenome released in 2015.
dFDGC, feed and diet gene catalog for mice.
eMiCB, mouse intestinal cultured bacteria gene set.
fiMGMC, integrated mouse gut metagenome catalog.
gEMGC, an expanded gene catalog of mouse gut metagenomes.
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To further evaluate the quality of the EMGC, we mapped the metagenomic data
obtained from 40 fecal samples from control mice and mice that had consumed non-
caloric artificial sweeteners (17) and metagenomic data obtained from 34 cecal sam-
ples from control mice and mice treated with prebiotic (18) (Table S1C). For the reads
obtained in the study of Suez et al. (17), 63.07% mapped to the MGGC and 61.04% to
iMGMC, whereas 72.94% mapped to the EMGC (Fig. 2C; Table S1E). For the reads
obtained from the study by Everard et al. (18), 61.99% mapped to MGGC and 60.97%
mapped to iMGMC, but 73.01% of the reads mapped to the EMGC (Fig. 2D; Table S1F).
Together, these results demonstrate a significantly increased mapping rate of reads
using the EMGC as a reference.

Taxonomic and functional characteristics of EMGC. We taxonomically annotated
the genes of EMGC using Kaiju (19) and the NCBI NR database to provide an overview of
the taxonomical composition visualized by a Krona plot (20). This plot revealed that 67%
of the genes were able to be annotated (see Fig. S3). We assigned 54.20% of the genes
to the phylum level and 44.30% of the genes to the family level (see Fig. S4A and B). We
next annotated the genes in the EMGC to the KEGG (release 87) database (14) and identi-
fied 6,704 KEGG functional orthologs (KO) and 290 KEGG pathways (see Fig. S5).

To further examine the quality of the EMGC, we calculated the occurrence fre-
quency and average abundance of the 1,109,381 genes not present in the previous
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MGGC and iMGMC. As shown in Fig. 3A, 40.41% of these genes exhibited an occur-
rence frequency and mean abundance higher than 0.1 and 1028, respectively. We also
extracted taxonomic and functional information of these new genes. Annotation of the
new genes at the species level revealed that the top 5 species could be assigned to
Oscillibacter sp. 1-3, Firmicutes bacterium ASF500, Acetatifactor muris, bacterium
1xD42-67, and Eubacterium plexicaudatum (Fig. 3B), all isolated from the mouse gut
based on information from the NCBI BioSample database. In relation to functions, the
general distribution of KEGG pathways in these additional genes is similar to the over-
all distribution in EMGC (Fig. 3C). We identified 189 KOs in EMGC which are not present
in either MGGC or iMGMC. Furthermore, 42 KEGG pathways are covered by additional
KOs (Table S1G) in EMGC. For 5 KEGG pathways, including lipoarabinomannan (LAM)
biosynthesis, glycosaminoglycan degradation, xylene degradation, neomycin, kanamycin

FIG 3 Description of new genes included in EMGC. (A) Two-dimensional (2D) density histogram showing the distribution of occurrences and mean relative
abundances of new genes. (B) General display of taxonomic composition of new genes by Krona. (C) Frequency of functional pathways associated with the
new genes. (D) Stacked histogram of KO coverage of functional pathways improved in EMGC compared to that in MGGC and iMGMC. Coverage is
calculated as [(annotated KO numbers)/(total KO numbers)] � 100 in a given pathways.
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and gentamicin biosynthesis, and terpenoid backbone biosynthesis, we found that more
than 5% of the additional KOs are only represented in EMGC compared to that in iMGMC
(Fig. 3D; Table S1G).

Changes in the microbiota composition and functional potential. We reported
earlier that the mouse gut metagenome is affected by animal providers and housing
as well as strain and diet (7). To investigate to what extent diet affected the gut meta-
genomes independently of strain and providers, we selected 7 groups (G1 to G7) of
samples from different strains from different providers fed a low-fat (LF) diet or a high-
fat (HF) diet and housed in the same facility (see details in Table S1D). We estimated
the impact of diet on the variation of gut microbiota based on the relative abundance
profiles of genera and KOs using a permutational multivariate analysis of variance
(PERMANOVA). The analyses indicated that diet explained at least 33.9% (P
value = 0.003) of the total variation at the genus level and 47.3% (P value = 0.006) at
the KO level (Fig. 4A; see also Fig. S6A). Compared to that for mice fed an LF diet, mice
fed an HF diet exhibited an increase in alpha diversity at the genus level independent
of housing laboratories, strains, and providers (Fig. 4B). In contrast, at the KO level,
alpha diversity in mice fed an LF diet generally, except for group 7, exhibited an
increased diversity compared to that for mice fed an HF diet (Fig. S6B). Principal-coor-
dinate analysis (PCoA) similarly confirmed that the diet strongly influenced the genus
profile (Fig. 4C) and the KO profile (Fig. S6C).

To further examine diet-induced changes, we examined genera and KOs enriched
in samples from either HF- or LF-diet-fed mice by Wilcoxon rank sum test. As shown in
Fig. 4D, in all 7 groups, the 36 genera found at higher abundance in samples from HF-
diet-fed mice belong to Firmicutes, whereas four genera within the Bacteroidetes phy-
lum and one genus within the Fibrobacteres phylum were found at higher abundance
in samples from LF-diet-fed mice (Fig. 4D; Table S1H). However, whereas 363 KOs were
enriched in LF-diet-fed mice, only 270 KOs were detected at higher abundance in HF-
diet-fed than in LF-diet-fed mice (Table S1I). To investigate which taxa contributed to
the disparate response to LF and HF diet at the taxonomy and the functional levels, we
identified the taxa at the phylum level that contributed to the enrichment of KOs.
Whereas genera within the Bacteroidetes phylum were the main contributor account-
ing for 6.02% of the KOs enriched in LF-diet-fed mice, genera within the Firmicutes phy-
lum accounted for 3.96% of the KOs enriched in HF-diet-fed mice (see Fig. S7).

Construction of metagenomic species. We identified 902 metagenomic species
(MGSs; .700 genes) using the relative gene abundances based on 326 fecal samples
obtained from different mouse strains and providers using MGS canopy clustering
and taxonomic annotation as described previously (21). The 902 MGSs were
assigned to 122 taxa (see Fig. S8; Table S1J). We also generated MGS profiles for the
7 groups of mice fed an LF or an HF diet. The Shannon indices and PCoA plot
revealed a clear effect of diet, independent of mouse strain and provider (see
Fig. S9A and B).

We next compared the 902 MGSs with the 830 high-quality nonredundant MAGs
generated in the iMGMC project (12) and 115 bacterial genomes from the mouse gut
microbial biobank (mGMB) project (11). Five hundred fifty-nine (61.97%) MGSs were
classified as the same species as the MAGs from the iMGMC project (maximal unique
match index [MUMi] value [22–24] .0.54) (Table S1J). As shown in Fig. 5, Firmicutes
and Bacteroides were the most prevalent phyla among all MGSs and MAGs. We also
identified 56 MGSs representing genomes of species from the mGMB project, and of
these, 8 MGSs could be identified as mGMB genomes, but not as MAGs (Table S1J). Of
note, for more than one-third of the MGSs, we were unable to identify corresponding
entities in the MAG collection or in the cultured genomes collection.

DISCUSSION

The EMGC represents the most comprehensive catalog of genes in the mouse gut
microbiome. It covers samples from feces and cecum from different mouse strains fed
different diets, obtained from different providers, and housed in different laboratories.
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The majority of the genes identified in this study were assigned to known species,
which might improve the coverage of known species and the detection of low-abun-
dant taxa. The improvement in KO coverages of a number of pathways will enhance
the functional characterization of the mouse gut microbiota. In addition, the analysis
of samples from different mouse strains from different animal providers and different
housing laboratories confirms the pronounced effect of diets on the taxonomic and
functional composition of the gut microbiota.

In spite of the increased number of genes in EMGC, there are still some limita-
tions. The sample size and variation of sample types in the EMGC are still small. The
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FIG 4 Influence of diet on the composition of the microbiota. (A) PERMANOVA to estimate the influence of diet on the composition of gut metagenomes
among all 7 sample groups. G1, C57BL/6 mice provided by Taconic in Denmark (TDK) and hosted in National Institute of Nutrition and Seafood Research of
Norway (NIFES); G2, Sv129 mice provided by TDK and hosted in NIFES; G3, C57BL/6 mice provided by the Jackson Laboratory in the United States (JUS)
and hosted by Pfizer-I; G4, C57BL/6 mice provided by Taconic in the United States (TUS) and hosted in Pfizer-I; G5, C57BL/6 mice provided by TDK and
hosted in the University of Copenhagen (KU); G6, Sv129 mice provided by TDK and hosted in KU; G7, C57BL/6 mice provided by the laboratory animal
center of Sun Yat-Sen University (SYSU). *, P , 0.05. Shannon index (**, BH-adjusted P , 0.01, Wilcox rank sum test) (B) and PCoA based on genus profile
(C) for 7 groups fed the HF and LF diets. (D) Genera differently enriched (BH-adjusted P , 0.05, Wilcox rank sum test; relative abundance, .1e25) in mice
fed the HF and LF diets among all 7 groups. Genera in light red represent genera enriched in HF-diet-fed mice, while genera in light green represent
genera enriched in LF-diet-fed mice.
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majority of samples included in EMGC were collected from C57BL/6 mice, which
might affect the applicability in studies on other laboratory mouse strains and wild-
caught mice. Many confounding factors in addition to those addressed in the pres-
ent study will most probably impinge on the gut microbiota (1, 3, 4, 25). It therefore
seems important to include more samples from other mouse strains to gain further
insights into the effect of confounding factors, which may lead to pronounced vari-
ability in the mouse gut microbiota, which again might limit the reproducibility of
biomedical research using mouse models (25, 26). Although both culture-inde-
pendent and culture-dependent studies on the mouse gut microbiota have been
carried out to improve the understanding of host-microbe interaction in mouse
models, the majority of the mouse gut metagenome members still remain relatively
uncharacterized (7, 9, 11, 12). Besides, we also noticed the limitations of the con-
struction approach of EMGC. EMGC is based on metagenome assembly and focused
on the gene-level characterization of the mouse gut microbiome. The applications
of protein-level metagenome assembler (27), annotation (28), and binning tools

FIG 5 Phylogenetic tree of the 902 MGSs and 830 high-quality iMGMC MAGs. MUMi distances for MGSs and MAGs were used to construct the
phylogenetic tree using hierarchical clustering. MAGs are shown as red branches and MGSs as gray branches. The outer ring shows the relation between
MGSs and MAGs. MGSs which have a MUMi value of .0.54 are marked as “Ann_MGS” in green blocks, otherwise, in purple blocks. MAGs are all in gray
blocks. Colored blocks in the inner cycle indicate phyla assigned to MGSs and MAGs.
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(12, 29–31) are needed in future studies to enhance our understanding of the com-
position and functions of the mouse gut microbiota.

Even though more and more metagenomic analysis methods are being developed
at an increasing speed, gene catalogs are still necessary resources, not only to provide
reliable and consistent taxonomic annotation but also to reduce the gap between
phylogenetic and functional biases (16, 32). The high-quality reference gene catalog,
EMGC, together with the 902 metagenomic species, is able to support and improve
accurate metagenome-wide association analyses using mouse models, which may
assist in functional characterization of observed correlations between the microbiota
composition and the functional potential in relation to host phenotypes.

MATERIALS ANDMETHODS
Data acquisition. DNA from 88 stool samples of C57BL/6J wild-type male mice, collected from the

laboratory of BGI-Wuhan, was extracted and shotgun sequenced using the BGISEQ-500 platform and
paired-end 100-bp (PE100) sequencing as described previously (33). An optimized sequencing quality fil-
ter for the cPAS-based BGISEQ platform, OAs1 (33), was applied in the quality control step, followed by
host removal with SOAP2 (v2.21, parameters: -m 0 -x 1000 -c 0.9) (34) using GRCm38 (https://www.ncbi
.nlm.nih.gov/assembly/GCF_000001635.20/) as the reference mouse genome. Individual assembly of
metagenomic reads was performed using metaSPAdes v3.14.0 (parameters: -k 49; other parameters
were set to the default) (35, 36).

Genes were predicted by MetaGeneMark (v2.7) (37) from metagenome-assembled contigs with a
length of.500 bp and filtered by length of .100 bp. Redundant predicted genes were removed by CD-
HIT (v4.5.7, parameters: -G 0 -n 8 -aS 0.9 -c 0.95 -d 0 -r 1 -g 1) (38) in order to generate a sub-mouse gut
gene catalog (PMGC).

Raw reads of 43 unassembled bacterial genomes from the miBC (EBI project identifier [ID]
PRJEB10572) were downloaded from EBI and filtered by Trimmomatic (v 0.39) (39). Draft genomes were
assembled separately by SPAdes (-k 29,39,49,69 –careful) (40, 41) and filtered by CheckM (v1.0.13) (42).
After assessment using the criteria of completeness of .90% and contamination of ,5%, the remaining
14 genomes were used for gene prediction by GeneMarkS-2 (v1.07) (43).

A total of 72 genomes, including 24 sequenced strains of miBC (9), 8 genomes of the altered
Schaedler flora (8) (PRJNA175999 to PRJNA176003, PRJNA213740, PRJNA213743), and 40 genomes of
mGMB (11) (released before 26 February 2019, PRJNA486904), as well as their coding sequences (CDSs)
and translated CDSs were all downloaded from the NCBI RefSeq database and the Integrated Microbial
Genomes (IMG) database (44). We gathered CDSs from 86 bacterial genomes and filtered out genes
smaller than 100 bp. We clustered CDSs using CD-HIT (v4.5.7, parameters: -G 0 -n 8 -aS 0.9 -c 0.95 -d 0 -r
1 -g 1) (38), establishing a gene catalog termed mouse intestinal cultured bacteria gene set (MiCB).
Detailed information on the included genomes is provided in Table S1B in the supplemental material.

All public mouse-related microbial metagenomic data sets used in this study are listed in Table S1C,
including (i) 184 host-free sequenced mouse gut microbiomes and the gene catalog of mouse gut meta-
genome (MGGC) (7), (ii) 54 mouse gut microbiomes and the related gene catalog (FDGC) (13), (iii) 830
high-quality dereplicated MAGs and the iMGMC gene catalog (12), (iv) 40 mouse fecal metagenomes
(17), and (v) 34 mouse cecum metagenomes (18).

Construction of EMGC and selection of new genes. All downloaded genes were filtered by length
of .100 bp and integrated to construct the EMGC using CD-HIT (v4.5.7, parameters: -G 0 -n 8 -aS 0.9 -c
0.95 -d 0 -r 1 -g 1) (38). The output of EMGC clusters was analyzed to generate a list for new genes in
EMGC that are not present in iMGMC and MGGC. Metagenomes were mapped to gene catalogs by
SOAP2 (v2.21, parameters: -m 0 -x 1000 -c 0.95) (34). Mapping rates between groups and catalogs were
compared by Wilcoxon rank sum test (R ggpubr package). P values were adjusted by using the
Benjamini-Hochberg method. The profile of relative gene abundances for the 326 laboratory mice (see
Table S1D for an overview of these mice) was calculated based on the method of Qin et al. (45) using
EMGC. Richness estimation by the Chao2 index and incidence-based coverage estimator (ICE) was calcu-
lated based on the gene abundance profiles (16). The occurrence and average abundance of new genes
were calculated using the relative gene abundance profiles.

Taxonomic and functional annotation. Genes predicted from metagenome assemblies were taxo-
nomically annotated by Kaiju (v1.6.3) (19) using the NCBI-NR database (released on 5 January 2019) and
the parameters of the program were set to “-a greedy -e 5 -E 0.01 -v -z 4 -s 65.” For genes from mouse
gut-related bacterial genomes, we kept the original taxonomic information of the genomes and
assigned them to the corresponding genes. All genes were searched against KEGG (version 87) (14) by
DIAMOND blastx mode (v2.0.6.144, parameter: –evalue 0.001) (46) for functional annotation. The filtering
parameters of DIAMOND were set with a query coverage threshold of 80% and a minimum score of 60
(16, 47). The best hits which met the above-described criteria were retained. DIAMOND results were
turned into functional annotation based on the information provided by KEGG to create a gene KO list
for the generation of KO relative abundance profiles. The taxonomic and functional information of new
genes of EMGC was extracted for further analysis.

Evaluation of the effect of diet on the gut microbiota. To evaluate the consistent effect of diet
among providers and mouse strains on taxonomic and functional composition of gut metagenomes,
samples from 7 groups fed high-fat (HF) or low-fat (LF) diets and representing different providers and
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mouse strains were selected (Table S1D). The calculation of relative abundance profiles for taxa and KO
was according to Qin et al. (45). Permutational multivariate analysis of variance (PERMANOVA) (R vegan
package) based on Bray-Curtis dissimilarity was applied to determine the influence of diet on gut meta-
genomes within different groups. The Shannon index of the relative abundance profiles was used to
estimate alpha diversity of the samples. Principal-coordinates analysis (PCoA) of selected samples was
performed based on the relative abundance profiles using Bray-Curtis dissimilarity (R ape4 package) to
visualize the effect of diet on the bacterial composition of the gut microbiota. The Wilcox rank sum test
was used for analysis of differences of genera and KO relative abundance profiles. P value adjustment
was applied for multiple hypothesis testing using the Benjamini-Hochberg (BH) method. A BH-adjusted
P value of,0.05 was considered statistically significant.

Metagenomic species clustering. The gene relative abundance profiles of 326 laboratory mice
were clustered using the coabundance canopy algorithm (21). Coabundance genomes (CAGs) that were
present in .90% samples were chosen, and CAGs with .700 genes were considered metagenomic spe-
cies (MGSs) (21). CAGs and MGSs were assigned to a given taxon when .50% genes belonged to that
specific taxon (21). The taxonomic distribution of MGSs was calculated using the R package phytool (48).
The Shannon index was calculated based on the MGS profiles of samples from the 7 selected mouse
groups, and PCoA was based on the same profile.

All MGSs were searched against the 830 high-quality metagenome assembly genomes (MAGs) and
the 115 mGMB genomes by MUMmer3 (v3.23) (49) for calculation of MUMi values (22, 23). If the MUMi
value for two items was .0.54, then these two items were recognized as the same species (23). The
result of the comparison between MGSs and MAGs was hierarchically clustered by R package hclust with
weighted pair group method with averaging (WPGMA) and then visualized in a cladogram with annota-
tion by a R package ggtree (50, 51). The result of the comparison between MGSs and mGMB genomes is
presented in Table S1J.

Data availability. The host-free sequenced data and assembled metagenomes of 88 mice in this
study have been deposited in the China National GenBank Sequence Archive with project ID CNP0000619.
EMGC can be reached by link http://ftp.cngb.org/pub/CNSA/data2/CNP0000619/Other/. The public data sets
presented in this study can be found in online repositories. The names of the repositories and accession
numbers can be found in Table S1B and S1C.
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