
����������
�������

Citation: Tartor, H.; Karlsen, M.;

Skern-Mauritzen, R.; Monjane, A.L.;

Press, C.M.; Wiik-Nielsen, C.; Olsen,

R.H.; Leknes, L.M.; Yttredal, K.;

Brudeseth, B.E.; et al. Protective

Immunization of Atlantic Salmon

(Salmo salar L.) against Salmon Lice

(Lepeophtheirus salmonis) Infestation.

Vaccines 2022, 10, 16. https://

doi.org/10.3390/vaccines10010016

Academic Editors: Tae-sung Jeong,

Monica Leszkowicz Mazuz, Carlos

E. Suarez and Sharon Tirosh-Levy

Received: 30 September 2021

Accepted: 17 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Protective Immunization of Atlantic Salmon (Salmo salar L.)
against Salmon Lice (Lepeophtheirus salmonis) Infestation

Haitham Tartor 1 , Marius Karlsen 2, Rasmus Skern-Mauritzen 3, Adérito Luis Monjane 1, Charles McLean Press 4 ,
Christer Wiik-Nielsen 2, Rolf Hetlelid Olsen 2, Lisa Marie Leknes 2, Karine Yttredal 2, Bjørn Erik Brudeseth 2,*
and Søren Grove 1,3,*

1 Norwegian Veterinary Institute, 1433 Ås, Norway; haitham.tartor@vetinst.no (H.T.);
aderito-luis.monjane@vetinst.no (A.L.M.)

2 PHARMAQ AS, P.O. Box 267 Skøyen, 0213 Oslo, Norway; marius.karlsen@zoetis.com (M.K.);
christer.wiik-nielsen@zoetis.com (C.W.-N.); Rolf.Hetlelid-Olsen@zoetis.com (R.H.O.);
lisa-marie.leknes@zoetis.com (L.M.L.); Karine.Yttredal@zoetis.com (K.Y.)

3 Institute of Marine Research, 5005 Bergen, Norway; rasmus.skern@hi.no
4 Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, 1430 Ås, Norway;

charles.press@nmbu.no
* Correspondence: bjorn.brudeseth@zoetis.com (B.E.B.); soren.grove@vetinst.no (S.G.);

Tel.: +47-9288-1518 (B.E.B.); +47-4588-2346 (S.G.)

Abstract: Vaccination against salmon lice (Lepeophtheirus salmonis) is a means of control that averts the
negative effects of chemical approaches. Here, we studied the immunogenicity and protective effect
of a vaccine formulation (based on a salmon lice-gut recombinant protein [P33]) against Lepeophtheirus
salmonis infestation in Atlantic salmon in a laboratory-based trial. Our findings revealed that P33
vaccine can provide a measure of protection against immature and adult salmon lice infestation. This
protection seemed to be vaccine dose-dependent, where higher doses resulted in lower parasitic
infestation rates. We also provide immunological evidence confirming that P33-specific immune
response can be triggered in Atlantic salmon after P33 vaccination, and that production of P33-specific
antibodies in blood can be detected in vaccinated fish. The negative correlation between P33-specific
IgM in salmon plasma and salmon lice numbers on vaccinated fish suggests that protection against
lice can be mediated by the specific antibody in salmon plasma. The success of P33 vaccination in
protecting salmon against lice confirms the possibility of employing the hematophagous nature of
the parasite to deliver salmon-specific antibodies against lice-gut proteins.

Keywords: salmon lice; Lepeophtheirus salmonis; Atlantic salmon; vaccination; lice-gut proteins; P33

1. Introduction

Salmon lice (L. salmonis) are crustacean ectoparasites that infest both farmed and wild
salmonids stocks [1]. The feeding activity of the parasite causes skin damage and fin ero-
sion [2], leaving salmon farms with massive economic losses resulting from managerial and
therapeutic costs [3]. Salmon lice infestations are currently the most important biological
limitation to salmon farming [4], and the continued expansion of salmon aquaculture will
require adequate and sustainable control measures against the parasite [5]. Inspired by
successful vaccination efforts against ectoparasites in mammals and the production of the
first commercial vaccine against tropical tick (Boophilus microplus) in cattle (Gavac; Heber
Biotec) [6], vaccination of salmon against salmon lice has been proposed as an alternative
approach to controlling salmon lice infestations [7]. Under field conditions, the Gavac tick
vaccine has proved the effectiveness of using a single tick antigen (Bm86) for the control of
cattle tick infestations. The vaccine-induced protection from Gavac was achieved through
the direct effect on tick fertility and was correlated with Bm86-specific antibody titers in
blood [8]. The specific function of Bm86 within ticks has, however, not been completely
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elucidated. According to Rand et al. [9], Bm86 could have several epidermal growth factor-
like domains and their dysfunction by specific antibodies against BM86 might interfere
with the regulation of cell growth in ticks.

Developing effective vaccines against parasites is generally very challenging, as ex-
emplified by several high-profile parasites including malaria [10], sheep blowfly [11], and
sheep scab [12]. In the case of ectoparasites, the relative physical separation between
pathogen and host makes it even more challenging. Because the ectoparasite is predom-
inantly outside of the host, it is able to conceal a considerable portion of its constituents
(i.e., potential antigens) from the host immune system, thus placing these “out of reach”
of host defense mechanisms [13]. Allowing these concealed antigens to be “visible” to
the host immune system could, in principle, lead to specific protective immune response
against them. This possibility was successfully demonstrated by the Gavac vaccine, where
the tick gut antigen (Bm86), which is concealed from the cattle’s immune system, proved to
be an effective vaccine component.

Depending on the life stage, salmon lice can feed on skin mucus, epithelium, and/or
blood [14]. This feeding pattern can directly expose concealed antigens in the lice gut to
therapeutically induced immune components in the salmon blood and mucus. Given this
possibility, intestinal lice antigens may therefore constitute potentially important targets for
a vaccine strategy [15,16]. The search for such lice antigens has been the aim of a number of
studies reported over the last decade [17–21]. In 2015, the first salmon lice vaccine against
Caligus rogercresseyi lice was launched in Chile. This vaccine was based on a synthetic
peptide and was reported to reduce the parasite load by 73% in vaccinated fish [22]. In 2020,
another vaccine targeting salmon lice ribosomal protein (P0) showed a relative percentage
of protection of 21% against the adult stage of L. salmonis [23]. Targeting P0 protein in
salmon lice resulted in a significant impact on gravid female lice count with consequences
on their reproductive efficacy, as evidenced by delayed hatching, and low copepodid
counts in the F1 generation. In a previous study [24], we evaluated the protective effect of
several salmon lice gut antigens including delta-like protein (P21), bifunctional heparin
sulfate N-deacetylase/N-sulfotransferase (P37), putative Toll-like receptor 6 (P30), and
potassium chloride, amino acid transporter (P33). The latter showed the most promising
protective effect.

Here we report results from detailed testing of the immune mechanisms underlying
the observed protection induced by P33. We hypothesize that P33 protection against salmon
lice can be mediated by P33-specific antibodies in fish blood either by directly impairing
P33 function in situ in the salmon lice gut or by initiating a complement-mediated lice gut
cell damage.

2. Material and Methods
2.1. Experimental Facility and Ethics

This experiment (FOTS ID: 8733) was conducted at Industrial and Aquatic Laboratory
(ILAB; Bergen, Norway) in 2017. Fish were handled according to the Norwegian regulations
for use of fish as laboratory animals.

2.2. Vaccine Preparation

The lice P33 antigen (Ag) was produced as a HIS-tagged recombinant protein in
Escherichia coli (SINTEF AS). P33 vaccines were formulated as water-in-oil emulsions
containing the P33 antigen in 2 concentrations (0.1 mg/mL and 0.5 mg/mL). All the details
of the recombinant P33 production and vaccine formulation have been previously described
by Contreras et al. [24]. The M. viscosa control vaccine contained formalin-inactivated
Moritella viscosa and was formulated similarly as the P33 vaccine.

2.3. Fish and Design of the Trial

The experimental design of the trial is shown in Figure 1. In short, Atlantic salmon
(Salmo salar) fish (n = 141; average weight of 39 g) were acclimatized for 1 week in circular
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flow-through tanks (volume = 500 L). Using a common garden design, fish were divided
into 2 P33-vaccinated groups and 2 negative control groups (with PBS injection as non-
immunized control and Moritella viscosa injection as a non-specific immunization control).
Fish were tagged with a combination of maxillae and/or adipose fin clipping and PIT-tags
(12 mm i-Tag 162 PIT, UID, Helsingborg, Sweden). All vaccination and boosting procedures
were performed while the fish were in freshwater. The P33 groups were vaccinated twice,
at 1- and 8-weeks post-acclimatization (wpa). At each vaccination, fish received a single
intraperitoneal (IP) injection (100 µL) of vaccine containing P33 at either 0.1 mg/mL
(low dose [LD]; n = 35) or 0.5 mg/mL (high dose [HD]; n = 34). For the two negative control
groups, fish were intraperitoneally injected twice, i.e., at 1 and 8 wpa, with 100 µL of either
phosphate-buffered saline (PBS; n = 37) or a monovalent vaccine against Moritella viscosa
(n = 35). Even though the experiment has another replicate (another tank with similar four
groups), only one tank was used for the purpose of this study. Fish were kept in freshwater
(<0.5 ‰ salinity) for the first 10 weeks of the experiment. For the following eight weeks,
the salinity was gradually raised to 34 ‰ over the remaining experimental period. During
the first 5 weeks of the experiment, the water temperature was kept at 15 ◦C, and for the
rest of the experiment, the fish were gradually adapted to 12 ◦C. Fish were fed a common
commercial diet (Skretting AS, Stavanger, Norway) using an automatic feeder, and fish
feeding was stopped 1 day before procedures involving vaccination, challenge, or sampling.
Tricain Pharmaq (PHARMAQ AS, Oslo, Norway) was used to anesthetize (100 mg/L water)
or euthanize (200 mg/L.) fish.

Figure 1. A schematic diagram showing the experimental design and the timeline of the P33 vacci-
nation trial. Salmon fish were acclimatized for one week before they were tagged and vaccinated
with P33 vaccine (low and high doses; LD and HD, respectively) or injected with pbs and M. viscosa
vaccine (as a negative controls) at 1 wpa (0 wpv). At 8 wpa (7 wpv), the fish in the LD and HD were
given a booster dose of P33 vaccine, and fish in the negative control groups were injected with the
same material used in the first injection. All fish were challenged with lice copepodid at 14 wpv,
and the chalimus and adult stages of sea lice were counted at 16- and 18-wpv, respectively. wpa:
weeks post-acclimatization, wpv: weeks post-vaccination, Cp: copepodid. Conc.: Concentration, PBS:
phosphate-buffered saline, LD: low dose, HD: high dose.

2.4. Lice Challenge Procedures

Fish in the four experimental groups (n ≥ 12/group) were bath-challenged once in a
common garden setup at 14 weeks post-vaccination (wpv) using salmon lice copepodids
(LsGulen; ILAB strain). During the procedure, the water depth of the tank was reduced to
approximately 15 cm, and copepodites (60 copepodids/fish) were added to the tank and
left with fish for 45 min before the water flow and volume were returned to normal levels.
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Throughout the challenge experiment, the salinity was maintained at 34 ‰, and the water
temperature at 12 ◦C.

2.5. Lice Counts

Fish in the four experimental groups (n ≥ 12/group) were anesthetized when count-
ing chalimus and euthanized when adult lice were counted. During counting, the whole
surface of the fish was thoroughly examined, and a quick examination of the inside of
the operculum and surface of gills aimed to locate the hidden parasites. The number of
chalimus per fish was counted 2 weeks after the infestation (at 16 wpv). About 2 weeks
later, when the chalimus had molted into the adult stage (at 18 wpv), the experiment
was terminated, and the numbers of adult male and female lice per fish were counted.
In anticipation of adult lice detaching themselves from fish in response to the anesthe-
sia, fish were euthanized individually in separate buckets and both the numbers of de-
tached and attached lice were counted. The number of lice and their developmental stage
were compared with a negative control group kept in the same tank. The relative per-
centage protection (RPP) was calculated for each vaccinated group, using the formula
RPP = 100 × (1 − [lice count in vaccinated group/lice count in the control group]).

2.6. Fish Sampling

Plasma and tissue samples (spleen, anterior kidney, and skin from around the lateral
line below the dorsal fin) were collected from fish (n ≥ 10/group) in each of the four
experimental groups at 7, 14, and 18 wpv. However, the tissue samples collected from
3 fish in the HD group at 7 wpv were lost before analysis. Blood samples were collected
from the caudal vein using vacutainer tubes with heparin (VACUETTE®, Greiner Bio-One,
Frickenhausen, Germany) and were put on ice until they were centrifuged (2000× g, 5 min,
at room temperature) to prepare plasma samples. All tissues were excised and cut in half.
One half was placed in RNAlater (Ambion, Inc., Austin, TX, USA) and kept at 4 ◦C for
24 h, and then stored at −20 ◦C until further use. The other half was fixed in 10% neutral
buffered formalin for 24 h before transfer to 70% ethanol. Formalin-fixed tissues from the
PBS and HD groups were then paraffin-embedded and cut into 3 µm sections. The analyses
performed on the collected blood and tissue samples, as well as the numbers of samples in
each analysis are summarized in Supplementary Table S1.

2.7. RNA Isolation and cDNA Synthesis

Total RNA was extracted from 30–40 mg of each tissue sample using RNeasy Mini Kit
(Qiagen GmbH, Hilden, Germany) for anterior kidney and spleen tissues, and a combina-
tion of Trizol (Qiagen, Valencia, CA, USA) and RNeasy Mini Kit for skin tissues, following
the manufacturers’ instructions. RNA was eluted in 40 µL of RNAse-free H2O and the
concentration and purity of RNA were determined by spectrophotometry using NanoDrop
ND2000 (Thermo Fisher Scientific Inc, Waltham, MA, USA). Samples were stored at −80 ◦C
until further use. Contaminating DNA was removed, and 1 µg of total RNA was used
for cDNA synthesis, by using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. Stock solutions were prepared by
diluting the cDNA 5 times by adding 80 µL RNAse free H2O, and finally, cDNA was stored
at −80 ◦C until further use.

2.8. RT-qPCR Protocol

Spleen, anterior kidney, and skin samples (n ≥ 7/group) from the HD and PBS control
groups, collected at 7, 14 and 18 wpv, were analyzed by RT-qPCR for immunoglobulin
genes (sIgM, mIgM, IgT-C [a third sub-isotype of IgT in Atlantic salmon, Accession number:
GenBank HQ379938.1], IgD, sIgT-A, mIgT-A, sIgT-B, and mIgT-B). Samples collected at
18 wpv were obtained from lice-infested fish after counting adult lice. A pilot experiment
was performed to optimize the cDNA concentration in expression analysis of the different
genes using samples from control fish (injected with PBS). Accordingly, anterior kidney and
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spleen cDNA were diluted 1:10 to analyze the expression of sIgM, mIgM, IgT-C and IgD,
whereas a 1:3 dilution was used to analyze sIgT-A, mIgT-A, sIgT-B and mIgT-B. To analyze
the expression of these exact genes in skin tissues, the cDNA samples were diluted 1:3
and 1:1 for the former and latter list of immunoglobulin genes, respectively. The RT-qPCR
experiments were performed using the CFX384 instrument (Bio-Rad Laboratories GmbH,
Germany) with SsoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad Laboratories,
Hercules, CA, USA). Each sample was analyzed in triplicate, using a total reaction mix
volume of 6 µL per well (2 µL cDNA, primers [sequences are shown in Table 1] at 244 nM
and 3.7 µL of Green Supermix). Elongation factor 1α (EF1α) gene was solely used as a
reference gene based on the work performed on previous studies [25,26]; however, the
cDNA amount used to analyze EF1α expression was adjusted according to the gene and
the tissue analysed. Non-template wells with H2O, primers, and SsoAdvanced™ Universal
SYBR® Green Supermix were run on each plate as a negative control. The following
thermocycling conditions were used: initial denaturation (30 s at 95 ◦C) followed by
40 cycles of denaturation (15 s at 95 ◦C), annealing (30 s at 60 ◦C), and extension (5 s
at 55 ◦C). Finally, a melting curve was made by measuring the fluorescence during a
temperature range of 60–95 ◦C to confirm the specificity of the end-product amplicon in
the reaction. Fluorescence was measured, expressed as relative fluorescence units (RFU)
and quantification cycles (Cq) for every reaction that was measured. Real-time data were
analyzed using the CFX Manager software version 3.1 (Bio-Rad Laboratories, Hercules,
CA, USA). All samples with Ct values≥ 40 were not considered for further gene expression
analysis. The EF1α expression was confirmed to be stable before its values were used to
normalize the immunoglobulin gene expression values [27], resulting in -∆Ct values (Ct
target genes-Ct EF1α). Mann–Whitney U-test was used to analyze the differences in ∆Ct
values between the PBS and P33-vaccinated groups at each time point (α = 0.05).

Table 1. Sequence of oligonucleotide primers used in real-time PCR.

Gene Name Primers Sequences (5′–3′) Accession Number Effeciency (%)

Secretory immunoglobulin M (sIgM) F:CTACAAGAGGGAGACCGGAG
R:AGGGTCACCGTATTATCACTAGTT XM_014203125 100.36

Membrane immunoglobulin M (mIgM) F:CCTACAAGAGGGAGACCGA
R:GATGAAGGTGAAGGCTGTTTT Y12457 81.84

Immunoglobulin T isoform C (IgT-C) F:GCTAAGAGTGTCTGGGAAATGA
R:TGGAGGGTTTGAGATTGGTC HQ379938.1 84.9

Immunoglobulin D (IgD) F:TGAACATCGCTGCTTCAAC
R:CCAGCACAGCACTGTCTCC AF141606.1 97.09

Secretory immunoglobulin T isoform A (sIgT-A) F:CCAAGGATAAGTGGGAGAGAA
R:TCACTTGTCTTCACATGAGTTACC GQ907003 80.2

Membrane immunoglobulin T isoform A (mIgT-A) F:CCAAGGATAAGTGGGAGAGAA
R:AGGATGTTCGCCATGGACT GQ907003 103.41

Secretory immunoglobulin T isoform B (sIgT-B) F:GAATGTTTGGGACACGGAAG
R:TCACATATCTTGACATGAGTTACCC GQ907004.1 89.89

Membrane immunoglobulin T isoform B (mIgT-B) F:GAATGTTTGGGACACGGAAG
R:GCTCAGTCAGTGGGATGTTCT GQ907004.1 92.3

Elongation factor-1alpha (EF-1 α) F:TGCCCCTCCAGGATGTCTAC
R:CACGGCCCACAGGTACTG BG933897 106.98

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

The level of P33-specific IgM antibodies in plasma was quantified using ELISA as
described by Contreras et al. [24]. The plasma samples (n ≥ 10/group) collected from fish
in the three experimental groups (pbs, P33 LD and P33 HD) at 7, 14 and 18 wpv were
analyzed (at 1:100 dilution) against the recombinant P33 antigen (1 µg/mL) in duplicate.
The 4C10 mAb (this Ab is raised against rainbow trout IgM and recognizes salmon IgM
subtype A [IgM-A; [28]]) and F1-18 mAb (this Ab is raised against purifiedrainbow trout
plasma IgM and recognizes salmon IgM subtypes A and B [29]) were used as secondary
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antibody (1:20) in parallel analyses in this study. Horseradish peroxidase-conjugated sheep
anti-mouse IgG (ECL, NA931V; 1:2000) was used as tertiary antibody.

Color development was stopped by adding 50 µL of 2 M H2SO4 and absorbance
was read at 450 nm using an ELISA plate reader (Multiscan EX, Artisan; Thermo Electron
Corporation, Vantaa, Finland)).

2.10. Immunohistochemistry (IHC)
2.10.1. Analysis of Total IgM and Production of IgM Positive Cells

The abundance of secreted IgM and IgM positive (IgM+) cells in spleen and anterior
kidney tissues were compared between the HD and PBS groups at 14 wpv. For this, we
performed IHC analysis of IgM using the EnVision+ kit (Dako), according to the manu-
facturer’s instructions. Briefly, tissue sections (n ≥ 8/group) were dewaxed, rehydrated,
and epitopes were demasked using heat retrieval protocol in a citrate buffer (pH 6) [30].
Endogenous peroxidase was inhibited (3% H2O2 in methanol; 10 min) and sections were
blocked using 5% BSA in Tris buffer saline (TBS). Slides were incubated with anti-salmon
IgM mAb F1-18 (1:500 in Tris buffer [TB] with 1% BSA) overnight at 4 ◦C, and slides without
the anti-IgM antibody were used as a negative control. HRP labeled anti-mouse antibody
EnVisionTM system (Dako, K4005) was used as a secondary antibody for 30 min at room
temperature. AEC+ High Sensitivity Substrate Chromogen Ready-to-Use (Dako; K3469)
was used for 10 min for signal development and the reaction was stopped by washing the
slides in running tap water. Counterstaining was performed using Mayer’s hematoxylin
(Chemi Teknikk, 5B-535) for 15 s and slides were mounted using Aquatex® (Merck, Poole,
UK). The labeling intensity of secreted IgM and the abundance of IgM+ cells were analyzed
based on the principles described by Deshmukh et al. [31], and each slide was given inten-
sity and abundance scores according to a scoring system defined in Table 2. For negative
controls, the above protocol was performed on spleen and anterior kidney sections from
the pbs and P33 HD group, omitting only anti-IgM antibody or omitting only HRP labeled
anti-mouse antibody.

Table 2. Scoring scale of secreted IgM and IgM+ cells in spleen and anterior kidney after P33 vaccination.

Tissue Scoring Scale Score Description

Sp
le

en
an

d
an

te
ri

or
ki

dn
ey

Abundance of IgM+ cells/microscopic field (10× magnification objective lens)

0 No positive cells

1 ≤10 cells

2 30–50 cells

3 60–80 cells

4 >90 cells

IgM labeling intensity

0 No labeling

1 Mild labeling

2 Moderate labeling

3 Strong labeling

4 Heavy labeling

2.10.2. Analysis of P33-Specific Antibodies In Situ in Spleen

A modified IHC protocol was developed to demonstrate the presence of P33-specific
antibodies in situ in spleen tissue sections. The protocol, which we named inverted IHC
(In.IHC), applies HIS-tagged recombinant P33 protein as a “primary antibody” (or “bait”
for P33-specific antibodies) and a rabbit anti-HIS antiserum as “secondary antibody”.
Spleen tissue sections from fish (n ≥ 10/group) in the HD and PBS group at 14 wpv were
treated exactly as in the standard IHC protocol described above, up to the point where



Vaccines 2022, 10, 16 7 of 18

the sections were blocked. After blocking, the slides were incubated overnight at 4 ◦C
with HIS-tagged recombinant P33 protein (50 µL per section, 1 µg/mL P33 in TB with
1% BSA). Sections were then washed thoroughly with TBS and then incubated with rabbit
anti-HIS-tag polyclonal antibody (MicroMol GmbH, Germany) diluted 1:500 in TB with
1% BSA (1 h, room temperature). After the unbound antibody was washed off, the sections
were incubated with HRP labeled anti-rabbit antibody EnVisionTM system (Dako, K4009)
for 30 min at room temperature. As in the IHC above, staining was developed and stopped,
counterstain applied, and the slides mounted. For negative controls, the above protocol
was performed on spleen sections omitting only the bait, omitting only secondary antibody,
or omitting only HRP labeled anti-rabbit antibody or with only HIS-tagged recombinant
proteins (P12 and P30) [24].

3. Results
3.1. P33 Vaccination Reduces Salmon Lice Counts on Atlantic Salmon

Chalimus and adult lice counts differed significantly between the experimental groups
(Figure 2). Using a Kruskal–Wallis test followed by Dunn’s post hoc test (α = 0.05), and
Bonferroni correction of p values, the HD group was shown to have a significantly lower
chalimus count compared to both the PBS and M. viscosa injected groups (p = 0.004 and 0.02,
respectively; Figure 2A). The number of adult lice was significantly lower in the HD group
as compared to the PBS and LD groups (p = 0.02, for both; Figure 2B). The separated male
and female counts (Figure 2C,D) revealed that the significant difference in the total adult
count between the pbs and P33 HD groups was attributed to the male counts more than to
the female counts. Compared with the PBS group, the number of chalimus lice on fish in the
LD and HD groups was, respectively, reduced by 19.0 and 41.3%, whereas total adult lice
counts were, respectively, reduced by 11.1 and 35.7%. Also, an RPP against adult females
was estimated at 4.1 and 28.5%, respectively, in the LD and HD groups. Interestingly, the
comparison of the LD and HD groups with the M. viscosa group showed reduced chalimus
numbers by 14.1 and 41.2%, respectively. However, total adult lice count in LD and HD
groups were lower than that in the M. viscosa group by—5.1 and 23%, respectively.

3.2. P33 Vaccination Induces P33-Specific IgM Antibodies
3.2.1. Quantification of P33-Specific IgM in Plasma

The IgM-A and -B ELISA analysis showed that there were no significant differences
(Kruskal–Wallis test) between the experimental groups at 7 wpv (Figure 3A). At 14 wpv,
Kruskal–Wallis test followed by Dunn’s post hoc showed that the HD group had significantly
higher levels of P33-specific antibodies (OD; 450 nm) than both the LD (p = 0.006) and
PBS (p = 0.002) groups, respectively (Figure 3A). A similar difference was observed at
18 wpv, with increased statistical significance for both differences (p < 0.0001; Figure 3A).
Interestingly, fish in the group HD group had P33-specific IgM OD values average at 18 wpv
lower than that measured at 14 WPV; yet, the difference seemed to be non-significant
(p = 0.11; data not shown). The data at 14 and 18 wpv together suggest a dose-response
effect of P33 vaccination in salmon. The IgM-A ELISA analysis of the plasma samples
confirmed these differences (data not shown). A Kendall’s rank correlation analysis of OD
values from the two ELISA analyses showed that the level of P33-specific IgM-A antibodies
was strongly correlated with the level of P33-specific IgM-A and -B antibodies (Kendall
τ = 0.93, p < 0.0001) (Figure 3B), suggesting that the IgM-B antibody response was not
detectably different from the IgM-A response. All p values in the multiple comparisons
were adjusted using Bonferroni test.

3.2.2. Demonstration of P33-Specific Antibodies In Situ in the Spleen of Vaccinated Fish

At 14 wpv, P33-specific labeling was detected in the spleen of fish in the HD group
using In.IHC (Figure 4C,D), but not in the PBS control group (Figure 4A,B), or the other
negative control sections (Supplementary Figure S1). The P33-specific labeling was confined
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to the white pulp areas of the spleen and was most apparent in association with blood
vessels (Figure 4C,D).

Figure 2. High dose P33 vaccination reduces lice numbers on vaccinated fish. Column scatter
plots of lice count in mock-vaccinated (PBS [phosphate-buffered saline].and M. viscosa vaccine)
and P33-vaccinated (LD [low dose], and HD [high dose]) Atlantic salmon fish after lice challenge.
(A) Chalimus counts (16 weeks post-vaccination [wpv]), (B) Total adult lice counts (18 wpv), (C) Male
counts and (D) Female counts. Horizontal lines in panels (A,B) represent the median lice counts in
different groups. Asterisks denote significant differences (* p < 0.05; ** p < 0.01).

3.3. Immunoglobulin Kinetics Are Altered after P33 Vaccination
3.3.1. P33 Vaccine Modifies Immunoglobulin Gene Expression in Vaccinated Fish

The secretory immunoglobulin (sIg) genes, including sIgM, sIgT-A, and sIgT-B and IgT-
C (hypothesized to be secretory immunoglobulin based on its truncated heavy chain), were
in all examined tissues and at all timepoints expressed at higher transcript levels in the PBS
group (Figures 5 and 6). For sIgM and sIgT-A, these differences were, with few exceptions,
statistically significant. For sIgT-B all the differences were statistically significant (Figure 5).
For IgT-C, the differences were statistically significant in the skin but not in the anterior
kidney and spleen (Figure 6). In contrast, the transcript levels of the membrane-bound
immunoglobulin (mIg; including mIgM, mIgT-A, mIgT-B) and IgD genes varied between
the tissues (Figures 6 and 7). For mIgM, the transcript levels of HD fish were significantly
higher than for PBS fish in anterior kidney at all sampling points (Figure 7A). No such
differences were seen in the spleen and skin (Figure 7D,G). For mIgT-A, no significant
differences between the vaccine groups were observed (Figure 7B,E,H). Transcript levels of
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mIgT-B were significantly lower in HD fish compared with PBS control fish in the skin at all
sampling times (Figure 7I) and in the anterior kidney at 18 wpv (Figure 7C), a difference
not seen in the spleen (Figure 7F). For IgD, the transcript levels were generally higher in the
HD group (Figure 6). This tendency was significant in the anterior kidney at all sampling
times and in the spleen at 14 and 18 wpv (Figure 6A,C).

Figure 3. P33 vaccination induces specific antibody response in the plasma of vaccinated fish.
(A) Column scatter plot of ELISA OD values representing P33-specific IgM Ab (A and B subtypes)
in plasma of mock-vaccinated (injected with phosphate-buffered saline [PBS]) or P33-vaccinated
(low-dose [LD] consisted of 0.1 mg/mL P33 orhigh-dose [HD] with 0.5 mg/mL P33) groups, at 7-, 14-,
and 18-weeks post-vaccination (wpv). Horizontal lines on the plot represent the median OD values
in different groups. Asterisks denote significant differences (** p < 0.01; *** p < 0.001). (B) Scatter plot
of levels of P33-specific IgM subtype A antibody (OD values; x-axis) versus levels of P33-specific
IgM antibody subtype A and B (OD values; y-axis) showing the correlation between P33-specific
IgM-A and IgM (A and B subtypes) ELISA OD values in plasma of P33-vaccinated (LD and HD)
and mock-vaccinated (PBS and M. viscosa) fish collected at 7 (solid symbols), 14 (open symbols) and
18 (half-open symbols) wpv.Kendall’s rank correlation coefficient (τ) and p-value are shown.
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Figure 4. Detection of P33-specific antibodies in the spleen of P33-vaccinated fish. A modified
immunohistochemistry protocol (inverted IHC; In.IHC) was used to demonstrate localization of
P33-specific antibodies in spleen tissue of mock-vaccinated (injected with phosphate-buffered saline)
fish (A,B; n ≥ 10) and fish injected with high dose of P33 (C,D; n ≥ 10) at 14 weeks post-vaccination.
The pictures shown in panels (A,C) are from fish with plasma P33-specific IgM (A and B subtypes)
OD values of 0.2 and 3.0, respectively. The red labeling spots (black arrows) show the binding of
recombinant P33-protein to hypothesized P33-specific antibodies in the white pulp (WP) areas of
spleen tissue of the P33-vaccinated fish in association with blood vessels.

3.3.2. IgM Production in Fish Immune Tissues Is Modulated after P33 Vaccination

The IHC results showed that the PBS group had a significantly higher median score
for secreted IgM in both spleen and anterior kidney in comparison with the HD group
(Mann-Whitney U-test, p = 0.0007 and 0.0002, respectively; Figure 8A(a,c). The secreted
IgM labeling could be observed in association with the red pulp of the spleen, the sinusoids
of the anterior kidney, blood in large blood vessels, and the adipose tissue of both spleen
and anterior kidney (Figure 8B). The median score of IgM+ cell density in the spleen and
anterior kidney was higher in PBS group fish as compared to HD group fish, though the
difference was only significant in the anterior kidney (Mann-Whitney U-test, p = 0.0002;
Figure 8A(b,d)). In both HD and PBS groups, IgM+ cells were generally scattered through
the white pulp in spleen tissue and the parenchyma of the anterior kidney (Figure 8B). No
IgM-specific labeling was detected on negative control sections (Supplementary Figure S2).

3.4. Vaccine-Induced Protection against Salmon Lice Correlates with the P33-Specific IgM in
Fish Plasma

Assessing data from the vaccination trial using Kendall’s rank correlation test showed
that the plasma levels of P33-specific IgM exhibited a moderate, negative correlation with
the total adult lice counts (Kendall τ = −0.50, p = 0.0003; Figure 9A). A similar correlation
could not be observed with chalimus counts (Kendall τ = − 0.27, p = 0.15; Figure 9B).
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Figure 5. Transcript levels of secretory immunoglobulin genes decrease in the anterior kidney, spleen,
and skin in response to P33 vaccination. Column scatter plots of normalized Ct (∆Ct) values from the
RT-qPCR analysis representing the expression of sIgM (A,D,G), sIgT-A (B,E,H), and sIgT-B (C,F,I) in
anterior kidney (A–C), spleen (D–F), and skin (G–I) of mock-vaccinated (injected with phosphate-
buffered saline [PBS; filled symbols]) and P33-vaccinated (high dose [HD; open symbols]) groups
at 7, 14 and 18 weeks post-vaccination. The mRNA levels were normalized against EF1α and each
dot on the plot represents one fish. Asterisks denote significant differences (* p < 0.05; ** p < 0.01;
*** p < 0.001), and horizontal lines on the plots show the median of ∆Ct values.

Figure 6. IgD transcript levels increase in the anterior kidney and spleen and IgT-C levels decrease in
the skin in response to P33 vaccination. Column scatter plots of normalized Ct (∆Ct) values from the
RT-qPCR analysis, representing the expression of IgD and IgT-C in anterior kidney (A,B), spleen (C,D),
and skin (E,F) of mock-vaccinated (injected with phosphate-buffered saline [PBS; filled symbols]) and
P33-vaccinated (high dose[HD; open symbols]) groups at 7-, 14- and 18-weeks post-vaccination. The
mRNA levels were normalized against EF1α and each dot on the plot represents one sample from
one fish. Asterisks denote significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001) and horizontal
lines on the plots show the median of ∆Ct values.
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Figure 7. Increase in transcript levels of membrane-bound IgM (mIgM) in anterior kidney and
decrease in transcript levels of membrane-bound IgT-B (mIgT-B) in the skin in response to P33
vaccination. Column scatter plots of normalized Ct (∆Ct) values from the RT-qPCR analysis, rep-
resenting the expression of mIgM (A,D,G), mIgT-A (B,E,H) and mIgT-B (C,F,I) in anterior kidney
(A–C) spleen (D–F), and skin (G–I) of mock-vaccinated (injected with phosphate-buffered saline [PBS;
filled symbols]) and P33-vaccinated (high dose [HD; open symbols]) groups at 7, 14 and 18 weeks
post-vaccination. The mRNA levels were normalized against EF1α and each dot on the plot represents
one sample from one fish. Asterisks denote significant differences (* p < 0.05; ** p < 0.01; *** p < 0.001).

Figure 8. Cont.
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Figure 8. Immunohistochemical analysis of IgM P33-vaccinated fish. (A) Column scatter plots
showing the difference in IHC scoring of secreted IgM labeling intensity (a,c) and abundance of IgM+
cell (b,d) in anterior kidney (n ≥ 8/group) and spleen (n ≥ 10/group) between the mock-vaccinated
(injected with phosphate-buffered saline [PBS]) and P33-vaccinated (high dose [HD]) fish at 14 weeks
post-vaccination (wpv). Each dot represents the average score of five microscopic fields on one tissue
section obtained from one fish, and the red dots represent tissue sections in the pictures in panel ‘B’.
Asterisks denote significant differences *** p < 0.001) and the horizontal lines on the plots show the
median values. (B) IgM labeling (red color) in IHC demonstrating the difference in intensity and
distribution of secreted and cell-associated IgM in the anterior kidney (a–d,i–l) and spleen (e–h,m–p)
between PBS-injected (a–h) and P33-vaccinated (i–p) fish at 14 wpv. The images show IgM staining
in the whole tissue section (a,e,i,m; 2× magnification), the splenic red pulp (arrows in f,n; 20×
magnification), sinusoids in anterior kidney (arrows in b,j; 20×magnification), large blood vessels
(arrows in c,g,k,o; 40×magnification), and the visceral tissue around spleen and kidney (arrows in
d,h,l,p; 40×magnification).
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Figure 9. Adult lice count correlates negatively with P33-specific IgM levels in salmon plasma after
P33 vaccination. Scatter plot of lice count versus P33-specific IgM (A and B subtypes) levels in blood
plasma (OD values by ELISA; x-axis), showing the correlation between P33-specific IgM (A and B
subtypes) OD values in the plasma of mock-vaccinated (injected with phosphate-buffered saline
[PBS]) and P33-vaccinated (high dose [HD]) Atlantic salmon at 18 weeks post-vaccination [wpv], and
the lice count on the same fish. (A) Scatter plot of total adult lice count (18 wpv); (B) Scatter plot
of chalimus count (16 wpv). Kendall’s rank correlation coefficients (τ) and p values are shown on
the plots.

4. Discussion

The present study reports that vaccination with the recombinant salmon louse protein-
potassium chloride and amino acid transporter (P33) resulted in a significant reduction in
lice counts during the subsequent experimental challenge of Atlantic salmon (Figure 2A,B).
The vaccine with the highest P33 content (HD) reduced the number of chalimus by 41.3%
and the number of adult lice by 35.7% as compared to a mock vaccination using PBS with an
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RPP against adult females estimated at 28.5% in the HD group. The reduction in lice female
counts in the HD group in the current study is comparable to that previously reported by
Contreras et al. [24], showing a 35% reduction in adult females after P33 vaccination. The
protection against sea lice seemed to be correlated to P33 dose since there were significantly
lower adult lice numbers in the fish group with high vaccination dose when compared to
those with a low dose.

After vaccination, P33-specific IgM antibodies were detected in the plasma of P33-
vaccinated salmon, with higher levels in the HD group than in the LD group (Figure 3A),
suggesting a dose-response effect of the P33 vaccination. The P33-specific IgM analy-
sis showed a non-significant lower titer on lice-infested fish at 18 wpv (28 days post-
infestation[dpi]), as compared to lice-free fish at 14 wpv, which is probably a temporary
response of immunoglobulin to lice infestation. In a previous lice challenge trial in Atlantic
salmon, Skugor et al. [32] also showed hyporesponsiveness in several immunoglobulin-
like genes at 22 dpi as part of a general wave of immunosuppression in response to lice
infestation. The immunoglobulins suppression was, however, short and was reverted in
11 days. The production of P33-specific Ab is also supported by the P33-specific labeling
identified in situ in the spleen of P33-vaccinated fish in the In.IHC (Figure 4). Although we
did not measure P33-specific IgM in skin mucus in the trial presented in this study, we had
demonstrated in another P33 vaccination trial (data not shown) that P33-vaccinated salmon
can have P33-specific IgM in their skin mucus. This unpublished observation is similar to
the results of previous studies showing the ability of salmonids to produce antigen-specific
antibodies in skin mucus in response to intraperitoneal vaccination [33,34].

The presence of P33-specific IgM in plasma was not reflected by increased levels of
sIgM mRNA (qPCR) in the anterior kidney and spleen of P33-vaccinated fish. Indeed,
transcript levels of sIgM, as well as of the secretory IgT genes, sIgT-A and sIgT-B, were
significantly lower in all analyzed tissues in vaccinated fish as compared to PBS mock
controls (Figure 5). This may suggest a downregulation in the expression of the sIg genes in
B cells residing in the tissues or, perhaps more likely, a migration of sIg+ cells out of these
tissues in response to vaccination. It has been shown that lymphocytes migrate to the site
of vaccine injection in Atlantic salmon from 2 weeks after vaccination [35]. In line with this,
the number of IgM+ cells were lower in the spleen and anterior kidney of P33 vaccinated
fish, as judged by scoring of IHC sections(Figure 8A).

The finding that HD group showed higher average of mIgM expression in anterior
kidney (likely due to a myriad production of naive B cell [rich in surface IgM] to maintain
homeostasis after vaccination [36]) at 14 wpv, as compared to pbs group, was not reflected
by an increase in IgM+ cells in IHC. This is probably because the F1-18 mAb used to
identify IgM in IHC cannot distinguish between the membrane and secreted IgM and
that part of the signal identified in some of the IgM+ cells were, perhaps, originated from
the secreted IgM molecule in the cells before it was exocytosed. The F1-18 Ab was raised
against purified IgM from rainbow trout plasma and the specific ligand it recognizes on
the IgM molecule is not yet identified. The Ab has been, nevertheless, found to react with
carbohydrate moieties on rainbow trout IgM in WB and has been confirmed to bind to both
IgM-A and -B isotypes in Atlantic salmon [29].

In comparison to the change in the mRNA levels of sIgT-A and -B in the three analyzed
tissues (anterior kidney, spleen and skin), the third IgT sub-isotype, IgT-C, had significant
downregulation of transcripts only in the skin (Figure 6), possibly suggesting a different
regulation pattern for this antibody. A previous study has also shown that independent
mechanisms might be regulating the involvement of the three trout immunoglobulins (IgM,
IgT and IgD) in response to Proliferative kidney disease [37]. Taken together the significant
response of IgT-C transcripts in skin and the potential secretory nature of IgT-C protein
(as predicted based on its truncated heavy chain), a pivotal mucosal immune role of this
sub-isotype in salmon after vaccination can be suggested.

The correlation analysis between P33-specific IgM levels in salmon plasma and lice
infestation rate of adult and immature lice stages was more significant in the case of adult
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lice (Figure 9), likely because the immature stages are less dependent on salmon blood for
feeding [38]. This pattern of correlation was also seen in other vaccination trials with bigger
sample sizes (data not shown), thus supporting the suggestion that protection against the
adult lice is mediated by specific Ab. This suggestion is supported also by observations
made in two other studies: (i) in a vaccination study against L. salmonis in Atlantic salmon,
protection against lice using a water-in-oil formulation of the my32-Ls antigen was found
to be correlated with antibody titer against my32-Ls [18]; also, (ii) in mammals, protection
efficiency against cattle tick using a vaccine formula of tick Bm86 antigen was positively
correlated with the Bm86-specific antibody levels in cattle blood [39]. On the other hand,
the protection against chalimus is probably mediated by specific Ab in skin mucus of
P33-vaccinated fish. Although with a different parasite and in a different fish species, it
has been shown that specific antibodies in the mucus of skin [40] and olfactory organs [41]
of rainbow trout could protect against the white spot disease caused by the Ich parasite
(Ichthyophthirius multifiliis).

It is yet to be studied how well salmon immunoglobulins can maintain their integrity
in the lice gut and whether they can be transported across lice cellular membranes or
not [42]. Assuming that antibodies from vaccinated salmon blood can reasonably perform
in lice gut, it can be speculated that P33-specific antibodies mediate protection against
salmon lice by directly impairing P33 function in situ in the salmon lice gut. The in-silico
analysis of the amino acid sequence of P33 has revealed its relation to a group of proteins
with activities in potassium chloride and amino acid transportation [24]. We, therefore,
suggest that the observed protection against salmon lice after P33 vaccination is linked to
a disturbance in cellular hypotonic salinity response and transmembrane transportation
activity. However, as the retro migration of functional salmon immune components (those
engulfed by lice upon feeding) from lice gut to fish has not yet been proved, it is not
expected that p33-vaccinated fish can mount a secondary wave of strong immune response
upon consequent exposures to sea lice. Efficient protection against sea lice will, therefore,
necessitate a constant high titer of post-vaccination P33-specific antibodies in fish blood.

5. Conclusions

Here, we demonstrated a dose-response protective effect of P33 vaccine in Atlantic
salmon against salmon lice. Our results provided evidence of protection efficiency against
both immature and adult lice stages. Intraperitoneal injection with P33 vaccine provoked
the salmon immune system and resulted in a specific response against the P33 antigen. The
levels of P33-specific antibody produced in fish blood correlated negatively with adult lice
counts on fish skin. The protection result against salmon lice is, so far, laboratory-based,
and vaccination trials under field conditions typical of salmon farms should be performed
before the vaccine can be validated for commercial use.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines10010016/s1, Figure S1: In.IHC negative control spleen sections showed no specific
signal for P33-specific antibodies. Figure S2: IHC negative control spleen and anterior kidney showed
no specific signal for IgM. Table S1 shows the analyses performed on fish blood and tissue samples
and the groups and the number of fish used per each analysis.
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