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Comprehensive analyses of multi-omics data may provide insights into interactions
between different biological layers concerning distinct clinical features. We integrated
data on the gut microbiota, blood parameters and urine metabolites of treatment-naive
individuals presenting a wide range of metabolic disease phenotypes to delineate clinically
meaningful associations. Trans-omics correlation networks revealed that candidate gut
microbial biomarkers and urine metabolite feature were covaried with distinct clinical
phenotypes. Integration of the gut microbiome, the urine metabolome and the phenome
revealed that variations in one of these three systems correlated with changes in the other
two. In a specific note about clinical parameters of liver function, we identified
Eubacteriumeligens, Faecalibacteriumprausnitzii and Ruminococcuslactaris to be
associated with a healthy liver function, whereas Clostridium bolteae, Tyzzerellanexills,
Ruminococcusgnavus, Blautiahansenii, and Atopobiumparvulum were associated with
blood biomarkers for liver diseases. Variations in these microbiota features paralleled
changes in specific urine metabolites. Network modeling yielded two core clusters
including one large gut microbe-urine metabolite close-knit cluster and one triangular
cluster composed of a gut microbe-blood-urine network, demonstrating close inter-
system crosstalk especially between the gut microbiome and the urine metabolome.
Distinct clinical phenotypes are manifested in both the gut microbiome and the urine
metabolome, and inter-domain connectivity takes the form of high-dimensional networks.
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Such networks may further our understanding of complex biological systems, and may
provide a basis for identifying biomarkers for diseases. Deciphering the complexity of
human physiology and disease requires a holistic and trans-omics approach integrating
multi-layer data sets, including the gut microbiome and profiles of biological fluids. By
studying the gut microbiome on carotid atherosclerosis, we identified microbial features
associated with clinical parameters, and we observed that groups of urine metabolites
correlated with groups of clinical parameters. Combining the three data sets, we revealed
correlations of entities across the three systems, suggesting that physiological changes
are reflected in each of the omics. Our findings provided insights into the interactive
network between the gut microbiome, blood clinical parameters and the urine
metabolome concerning physiological variations, and showed the promise of trans-
omics study for biomarker discovery.
Keywords: gut microbiota, urine metabolomics, metabolic disease, integrative omics, carotid arteriosclerosis
INTRODUCTION

Systemic metabolism is regulated at numerous levels. Apart from
direct interactions, the gut microbiota may indirectly interact
with the host via metabolites, which may appear in circulation
and the urine. Considering the complexity and the inter-
dependency of biological systems, a holistic approach
integrating multiple omics data may further the understanding
of metabolic disease development.

The gut microbiota is a metabolic “organ” co-evolving with the
host. Composed of hundreds of trillions of microbes (Qin et al.,
2010), it is an ecological community where members compete,
cooperate, and synergize with each other. This community not
only passively adapts to the local biotic microenvironment but
also actively interacts with the host. The gut microbiota affects the
integrity of the gut barrier, extracts energy from food, provides
bioactive compounds, regulates metabolic homeostasis and acts as
a pro-inflammatory-anti-inflammatory rheostat (Tremaroli and
Backhed, 2012). The composition and functional capacity of the
gut microbiota may hence reflect the physiological state of the
host, providing information of possible pathological conditions.
This notion is supported by results from several case-control
studies reporting on gut microbiota signatures that are linked to
metabolic diseases, such as obesity and diabetes (Turnbaugh et al.,
2006; Qin et al., 2012; Liu et al., 2017). Perturbations of the
microbiota may cause alterations in the metabolite profile in
circulation (Pedersen et al., 2016; Liu et al., 2017; Gu et al., 2017),
and in addition, the compositional and functional features of the
gut microbiota may also be detectable in the urine (Marcobal
et al., 2013).

Extensive pieces of research have investigated the relationship
between gut microbiota and a variety of immune systems and
metabolic diseases, but, despite these advances, no direct
evidence has established a direct and causal relationship
between altered gut microbiota and these diseases. To address
this question, we chose carotid atherosclerosis, which is systemic
disease sharing metabolism, chronic inflammation, immune,
infection, and senility, to combine data on the composition
gy | www.frontiersin.org 2
and functional potential of the gut microbiome with blood and
urine metabolite profiles. These results may reveal novel
associations with clinical phenotypes and thereby provide new
knowledge of host-microbiome interactions in health and
disease. Findings from the past decade have suggested that the
structure and composition of the gut microbiota are associated
with carotid atherosclerosis in humans and animal models
(Jonsson and Backhed, 2017). Metabolites filtered or produced
by gut microbiota, such as trimethylamine-N-oxide, short-chain
fatty acids (SCFAs), and secondary bile acids, have been observed
to affect the development of atherosclerosis (Wang et al., 2011;
Wahlstrom et al., 2016; Chen et al., 2018). Although the
commensal microbiota composition has emerged as a risk
factor for cardiometabolic disease (Schroeder and Bäckhed,
2016), it remains controversial how the gut metagenome
contributes to the development of atherosclerosis (Wright
et al., 2000; Stepankova et al., 2010; Wang et al., 2011; Li et al.,
2016) and in particular how the gut microbiota influences
atherothrombotic processes.Taking advantage of a cohort of
treatment-naïve subjects representing various clinical
phenotypes, we performed an integrative trans-omics study
combining blood biomarkers, fecal metagenomics and urine
metabolomics. We found that microbiome was a poor
biomarker for carotid atherosclerosis even in functional
attributes. Trans omics analysis identified potential biomarkers
characterizing different phenotypes, while integration of the
three omics datasets revealed novel covariations and links.
Community modeling further revealed the intimate interaction
among the three systems, especially between the gut microbiota
and the urine metabolome.
MATERIALS AND METHODS

Study Cohort and Sample Collection
138 Chinese individuals (aged 32-76, including 76 males and 57
females) living in the north of China were recruited during
physical examination in a carotid atherosclerosis screening
October 2021 | Volume 11 | Article 708088
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program at the Chinese PLA General Hospital. None of them
had been diagnosed with diseases before the inclusion, and
subjects using antibiotics or receiving other medication within
1 month were excluded. Ultrasound examination of the carotid
arteries was used to diagnose carotid arteriosclerosis. Blood tests
on 124 clinical parameters were performed (Additional File:
Tables S1-3). Fecal and urine samples were collected on the day
of physical examination, immediately frozen and stored at -80°C
until being further processed.

The study was approved by the Medical Ethical Review
Committee of the Chinese PLA General Hospital and the
Institutional Review Board at BGI-Shenzhen. Informed written
consent was obtained from all participants.

Metagenomic Sequencing, Binning,
and Annotation
DNA was extracted from fecal samples using Qiagen QIAamp
DNA Stool Mini Kit (Qiagen, Germany) according to the
manufacturer’s instructions. Construction of a paired-end
library with insert size of 350bp was performed according to
the manufacturer’s instruction, and the DNA library was
sequenced with PE reads of 2×100bp on the Illumina
Hiseq2000 platform (Illumina, US). The sequencing reads were
quality-controlled as described previously (Fang et al., 2018), and
implementation of the pipeline is available at https://github.com/
jiezhuye/cOMG. The raw sequences with low quality were
filtered and trim by overall accuracy (OA) control strategy
(Fang et al., 2018) using OAs1 (-Qsys = 33, -minLen= 30,
-Scut=0.9, -Qcut=0.8). Then the high-quality reads were
aligned to hg19 by SOAP2.22 (identity ≥ 0.9) to remove
human-related reads by removeHost (-D 4 -s 30 -r 1 -v 7 -i
0.9). After quality control and host gene removal, clean reads
were mapped to the 9,879,896 genes in the integrated gene
catalog (IGC, Li et al., 2014) with a threshold of more than
90% identity over 95% of the length by SOAP2.22. Gene
abundances were determined as previously described (Li et al.,
2014), and subsequently used to calculate the relative
abundances of genera and KEGG Orthology (KOs). The genes
were clustered into Metagenomic species (MGS) based on co-
abundance and gene content (≥700 genes) (Nielsen et al., 2014)
with MGS canopy algorithm (Nielsen et al., 2014). Taxonomy
assignment was based on >50% of the genes in one MGS (Qin
et al., 2012). The relative abundance of a MGS was calculated
from the mean relative abundance of its constituent genes (Qin
et al., 2012). MGS present in >10% samples were subjected to
further analysis (Additional File: Table S4).

Correlation Analysis Between the Gut
Microbiome, the Urine Metabolome and
Blood Biomarkers
Spearman correlation was determined between the microbiome
(relative abundance of MGS or functions) and blood biomarkers,
between the urine metabolome (metabolite groups) and blood
biomarkers (Additional File: Table S5), and between the urine
metabolome and the gut microbiome using the cor function in
the base R package. MGS/functions, metabolite groups, and
biomarkers that reached statistical significance at three rounds
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
of correlations were retained (p<0.05), and correlations with
q<0.1 are indicated in the heatmap.

Community Analysis
Pair-wise Spearman correlation was calculated between MGSs
and urine metabolites, between urine metabolites and blood
biomarkers, and between MGS and blood parameters
(Additional File: Table S6) with base cor function in R
software. Multiple hypothesis testing was adjusted using the
method of Benjamini and Hochberg (q<0.1), and correlations
were further filtered by a cutoff of |r|≥0.3. Only inter-omic
correlations were used for community analysis. Non-directional
communities composed of nodes from and edges between the
three sets of omics data were modeled using the algorithm
proposed by Girvan and Newman (Girvan and Newman,
2002) with igraph package in R. This method involved the
iterative calculation of edge betweenness centrality on a
network, which is the number of weighted shortest paths from
all vertices to all other vertices that pass over a given edge. After
each iteration, the edges with the highest betweenness centrality
were removed, and the process was repeated until only individual
nodes remained. Community structure was visualized with
igraph package in R (Additional File: Tables S7-8, S10).

Prediction and Classification by
Random Forest
Prediction of clinical parameters was performed by a 5-repeated
10-fold down-sampling cross-validation random forest model (R
3.3.0, random Forest 4.6-12 package) using the relative
abundance of MGS as input. Downsample majority class was
controlled by the sampsize and strata parameter in the
randomForest function. Prediction accuracy was evaluated by
Spearman correlation between the predicted value and the
measured value.

Non-carotid atherosclerosis versus carotid atherosclerosis
classification was performed by a 5-repeated 10-fold down-
sampling cross-validation random forest model (R 3.3.0,
random Forest 4.6-12 package) using blood biomarkers or
MGSs as input (Additional File: Tables S9, S11). Five-
repeated 10-foldcross-validationis a robust model matric
estimation and down-sampling to deal with the unbalanced
sample size between groups. Receiver operator characteristic
(ROC) curves were plotted using this classifier with R 3.3.0,
pROC package.

Functional Analysis of Microbiota
The reporter score (Z-score) (Patil and Nielsen, 2005) was
calculated for KO modules or the gut metabolic modules
(GMMs) (Vieira-Silva et al., 2016) to identify the differentially
enriched functions comparing non-carotid atherosclerosis and
carotid atherosclerosis groups. Modules with |Z-score|≥1.96
were considered significant.

Urine Metabolomics
Metabolomic profiling of urine samples was performed on a
2777C UPLC system (Waters, UK) coupled to a Xevo G2-XS
QTOF mass spectrometer (Waters, UK). Peak picking and
October 2021 | Volume 11 | Article 708088
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compound identification were performed with Progenesis QI
(ver2.2), aligned against the HMDB (The Human Metabolome
Database) and KEGG (The Kyoto Encyclopedia of Genes and
Genomes) databases. The untargeted metabolite data set was
subjected to dimension reduction by the cluster of co-abundant
metabolites into groups following the methods provided by a
previous study using the R package Weighted gene co-expression
network analysis (WGCNA) (Pedersen et al., 2016). The
positively charged and negatively charged metabolites were
analyzed together. Signed weighted co-abundance correlations
(biweight midcorrelations after log2 transformation) were
calculated across all individuals. A scale-free topology criterion
was used to choose the soft threshold of b = 13. Clusters were
identified with the dynamic hybrid tree-cutting algorithm, using
deep split of 4 and a minimum cluster size of 3. The profile of each
metabolite cluster was summarized by the cluster eigenvector.
RESULTS

Characteristics of the Study Cohort
and Clinical Parameters
We included 138 treatment-naïve subjects who presented wide
variations in clinical blood parameters (based on 124 blood
biomarkers, including biomarkers associated with metabolic
abnormalities such as hyperglycemia, hyperinsulinemia,
hyperlipidemia, and kidney dysfunction) (Additional File:
Tables S2-3). Amongst these treatment-naïve subjects, we have
an over representation of individuals diagnosed with carotid
atherosclerosis at the time of sampling (n=102), as the study
subjects took part in a specifically designed screening program
for carotid atherosclerosis. Due to their display of a diverse range
of metabolic abnormalities and a large variation in blood
biomarkers, the collected data allowed us to evaluate possible
associations between gut microbiota composition, clinical
parameters and urine metabolites across different clinical states.

Selective Clinical Parameters Associated
With the Gut Microbiota Profile
Shotgun-based metagenomic sequencing of fecal microbial DNA
generated a total of 1110.22 Gb of data (on average 7.93 Gb data
per sample), which we clustered into 645 MGS (Nielsen et al.,
2014) present in more than 10% of samples.

To examine associations between phenotypes and the overall
microbiota profile, we performed a permutational multivariate
analysis of variance (PERMANOVA) of each variable vs MGS
compositions. Thirty two variables were identified as covariates,
of which gamma-glutamyl transferase (GGT, r2 = 0.022), ferritin
(r2 = 0.020), alanine aminotransferase (ALT, r2 = 0.020),
monocytes (r2 = 0.020), and triglyceride (TRIG, r2 = 0.018)
had the largest effect sizes (p<0.05, q<0.1, Figure 1A). Five
clinical covariates correlated significantly with a-diversity, and
6 clinical covariates correlated significantly with total gene
counts in the gut microbiota (Additional File: Figure S1).
Conversely, we also tested whether the microbiome data could
be used to predict phenotypic variations. We built prediction
models using random forest based on the relative abundance
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
of MGSs. The gut microbiota-based predictor performed best in
the prediction of triglyceride (TRIG) (r=0.35), followed by low
fluorescence reticulocytes (LFR, r=0.28), middle fluorescent
reticulocytes (MFR, r=0.25), hematocrit (r=0.21), and uric acid
(URIC, r=0.21) (Figure 1B, and Additional File: Figure S2),
indicating generally weak associations between certain blood
biomarkers and the overall composition of the gut microbiota.

Microbial Taxa Correlated With
Clinical Phenotypes
We next aimed to identify potential biomarkers in the gut
microbiome that could be linked to clinical parameters.
Spearman correlation analysis was conducted between
individual MGSs and clinical parameters. Among the false
discovery rates (FDR)-adjusted significant correlations, the
abundance of Eubacteriumeligens correlated negatively with
GGT (MGS 0507, r=-0.30; MGS1459, r=-0.31; MGS1432, r=-
0.33) and total blood levels bilirubin (TBIL) (MGS1459, r=-0.26;
MGS1432, r=-0.28; MGS 0507, r=-0.33);, whereas the
abundances of Tyzzerellanexilis (MGS0415, r=0.30) and
Blautiahansenii (MGS0787, r=0.30) correlated positively with
GGT. Atopobiumparvulum (MGS1482, r=0.39) and
Solobacteriummoorei (MGS0945, r=0.35) correlated positively
with blood levels of thyroxine (T4) (p<0.05, q<0.1, Figure 2).
In line with this, Eubacteriumeligens and Atopobiumparvulum
have been reported to be depleted and enriched, respectively, in
patients with atherosclerotic cardiovascular disease (Jie et al.,
2017). Accumulating evidence has shown that GGT, TBIL, and
T4 serve as risk factors in carotid atherosclerosis by influencing
host inflammation and oxidation stress, but relatively little is
known regarding the mechanisms underlying the pathogenesis
(Kozakova et al., 2012; Lee et al., 2020; Papadopoulou et al.,
2020). We found a significant relation between GGT, TBIL, T4
and gut microbiota, which were involved in the progression of
carotid atherosclerosis. Therefore, through an integrated analysis
of multi-omics, we can further explore how gut microbiota
contribute to the well-established link between these clinical
parameters and carotid atherosclerosis.

Microbial Functions Correlated With
Clinical Phenotypes
Next, we analyzed the correlation between microbial functions
and clinical parameters. The abundances of genes encoding
proteins involved in amino acid metabolism (Proline
biosynthesis, M00015, r=-0.27; Cysteine biosynthesis, M00021,
r=-0.32; Tryptophan biosynthesis, M00023, r=-0.26; Histidine
biosynthesis, M00026, r=-0.30; Ornithine biosynthesis, M00028,
r=-0.31; Methionine biosynthesis, M00017, r=-0.28), gene
expression (Aminoacyl−tRNA biosynthesis, M00359, r=-0.29;
Aminoacyl−tRNA biosynthesis, M00360, r=-0.27; RNA
polymerase, M00183, r=-0.30; Ribosome, M00178, r=-0.29;
Ribosome, M00179, r=-0.30), and energy production
(Coenzyme A biosynthesis , M00120, r=-0.27; NAD
biosynthesis, M00115, r=-0.32; Pantothenate biosynthesis,
M00119, r=-0.27) correlated negatively with monocyte counts,
and the abundances of genes encoding proteins involved in
tyrosine degradation (M00044, r=-0.31), and teichoic acid
October 2021 | Volume 11 | Article 708088
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transport system (M00251,r=-0.30) correlated negatively with
basophils. The abundances of genes involved in the transport of
nickel and/or cobalt (M00246, r=0.37; M00245, r=0.36)
positively correlated with iron (Additional File 8: Figure S3).

These correlations indicated that alterations in the
microbiota taxa and function may be linked to specific
physiological perturbations.

Urine Metabolomic Variations Associated
With Clinical Phenotypes
The metabolites in the urine may be generated by the host and/or
the gut microbiota. By metabolome profiling of the urine, we
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
detected 10890 positively charged and 9416 negatively charged
metabolites, which were clustered into 1042 modules (more than
3 metabolites in each module) based on their co-abundance
using the R package WGCNA (Pedersen et al., 2016). To assess
their clinical relevance, we performed a correlation analysis
between urine metabolites and clinical parameters. A large
number of urine metabolites correlated with blood biomarkers,
compartmentalized into distinct clusters exhibiting positive or
negative correlations (Figure 3 and Additional File: Figure S4).
These urine metabolites demonstrated opposing correlation
relationships with two sets of blood biomarkers. The
metabolites that correlated positively with one set of blood
A B

FIGURE 1 | Alterations of the gut microbiome community associated with clinical parameters. (A) Clinical parameters that showed associations with MGS
composition in PERMANOVA, ranked by the effect size (r2). p < 0.05, q < 0.1 (B) Prediction of clinical parameters by MGS relative abundances with random forest
models, ranked by the performance (the correlation coefficient between predicted value and the measured value). p < 0.05.
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biomarkers including follicle-stimulating hormone (FSH),
luteotropic hormone (LH), glycated albumin (GA), brain
natriuretic peptide brain natriuretic precursor (proBNP), high-
density lipoprotein cholesterol (HDLC), vitamin B12 (VB12),
calcifediol, beta-collagen degradation products, osteocalcin, total
propeptide of type I procollagen (tP1NP), fibrinogen, and
alkaline phosphatase (ALP), tended to correlate negatively with
blood parameters related to liver function (URIC, creatinine
[CREA], ALT, GGT, AST, TBIL, and direct bilirubin [DBIL]),
blood pressure, lipid metabolism (apolipoprotein B [APOB],
apolipoprotein E [APOE], TRIG), and glucose metabolism (C
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
peptide, insulin, and glucose), and vice versa (Figure 3 and
Additional File: Figure S4). Among the phenotype-associated
metabolites, those that correlated negatively with markers of liver
dysfunction (e.g. URIC, CREA, ALT, GGT) included phenols,
steroids, and possible food-derived compounds and metabolic
intermediates (e.g. compounds structurally similar to fragomine,
L−aspartyl−L−phenylalanine cycloheptanecarboxylic acid and,
(R)−mevalonate, L−trans−5−hydroxy−2−piperidinecarboxylic
acid, 20,26−dihydroxyecdysone), whereas metabolites that
correlated positively included molecules that were possible
metabolic intermediates or bioactive compounds (e.g.
FIGURE 2 | Correlations between the gut microbiome and clinical parameters. Heatmap showing correlations between MGS and clinical parameters (Spearman
correlation, p < 0.05). +q < 0.1; *q < 0.01. Color scale indicates the value of correlation coefficient.
FIGURE 3 | Correlations between the urine metabolome and clinical parameters. Heatmap showing correlations between urine metabolomic groups and clinical
parameters (Spearman correlation, p < 0.05, q < 0.05). Only metabolites correlated significantly with more than one clinical parameter are included in the heatmap
(the complete heatmap showing all correlations is illustrated in Additional File 10: Figure S4). Color scale indicates the value of correlation coefficient.
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compounds structurally similar to ethyl cellulose, epomediol,
7−aminomethyl−7−carbaguanine, imipenem,S-adenosyl-L-
homocysteine), suggesting the physiological involvement of those
metabolites and related metabolic pathways. Thus, the urine
metabolomic patterns reflected selective physiological features.

Integration of the Microbiome Species, the
Urine Metabolome and the Phenome
To integrate data on the gut microbiome, the urine metabolome
and the phenome, we performed three rounds of pairwise
Spearman correlations, retaining triangular correlations for
p<0.05 (Figure 4). Compartmentalized by their direction of
correlation with clinical parameters, we found microbe-
metabolite pairs showing positive correlations (which we
termed disease-related microbes/metabolites) and negative
correlations (which we termed health-related microbes/
metabolites) with blood biomarkers where elevated levels have
been associated with diseases (Figure 4). The correlation analyses
indicated that for liver dysfunction-associated parameters (e.g.
GGT and ALT), the disease-related bacteria included Clostridium
bo l t ea e (MGS0007 ) , Tyzze r e l l anex i l l s (MGS0415 ) ,
Ruminococcusgnavus(MGS0160), Blautiahansenii(MGS0787),
and Atopobiumparvulum(MGS1482), whereas the health-related
bacteria included Eubacteriumeligens(MGS1432, MGS0507, and
MGS1459), Faecalibacteriumprausnitzii(MGS1310), and
Ruminococcuslactaris(MGS0445). These bacteria shared a
collection of correlated health-related or disease-related
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
metabolites; the disease-related metabolites included molecules
structurally similar tocinncassiol D2 glucoside, ethyl tiglate, and
dihydroferulic acid 4-sulfate, and the health-related ones included
those similar to phenylacetaldehyde, 3-methyl-quinolin-2-ol, 6-
methylsalicylate, p-methoxycinnarnaldehyde, cassaidine,
lithocholate 3-o-gluronide, and gentisate aldehyde (Figure 4).
Blood levels of APOE and/or TRIG correlated positively with the
abundance of the disease-related bacteria Ruminococcusgnavus,
Blautiahansenii, and Atopobiumparvulum,which in turn
correlated with a series of urine metabolites. These included
the health-related metabolites structurally similar to
phenylacetaldehyde, 3-methyl-quinolin-2-ol and lithocholate,
and the disease-related metabolites similar to cinncassiol D2
glucoside and ethyl tiglate.

Integration of the Microbiome Function,
the Urine Metabolome and the Phenome
Next, we applied the same inter-correlation approach to
microbial modules, urine metabolites and blood biomarkers
(p<0.05, q<0. 1). A few modules significantly correlated with
URIC (e.g. modules in carbohydrate transport and metabolism,
M00171, M00169, M00172, M00491, M00194, M00200,
M00206, and M00201), and these modules correlated with the
health-related metabolites (e.g. metabolites structurally similar to
lithocholate 3-o-gluronide, methoxycinnarnaldehyde, or
phenylacetaldehyde) and the disease-related metabolites (e.g.
metabolites structurally similar to ethyl tiglate, dihydroferulic
acid or imipenem).

Taken together, the results suggested that certain microbiome
features, urine metabolites, and clinical parameters co-vary
across treatment-naïve subjects.

Organization of Trans-Domain
Correlations Into One Two-Domain Tight-
Knit and One Three-Domain Inter-
Connected Communities
Biological entities, such as microorganisms, exist in communities
and interact with each other (Girvan et al., 2002). The interaction
may be directly or indirectly via biomolecules. To unravel the
structure of the interactive relationship between the gut
microbiota, urine metabolites and clinical parameters, we
modeled correlations with a previously reported algorithm
based on edge betweenness (Girvan et al., 2002). After pruning
the loose connections, two large communities emerged
(Figure 5A). The largest community was densely weaved
between 200 MGS and 33 metabolite groups (with 99.1%/1040
edges), partially linked to five blood biomarkers (with 0.2%/3
edges between MGS and phenotypes, and 0.7%/6 edges between
metabolites and phenotypes, Figure 5B). This community
represented a huge cluster of microbe-metabolite interactions,
demonstrating the extensive linkage between the gut microbiota
and the urine metabolome. The second-largest microbial
community was formed by triangular correlations between 41
MGS, 53 metabolite groups and 23 blood biomarkers (with 5%/
14 edges between MGS and phenotypes, 67%/181 edges between
metabolites and phenotypes, and 28%/75 edges between MGS
FIGURE 4 | Trans-omics correlations between the gut microbiome, the urine
metabolome and clinical parameters. Correlations that reached statistical
significance (Spearman correlation, p < 0.05) between MGS and clinical
parameters, between metabolites and clinical parameters, and between MGS
and metabolites, are shown in the heatmap. +q < 0.1; *q < 0.01. Color scale
indicates the value of correlation coefficient.
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and metabolites), which was less dense than the first community
(Figure 5C). In this community, entities from the three systems
were all connected, where changes in one data set resulted in
variations in the other two. The majority of inter-system
correlations were positive, except that a metabolite structurally
similar to diethyl L−malate correlated negatively with blood
variables including GGT, URIC, TRIG, blood viscosity,
testosterone (T), triiodothyronine (T3), ferritin, hematocrit,
monocytes, red blood cell count (RBC), hemoglobin (HB),
gender, alcohol consumption and smoking, and with one MGS
(MGS0544), and that a metabolite structurally similar to 5
−amino−4−imidazole carboxylate correlated negatively with
CREA, URIC and T, indicating antagonistic or inhibitive
relationships. These modeled communities demonstrated close
host-microbiome interactions and trans-omics connections,
especially between the gut microbiota and the urine metabolome.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Towards the Identification of Carotid
Atherosclerosis Biomarkers
Carotid atherosclerosis is usually asymptomatic with high health
risks, and an easily accessible biomarker for this disease is lacking
(Tolle et al., 2015). In our cohort, the carotid atherosclerosis
cases were identified based on ultrasound examination of the
carotid arteries. We first compared the clinical parameters in
groups with or without carotid atherosclerosis. Several variables
differed significantly between individuals with and without
carotid atherosclerosis. Principal coordinate analysis (PCoA) of
the gut microbiota composition failed to distinguish between the
microbiota of individuals with and without carotid
atherosclerosis (Additional File: Figure S7), and the same was
seen for microbial gene counts and a-diversity (Additional File:
Figure S8A). Mann–Whitney U test identified a few MGS
including Prevotellacopri and Prevotellabivia that differed in
A

B C

FIGURE 5 | Correlation communities. Community modeling based on connectivity revealed two distinct communities (A), including a large community composed of
dense microbe-metabolite correlations (B), and a microbe-metabolite-phenotype triangular correlated community (C). Edge denotes correlation at q<0.1 and
coefficient ≥ 0.3. The largest community (B) was formed by 1049 edges of which 99.1%were between MGS and metabolites (MGS and metabolites are coded,
Additional File 15: Table S10). The second largest community (C) was formed by 270 edges where the majority of the three domains were connected. Grey lines,
positive correlations; red lines, negative correlations.
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abundance between individuals with and without carotid
atherosclerosis (p<0.05), but none of them passed the false
discovery rate of q<0.1 (Additional File: Figure S8B). After
gene mapping to both KEGG modules and GMM (Vieira-Silva
et al., 2016), we found several functions altered in the relative
gene abundance in the microbiota of carotid atherosclerosis
individuals (Additional File: Figure S9). These included the
reduction in the abundance of genes involved in methanogenesis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
and the enrichment of genes involved in the metabolism of low
molecular mass carbohydrates in carotid atherosclerosis
(Additional File: Figure S9). We also attempted to pinpoint
the carotid atherosclerosis-related microbial features using a
classification model. However, the 5-repeat 10-fold cross-
validation random forest model performed better on blood
biomarkers (AUC=0.87) than on MGS composition
(AUC=0.54, Figure 6A), indicating a more marked deviation
A

B

C

FIGURE 6 | Classification of carotid atherosclerosis based on the gut microbiome or on the urine metabolome. (A) ROC curves of carotid atherosclerosis
classification based on MGS relative abundances (red) and on the blood profile (green, the left panel), and the top important clinical parameters contributory to the
prediction based on blood profile (the right panel). (B) The ROC curve of carotid atherosclerosis classification based on the urine metabolome (left panel), and the top
important metabolite groups in the classification model (right panel). (C) The ROC curve of carotid atherosclerosis classification based on one urine metabolite ME71
(the left panel), and abundances of ME71 in the non-carotid atherosclerosis and carotid atherosclerosis groups (the right panel).
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associated with carotid atherosclerosis in the blood profile than
in the microbiota. However, since the blood-based
discriminators (such as hypertriglyceridemia, APOB, TRIG,
LDLC, and HbA1c) are common denominators for metabolic
diseases, these are poor biomarkers for carotid atherosclerosis on
their own. These results suggested that the gut microbiota in
carotid atherosclerosis subjects exhibited only minor alterations,
and is not useful on its own as a disease biomarker.

Urine has also previously been used as an easily accessible
biomarker for several diseases (Bouatra et al., 2013). In search of
potential urine biomarkers for carotid atherosclerosis, we
likewise conducted feature selection using the 5-repeat 10-fold
cross-validation random forest. The model classified individuals
with and without carotid atherosclerosis with an area under the
curve (AUC) of 0.72 based on selected urine biomarkers
(Figure 6B). Notably, the mere inclusion of the top important
metabolite group ME71 (structurally similar to 20, 26-
dihydroxyecdysone) in the classification model reached an
AUC of 0.78 (Figure 6C, the left panel). This group of
metabolites was significantly lower in individuals with vs
without carotid atherosclerosis (Figure 6C, the right panel).
However, the variation of ME71 within each group suggests
the need for further validation of its use as a biomarker for
carotid atherosclerosis.
DISCUSSION

In the context of the diverse clinical phenotypes in our cohort, we
integrated multi-omics data by characterizing inter-domain
correlation relationships and further modeled the correlations
into communities. The results showed close interactions between
the blood profile, the urine metabolome and the gut microbiota,
especially that the urine metabolome and the gut microbiota
appeared to covary.

One prerequisite of an integrative trans-omics study is that
there must be variations in the data points. The metabolic
variations between subjects in this study ensured the variation
of clinical variables and thereby the related omics, hence
providing the necessary preconditions for an integrative study.
In addition, the treatment-naïve nature of this cohort eliminated
confounding by medication.

Our study, like many previous studies, indicates that changes
in the abundance of specific bacteria correlate with fluctuations
in certain clinical parameters. These bacteria may serve as
putative disease biomarkers and provide potential therapeutic
targets. Consistent with findings in our study, the genus
Eubacterium is enriched in healthy controls as compared to
patients with liver cirrhosis (Qin et al., 2014), and the abundance
of Ruminococcus has been associated with liver fibrosis (Boursier
et al., 2016). In mouse models, the administration of
Faecalibacteriumprausnitzii has been shown to improve liver
health and reduce hepatic fat accumulation (Munukka et al.,
2017). In comparison to the gut microbiota, our results suggest
that alterations of the urine metabolome may greatly co-vary
with clinical parameters, and certain groups of urine metabolites
may be generally linked to health or disease. These co-varying
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
urine metabolites may be produced or regulated by the same or
related metabolic pathways or by specific bacteria.

By conduction a trans-omic network analysis of all three data
sets, we provide a view into the pattern of connections between
the blood parameters, the gut microbiome, and the urine
metabolome. The statistical correlation between the clinical
parameters, the gut microbiome, and the urine metabolome
does not permit distinction between direct biological crosstalk
or co-occurrence. Nonetheless, association relationships may
allow for the generation of hypotheses to be tested in further
studies focusing on mechanisms or etiology. For instance, the
metabolic characteristics of certain bacteria (for example, the
health-related bacterium Eubacteriumeligens and the disease-
related Ruminococcusgnavus are both degraders of complex
carbohydrates (Mahowald et al., 2009; Crost et al., 2016) is one
point worthy of further exploration for the potential
mechanisms, and they may leave metabolite fingerprints in the
blood and also in the urine that have functional impacts on the
host (for example, the well-documented metabolic effects of
short-chain fatty acids (Morrison and Preston, 2016). The two
large communities uncovered by network modeling demonstrate
that trans-system relationships are quite clustered and packed,
suggesting that entities in the three systems interact frequently.
The largest community highlighted the close association between
the gut microbiome and the urine metabolome, and therefore the
urine metabolomic profile at least in part may reflect the gut
microbiota composition. The trans-omic network probably may
be different between CAS and control. However, due to the small
sample size of the control, we could not provide robust
comparisons of trans-omics network between CAS and
control here.

In a previous study, potential microbial biomarkers for
atherosclerotic cardiovascular disease were identified based on
218 cases and 187 controls (Jie et al., 2017). However, our study
indicates that carotid atherosclerosis is only associated with
minor alterations of the gut microbiota. Further studies are
needed to identify possible associations between the gut
microbiota and carotid atherosclerosis, with adjustment of
confounding factors and larger sample size. Notably, our
findings suggest that the urine metabolome may contain
promising biomarkers for carotid atherosclerosis, and the
potential of the metabolite (ME71, structurally similar to 20,
26-dihydroxyecdysone, 2026E) as a carotid atherosclerosis
marker warrants further validation. 2026E is less reported. But
its end metabolites, 20-Hydroxyecdysone, have revealed many
potential beneficial health effects including the wound-healing,
immunoprotective and anti-osteoporosis effects in many studies
(Buniam et al., 2020). 20-Hydroxyecdysone ameliorates
metabolic and cardiovascular dysfunction in high-fat-high-
fructose-fed ovariectomized rats (Buniam et al., 2020).
CONCLUSIONS

Our results provide evidence that changes in clinical features
related to the disease can be manifested as quantitative changes
in multiple body systems including the blood profile, the gut
October 2021 | Volume 11 | Article 708088

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. Gut Microbiome, Host Biomarkers, Metabolome
microbiome, and the urine metabolome. These multiple systems
are intertwined into closely linked networks. The precise
definition and accurate classification of health and disease
entail a data-driven, multi-omics and integrative approach for
ultimate identification of the most consistent and reliable
biomarkers for a given disease.
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Supplementary Figure 1 | Correlation between Shannon diversity (A) or gene
counts (B) with clinical variables.

Supplementary Figure 2 | Prediction of clinical variables by MGS relative
abundances with random forest models. Prediction accuracy was evaluated by the
correlation between predicted value and the measured value.

Supplementary Figure 3 | Correlation between microbial functional modules and
clinical variables. Heatmap showing correlations between functional modules and
clinical variables (spearman correlation, p < 0.05). +q < 0.1; *q < 0.01. Color scale
indicates the value of correlation coefficient.

Supplementary Figure 4 | Correlation between urine metabolome and clinical
variables. Heatmap showing correlations between functional modules and clinical
variables (spearman correlation). Color scale indicates the value of correlation
coefficient.

Supplementary Figure 5 | Trans-omic correlation between microbial functional
modules, the urine metabolome and clinical variables. Correlations between
microbial functions and clinical variables, between urine metabolites and clinical
variables, and between microbial functions and urine metabolites (spearman
correlation, p < 0.05) are shown in the heatmap. +q < 0.1; *q < 0.01. Color scale
indicates the value of correlation coefficient.

Supplementary Figure 6 | Clinical phenotypes were different between non-CAS
and CAS groups. Wilcoxon rank-sum test was performed between non-CAS and
CAS groups.

Supplementary Figure 7 | PCoA of the genus composition in the gut microbiota.
non-CAS, blue circles; CAS, red triangles.

Supplementary Figure 8 | Mild alterations of the gut microbiota composition in
CAS. (A) Comparison of gene counts (the left panel) and a-diversity (the right panel)
of the gut microbiota in non-CAS and CAS individuals by Wilcoxon rank-sum test.
(B) MGS differing in abundance between non-CAS and CAS at p<0.05 but q>0.1.

Supplementary Figure 9 | Functional alterations of the gut microbiota in CAS.
Differentially enriched modules at Z-score>1.6 as analyzed by KEGG (A) and by
GMM (B) are shown. Green, enriched in the non-CAS group; red, enriched in the
CAS group. Bar length indicates the value of reporter score.
REFERENCES
Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., et al. (2013).

The Human Urine Metabolome. PLoS One 8, e73076. doi: 10.1371/
journal.pone.0073076

Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F.,
et al. (2016). The Severity of Nonalcoholic Fatty Liver Disease Is Associated
With Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota.
Hepatology 63, 764–775. doi: 10.1002/hep.28356

Buniam, J., Chukijrungroat, N., Rattanavichit, Y., Surapongchai, J.,
Weerachayaphorn, J., Bupha-Intr, T., et al. (2020). 20-Hydroxyecdysone
Ameliorates Metabolic and Cardiovascular Dysfunction in High-Fat-High-
Fructose-Fed Ovariectomized Rats. BMC Complement Med. Ther. 20, 140.
doi: 10.1186/s12906-020-02936-1

Chen, Y., Xu, C., Huang, R., Song, J., Li, D., and Xia, M. (2018). Butyrate From
Pectin Fermentation Inhibits Intestinal Cholesterol Absorption and Attenuates
Atherosclerosis in Apolipoprotein E-Deficient Mice. J. Nutr. Biochem. 56, 175–
182. doi: 10.1016/j.jnutbio.2018.02.011

Crost, E. H., Tailford, L. E., Monestier, M., Swarbreck, D., Henrissat, B., Crossman,
L. C., et al. (2016). The Mucin-Degradation Strategy of Ruminococcus Gnavus:
The Importance of Intramolecular Trans-Sialidases. Gut Microbes 7, 302–312.
doi: 10.1080/19490976.2016.1186334
October 2021 | Volume 11 | Article 708088

http://ftp.cngb.org/pub/CNSA/data1/CNP0000048/
http://ftp.cngb.org/pub/CNSA/data1/CNP0000048/
https://www.frontiersin.org/articles/10.3389/fcimb.2021.708088/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2021.708088/full#supplementary-material
https://doi.org/10.1371/journal.pone.0073076
https://doi.org/10.1371/journal.pone.0073076
https://doi.org/10.1002/hep.28356
https://doi.org/10.1186/s12906-020-02936-1
https://doi.org/10.1016/j.jnutbio.2018.02.011
https://doi.org/10.1080/19490976.2016.1186334
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Li et al. Gut Microbiome, Host Biomarkers, Metabolome
Fang, C., Zhong, H., Lin, Y., Chen, B., Han, M., Ren, H., et al. (2018). Assessment
of the cPAS-Based BGISEQ-500 Platform for Metagenomic Sequencing.
Gigascience 7, 1–8. doi: 10.1093/gigascience/gix133

Girvan, M., and Newman, M. E. (2002). Community Structure in Social and
Biological Networks. Proc. Natl. Acad. Sci. U. S. A. 99, 7821–7826. doi: 10.1073/
pnas.122653799

Gu, Y., Wang, X., Li, J., Zhang, Y., Zhong, H., Liu, R., et al. (2017). Analyses of Gut
Microbiota and Plasma Bile Acids Enable Stratification of Patients for
Antidiabetic Treatment. Nat. Commun. 8, 1785. doi: 10.1038/s41467-017-
01682-2

Jie, Z., Xia, H., Zhong, S. L., Feng, Q., Li, S., Liang, S., et al. (2017). The Gut
Microbiome in Atherosclerotic Cardiovascular Disease. Nat. Commun. 8, 845.
doi: 10.1038/s41467-017-00900-1

Jonsson, A. L., and Backhed, F. (2017). Role of Gut Microbiota in Atherosclerosis.
Nat. Rev. Cardiol. 14, 79–87. doi: 10.1038/nrcardio.2016.183

Kozakova, M., Palombo, C., Eng, M. P., Dekker, J., Flyvbjerg, A., Mitrakou, A.,
et al. (2012). Fatty Liver Index, Gamma-Glutamyltransferase, and Early
Carotid Plaques. Hepatology 55, 1406–1415. doi: 10.1002/hep.25555

Lee, I., Lee, H. H., Cho, Y., Choi, Y. J., Huh, B. W., Lee, B. W., et al. (2020).
Association Between Serum Bilirubin and the Progression of Carotid
Atherosclerosis in Type 2 Diabetes. J. Lipid theroscler 9, 195–204.
doi: 10.12997/jla.2020.9.1.195

Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., et al. (2014). An Integrated
Catalog of Reference Genes in the Human Gut Microbiome. Nat. Biotechnol.
32, 834–841. doi: 10.1038/nbt.2942

Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W., and Xu, A. (2016). Akkermansia
Muciniphila Protects Against Atherosclerosis by Preventing Metabolic
Endotoxemiainduced Inflammation in Apoe-/- Mice. Circulation 133, 2434–
2446. doi: 10.1161/CIRCULATIONAHA.115.019645

Liu, R., Hong, J., Xu, X., Feng, Q., Zhang, D., Gu, Y., et al. (2017). Gut Microbiome
and Serum Metabolome Alterations in Obesity and After Weight-Loss
Intervention. Nat. Med. 23, 859–868. doi: 10.1038/nm.4358

Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam,
A., et al. (2009). Characterizing a Model Human Gut Microbiota Composed of
Members of Its Two Dominant Bacterial Phyla. Proc. Natl. Acad. Sci. U. S. A.
106, 5859–5864. doi: 10.1073/pnas.0901529106

Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S.,
Spormann, A., et al. (2013). A Metabolomic View of How the Human Gut
Microbiota Impacts the Host Metabolome Using Humanized and Gnotobiotic
Mice. ISME J. 7, 1933–1943. doi: 10.1038/ismej.2013.89

Morrison, D. J., and Preston, T. (2016). Formation of Short Chain Fatty Acids by
the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes 7,
189–200. doi: 10.1080/19490976.2015.1134082

Munukka, E., Rintala, A., Toivonen, R., Nylund, M., Yang, B., Takanen, A., et al.
(2017). Faecalibacterium Prausnitzii Treatment Improves Hepatic Health and
Reduces Adipose Tissue Inflammation in High-Fat Fed Mice. ISME J. 11,
1667–1679. doi: 10.1038/ismej.2017.24

Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., et al.
(2014). Identification and Assembly of Genomes and Genetic Elements in
Complex Metagenomic Samples Without Using Reference Genomes. Nat.
Biotechnol. 32, 822–828. doi: 10.1038/nbt.2939

Papadopoulou, M., Bakogiannis, N., Skrapari, I., Moris, D., and Chris, B.. (2020).
Thyroid Dysfunction and Atherosclerosis: A Systematic Review. In Vivo. 34,
3127–3136. doi: 10.21873/invivo.12147

Patil, K. R., and Nielsen, J. (2005). Uncovering Transcriptional Regulation of
Metabolism by Using Metabolic Network Topology. Proc. Natl. Acad. Sci.
U. S. A. 102, 2685–2689. doi: 10.1073/pnas.0406811102

Pedersen, H. K., Gudmundsdottir, V., Nielsen, H. B., Hyotylainen, T., Nielsen, T.,
Jensen, B. A., et al. (2016). Human Gut Microbes Impact Host Serum
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
Metabolome and Insulin Sensitivity. Nature 535, 376–381. doi: 10.1038/
nature18646

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A Metagenome-Wide
Association Study of Gut Microbiota in Type 2 Diabetes. Nature 490, 55–60.
doi: 10.1038/nature11450

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al.
(2010). A Human Gut Microbial Gene Catalogue Established by Metagenomic
Sequencing. Nature 464, 59–65. doi: 10.1038/nature08821

Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., et al. (2014). Alterations of the
Human Gut Microbiome in Liver Cirrhosis. Nature 513, 59–64. doi: 10.1038/
nature13568

Schroeder, B. O., and Bäckhed, F. (2016). Signals From the Gut Microbiota to
Distant Organs in Physiology and Disease. Nat. Med. 22, 1079 –11089.
doi: 10.1038/nm.4185

Stepankova, R., Tonar, Z., Bartova, J., Nedorost, L., Rossman, P., Poledne, R., et al.
(2010). Absence of Microbiota (Germ-Free Conditions) Accelerates the
Atherosclerosis in ApoE-Deficient Mice Fed Standard Low Cholesterol Diet.
J. Atheroscler Thromb. 17, 796–804. doi: 10.5551/jat.3285

Tolle, M., Reshetnik, A., Schuchardt, M., Hohne, M., and van der Giet, M. (2015).
Arteriosclerosis and Vascular Calcification: Causes, Clinical Assessment and
Therapy. Eur. J. Clin. Invest. 45, 976–985. doi: 10.1111/eci.12493

Tremaroli, V., and Backhed, F. (2012). Functional Interactions Between the Gut
Microbiota and Host Metabolism. Nature 489, 242–249. doi: 10.1038/
nature11552

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., and
Gordon, J. I. (2006). An Obesity-Associated Gut Microbiome With Increased
Capacity for Energy Harvest. Nature 444, 1027–1031. doi: 10.1038/
nature05414

Vieira-Silva, S., Falony, G., Darzi, Y., Lima-Mendez, G., Garcia Yunta, R., Okuda,
S., et al. (2016). Species-Function Relationships Shape Ecological Properties of
the Human Gut Microbiome. Nat. Microbiol. 1, 16088. doi: 10.1038/
nmicrobiol.2016.88

Wahlstrom, A., Sayin, S. I., Marschall, H. U., and Backhed, F. (2016). Intestinal
Crosstalk Between Bile Acids and Microbiota and Its Impact on Host
Metabolism. Cell Metab. 24, 41–50. doi: 10.1016/j.cmet.2016.05.005

Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al.
(2011). Gut Flora Metabolism of Phosphatidylcholine Promotes
Cardiovascular Disease. Nature 472, 57–63. doi: 10.1038/nature09922

Wright, S. D., Burton, C., Hernandez, M., Hassing, H., Montenegro, J., Mundt, S.,
et al. (2000). Infectious Agents Are Not Necessary for Murine Atherogenesis.
J. Exp. Med. 191, 1437–1442. doi: 10.1084/jem.191.8.1437

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Li, Jie, Feng, Fang, Li, Gao, Xia, Zhong, Tong, Madsen, Zhang, Liu,
Xu, Wang, Yang, Xu, Hou, Brix, Kristiansen, Yu, Jia and He. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
October 2021 | Volume 11 | Article 708088

https://doi.org/10.1093/gigascience/gix133
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1038/s41467-017-01682-2
https://doi.org/10.1038/s41467-017-01682-2
https://doi.org/10.1038/s41467-017-00900-1
https://doi.org/10.1038/nrcardio.2016.183
https://doi.org/10.1002/hep.25555
https://doi.org/10.12997/jla.2020.9.1.195
https://doi.org/10.1038/nbt.2942
https://doi.org/10.1161/CIRCULATIONAHA.115.019645
https://doi.org/10.1038/nm.4358
https://doi.org/10.1073/pnas.0901529106
https://doi.org/10.1038/ismej.2013.89
https://doi.org/10.1080/19490976.2015.1134082
https://doi.org/10.1038/ismej.2017.24
https://doi.org/10.1038/nbt.2939
https://doi.org/10.21873/invivo.12147
https://doi.org/10.1073/pnas.0406811102
https://doi.org/10.1038/nature18646
https://doi.org/10.1038/nature18646
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nature13568
https://doi.org/10.1038/nature13568
https://doi.org/10.1038/nm.4185
https://doi.org/10.5551/jat.3285
https://doi.org/10.1111/eci.12493
https://doi.org/10.1038/nature11552
https://doi.org/10.1038/nature11552
https://doi.org/10.1038/nature05414
https://doi.org/10.1038/nature05414
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1038/nmicrobiol.2016.88
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1038/nature09922
https://doi.org/10.1084/jem.191.8.1437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles

	Network of Interactions Between Gut Microbiome, Host Biomarkers, and Urine Metabolome in Carotid Atherosclerosis
	Introduction
	Materials and Methods
	Study Cohort and Sample Collection
	Metagenomic Sequencing, Binning, and Annotation
	Correlation Analysis Between the Gut Microbiome, the Urine Metabolome and Blood Biomarkers
	Community Analysis
	Prediction and Classification by Random Forest
	Functional Analysis of Microbiota
	Urine Metabolomics

	Results
	Characteristics of the Study Cohort and Clinical Parameters
	Selective Clinical Parameters Associated With the Gut Microbiota Profile
	Microbial Taxa Correlated With Clinical Phenotypes
	Microbial Functions Correlated With Clinical Phenotypes
	Urine Metabolomic Variations Associated With Clinical Phenotypes
	Integration of the Microbiome Species, the Urine Metabolome and the Phenome
	Integration of the Microbiome Function, the Urine Metabolome and the Phenome
	Organization of Trans-Domain Correlations Into One Two-Domain Tight-Knit and One Three-Domain Inter-Connected Communities
	Towards the Identification of Carotid Atherosclerosis Biomarkers

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


