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Sea pens are considered to be of conservation relevance according to multiple
international legislations and agreements. Consequently, any information about their
ecology and distribution should be of use to management decision makers. This
study aims to provide such information about six taxa of sea pen in Norwegian
waters [Funiculina quadrangularis (Pallas, 1766), Halipteris spp., Kophobelemnon
stelliferum (Müller, 1776), Pennatulidae spp., Umbellula spp., and Virgulariidae spp.].
Data exploration techniques and ensembled species distribution modelling (SDM) are
applied to video observations obtained by the MAREANO project between 2006 and
2020. Norway-based ecological profiles and predicted distributions are provided and
discussed. External validations and uncertainty metrics highlight model weaknesses
(overfitting, limited training/external observations) and consistencies relevant to marine
management. Comparison to international literature further identifies globally relevant
findings: (a) disparities in the environmental profile of F. quadrangularis suggest differing
“realised niches” in different locations, potentially highlighting this taxon as particularly
vulnerable to impact, (b) none of the six sea pen taxa were found to consistently co-
occur, instead partially overlapping environmental profiles suggests that grouping taxa as
“sea pens and burrowing megafauna” should be done with caution post-analyses only,
(c) higher taxonomic level groupings, while sometimes necessary due to identification
issues, result in poorer quality predictive models and may mask the occurrence of rarer
species. Community-based groupings are therefore preferable due to confirmed shared
ecological niches while greater value should be placed on accurate species ID to support
management efforts.

Keywords: sea pen, Pennatulacea, vulnerable marine ecosystem, marine management, species distribution
model, external validation

INTRODUCTION

Responsible management of worldwide marine resources requires an understanding of the
distribution and ecology of vulnerable marine species and habitats across management areas
(Crowder and Norse, 2008). This requires identification of both the vulnerable species or habitat
and a management-relevant interpretation of ecological and distributional information.

Species and communities of conservation interest are discussed under many agreements
and legislations with many overlapping criteria [e.g., the IUCN Red List (IUCN, 2012), the
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FAO’s Vulnerable Marine Ecosystems Food and Agriculture
Organization (Food and Agriculture Organization [FAO], 2009),
the UN Convention on Biological Diversity’s Azores Criteria for
identifying Ecologically or Biologically Significant Areas (CBD,
2009), OSPAR’s Texel Faial Criteria (OSPAR, 2019)], but broadly
are qualified as being one or more of the following:

Spatially vulnerable: rare or unique, and unspoiled or
showing a decline in distribution.
Functionally vulnerable: keystone (species) or of functional
significance (communities), and therefore loss of
biodiversity or larger ecosystem change would likely
occur if destroyed.
Physically vulnerable: e.g., fragile, slow growing, or
infrequent breeders, and therefore with implicit low
resistance (easily impacted) or resilience (poor recovery
potential) to anthropogenic impact.

Sea pens (Cnidarians from the order Pennatulacea)
encompass multiple taxa which are of conservation interest.
Several sea pen taxa have been shown to be long-lived (in the
order of decades; Wilson et al., 2002; De Moura Neves et al., 2015,
2018). Many types of sea pen form dense aggregations, thereby
modifying hydrodynamics and providing shelter and habitat for
other taxa including commercial fish species (Brodeur, 2001;
Baillon et al., 2012, 2014; De Clippele et al., 2015). Indeed, sea
pen fields have been targeted as fishing grounds due to perceived
higher abundances and qualities of commercial species of fish
(Colpron et al., 2010) or due to co-occurrence with commercially
important invertebrates (e.g., the Norway Lobster, Nephrops
norvegicus, Greathead et al., 2007). Whether targeted or not, as
many sea pen taxa live in soft sediments on continental shelves,
these species and the habitats they form are likely to be impacted
by bottom fisheries. While some species can retract quickly
into the sediment at any sign of disturbance (e.g., Virgularia
mirabilis), others are brittle, tall, and non-retractable (e.g.,
Funiculina quadrangularis) making them particularly sensitive
to anthropogenic impact (Hughes, 1998; Greathead et al., 2007).
Note that retractable species have also been shown to be sensitive
to the most intensive bottom trawling (e.g., Wilding, 2011).
Consequently, sea pen species and habitats are often included
on lists of habitats for conservation management action (e.g.,
OSPAR, 2010; ICES, 2020).

One method to support the marine management of such
conservation relevant habitats and species is to utilise current
species distribution modelling (SDM) methods. SDMs (also
called habitat suitability models) are concerned with relating
species/habitat presence to the environmental conditions they
favour such that some form of likelihood of presence can be
projected onto un-surveyed areas. This is particularly useful in
deeper marine environments where it is costly and difficult to
survey large areas. Among other applications, SDM methods
can support marine management and conservation (Marshall
et al., 2014) by, for example, estimating the proportion of
habitats that are currently being protected for comparison to
national and international targets (Ross and Howell, 2013),
providing baselines for continued climate and anthropogenic

impact monitoring (Clark and Tittensor, 2010; Tittensor
et al., 2010), or supporting spatial management over smaller
scales to avoid overlarge precautionary marine protected areas
(Rowden et al., 2017).

The main goal of this study is to use multivariate data
exploration and SDMs to further develop our understanding of
the ecology and distribution of six sea pen taxa and to help inform
the management bodies responsible for making conservation
decisions. These taxa are: Funiculina quadrangularis (Pallas,
1766), Halipteris spp., Kophobelemnon stelliferum (Müller, 1776),
Pennatulidae spp., Umbellula spp., and Virgulariidae spp.

This study takes both a national and an international
perspective. Nationally, the study is focussed on Norway, where
synthesised distribution data is lacking for these taxa, but
the large benthic video transect dataset collected by Norway’s
national marine areal mapping programme (MAREANO, Buhl-
Mortensen et al., 2015) offers a useful basis for such studies.
Internationally, this study compares Norwegian findings with
those from elsewhere in the world, allowing niche comparisons,
and helping us to provide better insight into sea pen management
decisions worldwide for these six widely distributed taxa.

In particular we focus on:

(a) whether we can predict the distribution of these taxa
accurately enough to aid marine management in Norway

(b) whether there are any disparities between the
environmental profiles in different countries, and what
this might mean from the perspective of management
decision-making internationally,

(c) whether a grouping as “sea pens and burrowing megafauna
communities” is useful at the analysis stage, or if taxa
should be treated more individually, and

(d) whether there are management implications where there
are taxonomic identification issues.

All of these questions are relevant to marine managers
internationally and stem from the fact that decisions must
be made based on limited datasets and in restricted time
windows. Time- and money-saving exercises are therefore often
appreciated, such as using environmental profiles built in another
part of the globe for the same or a similar taxa (e.g., Bridge
et al., 2020), grouping taxa into assumed communities or
functional groups during analysis (Olenin and Ducrotoy, 2006;
Murillo et al., 2020), and “making do” with poor taxonomic
resolution (Vanderklift et al., 1998). Sometimes these measures
are unavoidable, but any assessment of the implications of such
“short-cuts” must be useful in deciding what is responsible and
realistic to undertake.

All results are discussed from the perspectives of both ecology
and conservation and at both Norwegian and international levels.

MATERIALS AND METHODS

Study Region
Norway began funding a national multidisciplinary, marine
mapping program in 2005 (the MAREANO programme, Buhl-
Mortensen et al., 2015), undertaking a systematic mapping
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FIGURE 1 | Map of the study area. The study area map includes approximate
directions of dominant currents and the polar front which forms a putative
biogeographic boundary, together with the modelled area (restricted by
mapped environmental layer coverage), and the locations of MAREANO video
transects that were used as the basis of this work.

and sampling programme in management defined areas. This
programme provided the base dataset for this study and
includes multibeam bathymetry and benthic video transects (as
well as regular physical sampling) using standardised sampling
procedures across a wide area (Buhl-Mortensen et al., 2015).
The sampled region to date (hereafter, ‘the MAREANO area’) is
restricted to the shelf and slope to the west and north of Norway,
with extensions into the Barents Sea and Svalbard regions
(Figure 1). The SDMs in this study are projected beyond the
MAREANO area to provide near full coverage of the Norwegian
extended economic zone (EEZ) and marine management areas.
However, the SDM region is restricted in the north by the range
of “mapped” environmental variables (i.e., where data is available
with spatially regular values such that a GIS raster could be
made from the data).

The oceanography of the area is mostly dominated by
northward flowing Atlantic Water (AW), Arctic Intermediate

Water (AIW), and Norwegian Sea Deep Water (NSDW) on
the west coast of Norway, while Arctic Water (ArW) flows
southwards encroaching into the north of the Barents Sea region.
The associated characteristic properties of these water masses can
help us to interpret our results and define whether each sea pen
taxa may be confined to any particular water mass.

The AW is characterised by salinities over 35 g/kg with
variable warmer temperatures and a lower boundary at ∼400–
800 m (Blindheim and Rey, 2004). Below this, the cooler
water masses are recirculated from Greenland. AIW has
salinities between 34.87 and 34.91 g/kg (a salinity minimum
on the slope) with temperatures between –0.5 and 1◦C and
predominantly occurring between∼400 and 1000 m (Blindheim,
1990; Blindheim and Rey, 2004; Jeansson et al., 2017). At the
deepest extent of our observations, below∼1000 m, NSDW is < –
0.5◦C, with salinities between 34.91 and 34.92 g/kg (Blindheim
and Rey, 2004). In the shallower Barents Sea, there is also a
biogeographic boundary represented at least partially by the
polar front (Lacharité et al., 2016; Buhl-Mortensen et al., 2020)
where the northward flowing cooling AW meets southward
flowing Arctic water (ArW). Similar to the AIW, ArW has low
temperatures (<0◦C) and low salinities (<34.7 g/kg) due to the
influence of ice meltwater, with its position partly related to the
extent of ice cover each year (Barton et al., 2018).

All study taxa show potentially circum-global distributions
particularly as pooled genera or families (Williams, 2011;
GBIF download, 2020a,b,c,d,e,f). The study area, while only
covering part of their ranges, has the potential to represent
the northern extent of some of these taxa, giving a chance of
encountering niche limits (sub-optimal environments) especially
where the polar front may offer a distinct biogeographic
boundary (Hargreaves et al., 2014).

Taxa Data
The MAREANO dataset used in this study comprises
georeferenced observations from second-by-second video
analysis of standardised benthic video transects, each ∼800 m
length. These data were collected on 28 cruises between 2006
and 2019, using either the “CAMPOD” or “Chimaera” camera
systems (described in Buhl-Mortensen et al., 2009, 2012; Buhl-
Mortensen and Buhl-Mortensen, 2017) with HD video cameras
at a 45◦ angle, and annotated in a custom-made software:
VideoNavigator (described in Gomes Pereira et al., 2016).
More details are available in Buhl-Mortensen et al. (2020)
and Gonzalez-Mirelis et al. (2021).

While a fully quality controlled and quantitative dataset
will become available soon (the MAREANO Video Database,
‘MarVid,’ Gonzalez-Mirelis et al., 2021), this study used semi-
quantitative (i.e., counts are approximate) field data from 2051
video transects (the ‘MarBunn’ field dataset can be made available
upon request to nmd@imr.no).

The MarBunn dataset may suffer from some additional errors
due to the on-the-fly nature of its analysis, but these were resolved
as far as possible. The data was cleaned of misspellings and
common names to ensure consistent naming of all sea pen taxa.
All sea pen records at species level were taken as the primary
group of taxa. Genus level data was also consolidated with these
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datasets to ensure that the presence dataset size was > 15 presence
points at a scale of one presence point per 400 m pixel. Genus
level records may, at any rate, be due to lack of visibility or
distance from the camera reducing video-based taxonomic ID
confidence. A preliminary environmental analysis (histograms
per taxa per environmental variable, see below) revealed that
several of the assumed species-level taxa may be representative of
more than one species due to bi-modalities and literature searches
indicating alternative occurrences in the study region. These
records were therefore elevated to the finest resolution higher
taxonomic level that seemed likely based on historic physical
sampling records in the region. This meant that two taxa were
raised to genus level (Halipteris spp., Umbellula spp.), and two to
family level (Pennatulidae spp., Virgulariidae spp.).

All georeferenced taxa observations were mapped in ArcGIS
10.6.1 and ‘rogue pings’ (produced by un-quality-controlled
georeferencing) identified and removed from the analysis. The
data resolution was coarsened to align with the full coverage
environmental data (see below), resulting in one data point per
400 m (x400 m) pixel projected into Albers Equal Area Conic
(parallel 1 = 55.8333, parallel 2 = 79.1666).

For this study, the sea pen dataset was reduced to
presence/pseudo-absence records in the interest of consistency
and quality control. Given the ∼3 m width of field of view
of a video transect, while all records of target taxa could be
considered to be presence points (P) at 400 m pixel resolution,
their absence could not be guaranteed. Consequently, transect
absences are considered to be pseudo-absences (psA), the concept
of which is most important for the modelling process (see
section “Modelling”).

A total of 6498 points of MAREANO video data were available
for use at 400 m resolution, within 2051 video transects (see
section “Modelling” for P:psA ratios per taxa).

Further presence data for ground-truthing purposes (an
external independent test dataset) was obtained from:

– GBIF1 (GBIF download, 2020a,b,c,d,e,f) – presence only
data.

– a southern Norway survey report freely available online
(OCEANA, 2018) – presence/pseudo-absence data.

– Selected unused MAREANO pseudo-absence data and
the few unused presence points that did not have all
environmental data layers overlapping them.

Note, this was not data gathered for the purpose of ground-
truthing models, so their unbalanced distribution and varying
dataset sizes are not ideal for this purpose. Consequently results
should be interpreted with caution.

The data was cleaned to ensure that all points fall within the
study area, are reduced to 1 point per 400 m pixel, and pseudo-
absence points from OCEANA (2018) and MAREANO datasets
were pooled and selected from using the same criteria as the main
modelling selection (see section “Modelling”: must be between 5
and 300 km of a presence point then randomly selected to ensure
a 2:1 ratio relative to the presence points). The final ground-
truthing dataset comprised of (p:psA): 33:66 F. quadrangularis,

1https://www.gbif.org/

10:20 Halipteris spp., 109:218 K. stelliferum, 256:512 Pennatulidae
spp., 4:8 Umbellula spp., 403:806 Virgulariidae spp. Maps of these
ground-truthing presence and psA points are provided as insets
to the predictive distribution maps.

Environmental Data
Mapped environmental variables were selected to maximise
coverage of the study area, capture conditions likely to influence
sea pen distribution, and be up- or downscale-able to 400m
resolution (i.e., displaying one datapoint for every 0.16 km2).

The following “parent” variables were considered for
evaluation (numbers in brackets represent the number of
“sub-variables” within these, e.g., fine scale, broad scale, average,
min, max, etc. There were 36 sub-variables considered. Brief
summaries are given here, but more details are available in
Supplementary Material.):

– bathymetry and derivatives: bathymetry, slope,
topographic position index (TPI, 2), vector ruggedness
measure (2), relative relief, bathy-based water mass.

– geological variables: landscape, valleyness, sediment (5).
– physical variables: carbon biomass of phytoplankton (2),

current speed (2), chlorophyll a, dissolved oxygen (2),
distance to shore, ice cover (2), silicon, salinity (4),
temperature (4), temperature-based water mass, and
Temperature/Salinity (TS) interaction.

All “parent” variables were re-projected into Albers Equal
Area Conic (parallel 1 = 55.8333, parallel 2 = 79.1666, 400 m
resolution) using the projectRaster function (Hijmans, 2020)
with bilinear interpolation in R (R Core Team, 2020) before any
“sub-variables” were derived.

The bathymetry was obtained from GEBCO Compilation
Group (2019)2 (accessed 27.01.2020) at 15 arc-second resolution
(∼400 m in the study region). All bathymetry derivatives were
generated in R (R Core Team, 2020) after reprojection, using
the functions described in Supplementary Material. These
sub-variables may act as proxies for otherwise uncaptured
environmental data such as geomorphological features and their
hydrodynamic influences (Wilson et al., 2007).

All geological variables originated from the Norwegian
Geological Survey (NGU), with mapped polygon variables
available for download from https://www.ngu.no/en/topic/
datasets (accessed 24.03.2020). All polygons were converted to
rasters with 400 m resolution. Some categories of the “Landscape”
variable were combined after trials (see Supplementary
Material). The “Valleyness” variable was derived from
“Landscape” to provide an ordered categorical variable that
describes how valley-like the landscape is [ranging from flat
(0) to fjord (10), see Supplementary Material]. An ordered
categorical variable is preferable in modelling, as predicted
intermediate values can then be interpretable along the ordered
scale. The “sediment” sub-variables were percentage sediment
fractions and were converted from two combined categorical
polygon maps (see Supplementary Material) into percentages

2https://gebco.net/
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using the conversion chart available here3. None of the geological
variables cover the whole prediction area (∼60%). Consequently,
a minimum of 2% was used for all sediment classes, such that it
is always clear that 0% meant that there was no data present in a
given area. The importance of sediment variables in the models
is therefore likely to be underrepresented, but the histograms,
PCAs, and model training data are based on locations where data
is available so should reflect true patterns.

The remaining physical variables, mostly based on
oceanographic models and remote sensing data, were obtained
from bio-oracle4 (accessed 24.03.2020; Tyberghein et al., 2011).
All but one of these variables were obtained for the bottom
layer of the model (the “benthic” data layers), using the “mean
depth” option where multiple depth readings were available. The
exception was “ice cover” which necessarily is a surface variable
and was used as a proxy for where the polar front/biogeographic
boundary may occur. All bio-oracle data was downloaded at 5
arcminute resolution (∼8 km). This is undesirably coarse but
the variables are potentially mechanistically important to the
animals and needed to be represented – consequently all should
be interpreted as being broadscale with local variations that are
not captured in this analysis (interpolation to 400 m cannot
add any detail).

Three further variables were derived and trialled to capture
water mass structure. The trialled variables were derived from
depth (“Bathymetry-based Water Mass,” based on Jeansson et al.,
2017), Average Temperature (“Temperature-based water mass,”
based on Blindheim, 1990), and Av. Temperature multiplied by
Av. Salinity (“TS interaction”) respectively. The ‘TS interaction’
variable showed the most promise in this region (although it
bares further development in the future) as the study area
sees incursion of different types of arctic water in northern
shallow water and in western deep water. Consequently depth- or
temperature-only derived variables could not capture all possible
water masses (although they may be adequate proxies in other
regions of the globe).

All spatially aligned environmental variable values were
extracted to the one-point-per-pixel P/psA locations using the
ArcGIS spatial analyst extension.

Fishing Data
Fishing data from >15 m sized boats was obtained from the
freely accessible Norwegian Electronic Reporting Service (ERS)
dataset (Norwegian Fisheries Directorate, 2021) for a preliminary
comparison to model maps. Norwegian fishing vessels are
required to report the start and end of each fishing operation
while at sea. Note that no foreign vessel data is included
in this dataset. For the vessels that operate mobile, bottom-
contacting gear (e.g., bottom trawls etc.), these two positions
were interpolated into a straight line to approximate the path
followed by the vessel, and therefore, the main impact footprint
on the seabed. In order to account somewhat for interannual
variability we used data for 4 years (namely 2017–2020). Fishing
lines were converted to raster density layers (m/m2) per year

3https://www.ngu.no/Mareano/Kornstorrelse.html
4https://bio-oracle.org/

within a cell size of 1000 m (this was deemed more appropriate
than 400 m resolution given positional accuracy concerns). The
average density for all 3 years was then calculated to approximate
the location of common fishing grounds, and up-resolved to
400 m to compare with sea pen predictions.

Analysis and Modelling
All analyses were undertaken in R (R Core Team, 2020).

Data Exploration
The 36 environmental sub-variables at sample locations were
plotted as individual histograms against presence data in order to
provide a visual assessment of value ranges and data distributions.
As spurious results are possible in modelled variables, the
peak (most frequent) values within average/minimum/maximum
variable histograms were given more credence than the
extremes (e.g., the minimum of minimum/the maximum
of the maximum).

A variance inflation factor (VIF) analysis was undertaken
(using the usdm package; Naimi et al., 2014) to provide a
more refined list of variables to work with in interpretations
and modelling. The VIF is equivalent to 1/(1-R2) per variable
(when that variable is regressed against all other variables, but
not the response variable). This provides a way of identifying
the variables which are most collinear with others. Typically,
the variable with the highest VIF is removed stepwise to be as
objective as possible (e.g., Yesson et al., 2017), but we chose
to employ expert judgement, giving preference to the retention
of variables which were likely to be more mechanistically
relevant or intuitive than one of their strong correlates. This was
supplemented by a correlation analysis to identify correlated sets
of sub-variables to select from. The remaining variables had a
VIF < 3.7, and a maximum correlation of | 0.6|.

The following 14 sub-variables (of the original 36 listed
in Supplementary Material) were retained after the VIF
selection process: bathymetry, carbon biomass of phytoplankton,
maximum current speed, distance to shore, average ice cover,
salinity range, % gravel, % mud, % sand, slope, temperature
range, fine-scale TPI, valleyness, and TS interaction. These were
used as the base “14 variable” dataset for the first set of models
and all environmental analyses. (A subsequent reduction to
eight variables was done in a second round of modelling to
attempt to control for overfitting due to model complexity. See
section “Modelling”).

Principle Component Analysis (PCA) biplots were made
both prior to and after the VIF selection process, giving
another perspective of variable importance and collinearity, and
providing a means to examine any observable patterns displayed
by presence locations as plotted in environmental space.

The co-occurrence of taxa in the dataset was examined as
a means of understanding where environmental niches may be
similar. Based on the presence or absence of the six taxa per video
transect, the co-occur package (Griffith et al., 2016) utilised the
probabilistic model of species co-occurrence (Veech, 2013) to
compare the observed and expected frequencies of co-occurrence
between each taxa pair. Results show whether there is a positive,
negative, or random association between taxa.
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Interpretations of all of these data explorations contribute
toward the inferred likely habitat preference for each taxon; all of
which were compared to international literature where possible.
As comparisons to higher level taxon environmental profiles are
problematic to interpret (they may be very vague), comparisons
for each of these taxa are made with the most likely species-
level taxon to be occurring within Norwegian waters, with an
understanding that there may be records for other species in the
dataset. Therefore, environmental profiles are compared with the
literature profiles of Halipteris finmarchica for Halipteris spp.,
Pennatula phosphorea for Pennatulidae spp., Umbellula encrinus
for Umbellula spp., and Virgularia mirabilis for Virgulariidae
spp. [decisions informed by Directorate for Nature Management
(2001) report, GBIF records (GBIF download, 2020a,b,c,d,e,f),
the Norwegian Species Database5 and OCEANA (OCEANA,
2018; Álvarez et al., 2019) records].

Modelling
The psA classification of the absence records (as described
in section “Taxa Data”) was intended to function more like
background data while adjusting for the bias of the survey area
(sensu Phillips and Dudík, 2008). However, as psA dominance
relative to P locations can still bias model training (like
absences), we first subset psA locations per taxon to optimise the
training datasets, as advised by Lobo et al. (2010). Hutchinson
(1957) described the concept of the fundamental and realised
niches – the former shaped by environment alone, and the
latter including the effects of impact and biotic interaction.
Consequently Lobo et al. (2010) describe three types of absences:
environmental (outside of both the fundamental and realised
niches), contingent (outside the realised niche, but within
the fundamental niche), and methodological (within both the
fundamental and the realised niches, i.e., erroneous). The psA
subsets were therefore designed to minimise the methodological
absences and reduce the number of irrelevant environmental
absences whilst maintaining a reasonable prevalence (i.e.,
proportion of P:psA). In practice this meant retaining all P
locations with associated environmental data (no NA values),
and subsetting psA per taxon so that they were located between
5 and 300 km from a P location. A further random selection
from within that psA subset was done to maintain a prevalence
of 0.33 (1P:2 psA) after Liu et al. (2019). Consequently the data
subsets had the following P:psA ratios (based on 1 location per
400 m pixel): F. quadrangularis – 104:208, Halipteris spp. – 15:30,
K. stelliferum – 194:388, Pennatulidae spp. – 18:36, Umbellula
spp. – 87:174, and Virgulariidae spp. – 175:350.

The SDMs were built using the Biomod2 package (Thuiller
et al., 2020) which allows you to run several different types of
model at once and subsequently create an ensemble prediction
(Thuiller et al., 2009). Ensemble models have the advantage of
stabilising uncertain predictions and providing a consensus that
is more balanced than using one model alone (Grenouillet et al.,
2011). Although an ensemble may not outperform a well-tuned
individual model when using default settings (Hao et al., 2020),
ensemble models do have the benefit of offering multiple input

5https://artskart.artsdatabanken.no/

models to derive more understanding of spatial uncertainties
and can still perform equally well or better with additional
tuning (Grenouillet et al., 2011). After initial trials, four types
of machine learning model were run within Biomod2 for this
study: Generalised Boosted Models (GBM, Ridgeway, 1999),
Classification Tree Analyses (CTA, Breiman, 1984), Random
Forests (RF, Breiman, 2001), and maximum entropy models
(Maxent, Phillips et al., 2006). While more types of model are
available within biomod2, models were chosen based on authors
experience levels and with due diligence applied to understanding
settings, relevance, and interpretations. (For more information
on the pros and cons of each algorithm see e.g., Zhang and Li,
2017; Liu et al., 2019; Hao et al., 2020).

Preliminary tests recommended that, for this study, GBMs
should be run with 3000 trees and an interaction depth of 3;
RFs with a node size of 1; and Maxent with background data
sampled from environmental rasters up to a maximum of 388
points. The presence only Maxent models operate differently
from the other algorithms, using background data instead of
psA data for optimal functioning (it is possible to run them
with psA + P points as a background, but that set up is not
supported in biomod2). Therefore the Maxent models in this
study were allowed to randomly sample background points
from the environmental rasters, but the maximum number of
background points was set to be equivalent to a 1:2 P:PsA ratio
for the largest presence dataset i.e., 388 (2∗ 194 K. stelliferum
presence points) after the advice of Liu et al. (2019). While the
smaller datasets may therefore have larger than 2:1 ratios, at worst
this means there are more background points than are needed
and predictions should not be disadvantaged or biased as a result
(Liu et al., 2019). All other settings (including all CTA settings)
were left at biomod2 defaults.

As no two algorithm runs give the same answer, five runs
were made with each model type, giving 20 model builds and
predictions for the six taxa (i.e., 120 models). Each run used
five-fold cross-validation (CV), training models on 4/5ths of
the presence datasets and tested on the held out 1/5th portion.
A blockCV approach was used to spatially stratify the training
and test data using the same method as Hao et al. (2020): briefly,
the “blockCV” package (Valavi et al., 2018) was used, with the
‘spatialAutoRange’ function calculating the optimal size of blocks.
The ‘selection = random’ argument was used in the ‘spatialBlock’
function to map and assign block and fold distribution in
a suitable format for a ‘BIOMOD2’ ‘DataSplitTable’). This
technique is used to combat issues of spatial autocorrelation and
overfitting and to better approximate an independent test dataset
(Valavi et al., 2018).

As it is generally advisable to use multiple evaluation metrics,
the True Skill Statistic (TSS), Relative/Receiver Operating
Characteristic (ROC), Cohen’s Kappa/Heidke skill score
(KAPPA) and frequency bias score (BIAS) were calculated as
evaluations of CV model accuracy. TSS represents how well the
forecast separates “yes” from “no” events as values between –1
and 1, where 0 shows no skill. ROC is the hit rate vs. the false
alarm rate with results between 0–1 and 0.5 represents no skill.
KAPPA gives the fraction correctly classified excluding the
proportion expected to be correct due to random chance and
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gives values from –1 to 1 with ≤0 being no skill. BIAS measures
the frequency of forecast events compared to observed events
to highlight under-forecasting (values < 1) or over-forecasting
(values > 1) (Allouche et al., 2006; Wunderlich et al., 2019).

All 120 models were projected onto a stack of 14
environmental variable rasters to produce predictions for
the whole study area. Each model also produced variable
importance scores which were ranked and used to contribute to
the assessments of preferred environmental conditions obtained
from data exploration.

As using 14 environmental variables as predictors has the
potential to cause overfitting due to the creation of over complex
models, all models were then re-generated using the top 8
variables from the 14 variable constituent model runs, ensuring
that the top two from each taxon were included. This generated
another 120 models using the following 8 predictors as a
basis: bathymetry, carbon biomass of phytoplankton, maximum
current speed, distance to shore, percentage of gravel, percentage
of mud, slope, and TS interaction.

Two ensemble models were then forecast for each taxon,
one formed from the mean of all model runs within the 14
variable set, and the other from the mean of all models in the 8
variable set. While constituent runs had differing performance
scores, no weightings were given to constituent models as the
poor runs should not exert undue influence over the ensemble
(Hao et al., 2020). Results from both ensemble predictions
are evaluated for all taxa on the basis that consistencies and
inconsistencies between them can further highlight prediction
uncertainty/stability. Ensemble models were again assessed using
TSS, ROC, KAPPA, and BIAS scores, and variable importance
rankings produced.

Committee averaged (CA) predictions and Coefficient of
Variation (CoV) maps were produced to accompany ensemble
maps to provide more insight into spatial uncertainty. CA
averages the binary (predicted presence or absence) output
of all thresholded constituent models, here optimised by TSS
scores. This provides a combined prediction and uncertainty
score since values closer to 0 or 1 show agreement between
constituent models on predicted absence and presence
respectively, while values closer to 0.5 show disagreement.
CoV maps show the s.d./mean for all pixels cross constituent
models giving higher values where there is more variation in
prediction scores.

Additionally a clamping map was produced per taxon showing
where environmental values are outside of the trained range
(based on the full 14 variable dataset) highlighting where
uncertainty may stem from unsampled conditions (these can be
found in Supplementary Material).

The 14 variable and 8 variable ensemble prediction rasters
were intercompared using a Pearson Correlation Coefficient to
assess the spatial similarity of model predictions both within
taxa between the different variable sets, and across taxa to assess
predicted co-occurrence.

Similarly, the Pearson Correlation Coefficient was also
calculated for all ensemble model predictions relative to the
fishing activity dataset. This gives an approximate score for the
potential for impact.

RESULTS

Environmental Profiles and Comparison
With International Literature
An interpretation of the environmental profiles of each of
these taxa, based on histograms of observations related to
environmental data layers (Figure 2 and Supplementary
Material) is shown in Table 1. Of the six taxa studied,
Umbellula spp. appear to prefer the deepest water (∼800 m), and
K. stelliferum the shallowest (∼200 m), although Pennatulidae
spp. have the shallowest depth range (max 550 m). Umbellula
spp. are found in the coolest temperatures (av. 1.3◦C, min –
1◦C), but Virgulariidae spp., being present in ArW, are also
very tolerant of cold water (a peak at 3.5◦C, min –0.5◦C).
Pennatulidae spp. have the widest salinity tolerance (min peaks
33.7–34.5 g/kg, max 34.6–35.3 g/kg) and both Pennatulidae spp.
and F. quadrangularis seem to favour areas with weaker currents
(∼0.07 m/s, P. spp.: max 0.2 m/s, F. q.: 0.28 m/s) than the other
taxa. Most taxa seem to favour flatter areas in valleys, canyons,
or fjords, but Umbellula spp. are more likely to be found on
the slope. Halipteris spp. have the greatest affinity for coarse
gravelly sediments, and the least preference for mud, although
Pennatulidae spp. also seem to prefer lower mud contents always
being found with some proportion of sand. Umbellula spp. and
Virgulariidae spp. have the most variable association with mud
proportions suggesting a potential wider tolerance for varying
sediment types than the other taxa (but sediment maps are coarse
and do not preclude local variability).

Two taxa stood out as being the most inconsistent with the
international literature: F. quadrangularis (depth and sediment
disparities) and Virgulariidae (depth disparities when compared
with V. mirabilis). In this study F. quadrangularis was found
down to 900 m, optimally 300 m, while Greathead et al. (2007,
2014) stated an optimal depth of 120 m down to a maximum
of 2000 m in Scotland. Virgulariidae had optimal peaks at
400/700 m, max 1700 m, in this study, while V. mirabilis is said
to have an optimal depth of 20 m in Scotland (Greathead et al.,
2014) and is found between 9 and 400 m in West Africa (López-
González et al., 2001). F. quadrangularis also appeared to prefer
50:50 sand/mud with sand being the prerequisite in this study,
while in Scotland they seem to prefer mud and sometimes muddy
sand (Hughes, 1998; Connor et al., 2004; Greathead et al., 2007).

Taxa Co-occurrence
Comparisons of the observed and expected frequencies of
co-occurrence between each pair of taxa (based on the
probabilistic model of species co-occurrence (Veech, 2013)
found that there were more negatively associated pairings
(seven pairs) than random co-occurrences (six pairs) or positive
associations (two pairs, Pennatulidae spp./Halipteris sp. and
K. stelliferum/F. quadrangularis) (Figure 3). Support for these
results can be seen in observation records and PCA results
(see Supplementary Material). Across the 2051 video transects
(VLs) analysed, 321 VLs recorded one or more sea pen taxa
(an average of 1.3 taxa) and only 79 VLs recorded two or more
co-occurring sea pen taxa (24% of VLs displayed an average
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FIGURE 2 | Selected histograms showing the distribution of presence locations relative to each environmental variable. Further histograms are available in
Supplementary Material. The x-axis is scaled to show all possible values within the sampled area (values beyond this range may be present in the greater study
area). Landscape categories represent: B, sandbank/strandflat; S, slope; V, valley/canyon; F, fjord; A, abyss; P, shelf plain. Sediment values are shown only for where
sediment data is available – these three categories are scaled to the maximum y-axis of the three to better visually assess the proportion of one relative to another.

of 2.24 taxa). Only one video transect (VL701) recorded 5 of
the 6 taxa co-occurring. The maximum co-occurrence of any
two taxa per video transect was always less than 50%. PCA
results show partially overlapping environmental space between
taxa, but none overlap completely. Co-occurrence records and
PCA results agree that Pennatulidae spp. co-occurred the most
with other taxa (66.7%) while Virgulariidae spp. co-occurred
the least (30.0%).

Predicted distribution maps output by the SDMs (Figure 4)
also show there to be clear differences between the predicted
distributions of most taxa, although there are also suggestions
of some similarities. Pearson correlations of model predictions
for F. quadrangularis and K. stelliferum were moderately strong
(0.589 in 14 variable ensembles, 0.724 in 8 variable ensembles,
Table 2) and appear to show similar predicted distributions
in the south around the Norwegian Trough and on the mid-
Norwegian shelf (∼60◦N). However, those patterns diverge
in the Barents Sea region, showing that the predicted niches
may overlap but are not consistent between the two taxa. Co-
occurrence records (Supplementary Material) confirm that these
taxa were observed to co-occur the most of any two taxa in this
study with K. stelliferum appearing at 46% of F. quadrangularis
occurrences, and F. quadrangularis appearing at 30.1% of K
stelliferum occurrences. All other Pearson correlation coefficients
between taxa showed weak (| 0.2| –| 0.5|) or no correlation
(<| 0.2|).

These findings suggest that it is unwise to treat sea pen taxa as
a coherent group in analyses.

Model Predictions, Uncertainty and Data
Quality
All models suffered from some level of overfitting which
is apparent from evaluation scores. Species distribution
modelling internal evaluation scores for both the 14 variable
and the 8 variable ensembles are high (min 0.85, Table 3),
but external evaluation scores are generally much poorer
and ranged from high (0.91) to negative values (i.e., worse
than a random guess, Table 3). Note however that the
spatially unbalanced nature of the ground-truthing datasets
and the small ground-truthing datasets for Halipteris
spp. and Umbellula spp. especially may bias these external
evaluation scores.

Generally the two species-level taxa provided the most
reliable predictions (F. quadrangularis, K. stelliferum), while
higher taxonomic level taxa, and taxa with small training
datasets produced poorer predictions. All 14 variable ensembles
appear to be underpredicting according to external evaluations
(BIAS < 0.8), while only half of the 8 variable ensembles
underpredict (Pennatulidea spp., Umbellula spp., Virgulriidae
spp.). Bathymetry and TS interaction were the most important
variables overall, with the 14 variable ensembles generally
relying upon one variable above all others, while half of the
8 variable ensembles placed value (>0.1) on two or more
variables (Table 4).

The F. quadrangularis SDM performed the best of any of the
target taxa with adequate sensitivity and specificity scores even in
external evaluations (Table 3). The 14 and 8 variable predictions
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TABLE 1 | Interpreted environmental preferences for each sea pen species (or group of species) for the MAREANO data (this study, based on peaks in histograms and
observed distributions), and literature comparisons from elsewhere in the world.

MAREANO (no bimodalities) Elsewhere in references References

Funiculina
quadrangularis

Region Shelf north to Finmark
coast/Eggakanten

Scotland/United Kingdom Greathead et al., 2007

Depth (m) 300 (max 900) 120 (20 – 2000) Greathead et al., 2007, 2014

Currents (m/s) 0.07 (max 0.28)

Landscape Within canyons/valleys/fjords,
locally flat

Affinity for loch/channel bottoms Greathead et al., 2007

Salinity (g/kg) 35.0 (min 34.5, max 35.3) 33.5–34h Greathead et al., 2014

Temperature (◦C) 7.3 (min 3.5, max 9.9)

Sediment 50:50 sand:mud Mud and muddy sand Hughes, 1998; Connor et al.,
2004; Greathead et al., 2007

Halipteris spp.
(compared to
H. finmarchica)

Region Slope and shelf north to Tromsø Atlantic Canada Wareham and Edinger, 2007;
Baker et al., 2012

Depth (m) 600 (max 700) 437–725 (min 250 max 2000) Wareham and Edinger, 2007;
Baker et al., 2012

Currents (m/s) 0.09 (max 0.3–0.5)

Landscape Slope, valleys/canyons, locally
flat/slightly raised

Canyons Baker et al., 2012

Salinity (g/kg) 35.0/34.2 (min 34.8/32.8, max 35.3)

Temperature (◦C) 5.5/2 (min –2/2.3, max 7) 3.5–6 is optimal for growth De Moura Neves et al., 2015

Sediment Sandy gravel Mud-sand, sometimes gravelly Baker et al., 2012

Other <0.05 (max 0.4) mg/m3 of Chlorophyll
a

0.6–1 mg/m3 of Chlorophyll a De Moura Neves et al., 2015

Kophobelemnon
stelliferum

Region Shelf north to Tromsø/Eggakanten North Carolina (United States),
United Kingdom, Ireland, Mediterranean

Rowe, 1971; Davies et al.,
2014

Depth (m) 200 (max 1050)

Currents (m/s) 0.07 (max 0.35)

Landscape Within canyons/valleys/fjords,
locally flat

Canyon indicator (NC), Porcupine Seabight
(Ireland)

Rowe, 1971; Rice et al., 1992

Salinity (g/kg) 35.0 (min 34.3, max 35.3)

Temperature (◦C) 7.5 (min 4.7, max 9) 8–11 (United Kingdom), 13 (Med) Mastrototaro et al., 2013;
Davies et al., 2014

Sediment Sandy mud Mud dominated (Med), muddy sand (UK) Mastrototaro et al., 2013;
Davies et al., 2014

Pennatulidae spp.
(compared to
P. phosphorea)

Region Shelf north to Finmark coast Scotland/United Kingdom Greathead et al., 2007

Depth (m) 350/50 (max 550) 20 – 100 Greathead et al., 2014

Currents (m/s) 0.07 (max 0.2)

Landscape Within canyons/valleys/fjords,
locally flat

Salinity (g/kg) 34.2/35.2 (min 33.7/34.5, max
34.6/35.3)

27 h – 35 h Greathead et al., 2014

Temperature (◦C) 6.7 (min 1.5, max 7/13)

Sediment Muddy sand, possibly some gravel High mud, low gravel Greathead et al., 2007

Umbellula spp
(compared to
U. encrinus).

Region Slope north to Svalbard Atlantic Canada (Baffin Bay), Mid Atlantic
Ridge (W of Ireland)

De Moura Neves et al., 2018;
Mortensen et al., 2008

Depth (m) 800/1500 (max 1700) 500–800, 776–1437 De Moura Neves et al., 2018;
Mortensen et al., 2008

Currents (m/s) 0.08 (max 0.39)

Landscape Continental slope Continental slope, Ridge slope De Moura Neves et al., 2018;
Mortensen et al., 2008

Salinity (g/kg) 35.0 (min 34.4, max 35.3) 35–35.2 Mortensen et al., 2008

Temperature (◦C) 1.3/2.5/6.3 (min –1, max 7) –0.5 – 1.75, 3.6 – 4.3 De Moura Neves et al., 2018;
Mortensen et al., 2008

(Continued)
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TABLE 1 | (Continued)

MAREANO (no bimodalities) Elsewhere in references References

Sediment Gravelly sandy mud/gravelly muddy
sand

Virgulariidae spp.
(compared to
Virgularia mirabilis)

Region From the south to Svalbard Scotland/United Kingdom, Mediterranean,
West Africa

Jones et al., 2000;
López-González et al., 2001;
Porporato et al., 2009

Depth (m) 400/700 (max 1500) 20 (United Kingdom), 9-400 (West Africa),
560 – 620 (Med)

López-González et al., 2001;
Porporato et al., 2009;
Greathead et al., 2014

Currents (m/s) 0.08/0.23 (max 0.25/0.5)

Landscape Shelf plain or valley Shelf/slope, lochs (United Kingdom) Jones et al., 2000; Greathead
et al., 2007

Salinity (g/kg) 35.0 (min 34.3, max 35.3)

Temperature (◦C) 3.5/6.5 (min –0.5/1.5/3.5, max 6.5/14)

Sediment Gravelly muddy sand Sandy/shelly mud, soft stable mud, up to
50% gravel

Connor et al., 2004; Greathead
et al., 2014

Other Both sides of polar front

Values are provided as means with max or range.

FIGURE 3 | Taxon co-occurrence matrix output from the co-occur package in
R. This shows comparisons of observed and expected frequencies of taxon
co-occurrence based on Veech (2013) probabilistic model of species
co-occurrence. Positive patterns suggest a high likelihood of co-occurrence,
while negative have a low likelihood of co-occurrence, and random show no
discernible pattern.

are spatially aligned south of Bjørnøya although the likelihood
levels were different (Figure 4), and the 8 variable prediction
appeared to give the most consistent likelihood values (Figure 5).
TS interaction was the most important variable in both 14 and 8
variable ensembles (Table 4).

The K. stelliferum prediction gave an adequate ROC-
based sensitivity and specificity balance in external evaluations
(Table 3) but performed poorly with 14 variables when assessed
with all other metrics (i.e., sensitivity < 50), and with 8 variables
when assessed with KAPPA. There was greatest consistency in
prediction of presence within the Norwegian Trough region
(especially for the eight variable ensemble) and near the mid-
Norway shelf edge (Figures 4, 5). TS Interaction was important
to both ensembles, with proportion of gravel also being a strong
predictor in the eight variable ensemble (Table 4).

Halipteris spp. and Pennatulidae spp. produced the worst
predictions with strong inconsistencies between 14 variable
and 8 variable predictions (Figure 4). Pennatulidae spp.
in particular displayed little consistency between ensemble
predictions (corr. 0.270, Table 2) and produced some spurious
predictions in the deep sea west of the shelf. Both of these
taxa had very small training datasets (Halipteris spp. 16
presence points, Pennatulidae spp. 32). It should be noted,
however, that CA maps (Figure 5) show there are some
locations where 14 and 8 variable predictions consistently
predict presence: the shelf edge for Halipteris spp. and
the northern Norway Trough and mid-Norwegian shelf for
Pennatulidae spp. Slope and depth (14 variable only) were
important to Halipteris spp. predictions, and Maximum Current
Speed and depth (8 variable only) for the Pennatulidae spp.
predictions (Table 4).

Virgulariidae spp., despite having the second largest training
dataset did not perform well in external validations (except for
when assessed with an ROC-based threshold in the 14 variable
model). Yet there is relative spatial consistency between the 14
and 8 variable predictions (corr. 0.817 Table 2 and Figures 4, 5).
Carbon biomass of phytoplankton (both ensembles) and depth
(14 variable ensemble only) were of greatest important to
Virgulariide spp. ensembles.

The Umbellula spp. model performed the best out of the
higher-level taxonomic groupings, but its external validation
dataset was smaller than can give a meaningful assessment
(sensitivity scores of 25 and 100%, Table 3, represent the
ability to predict 1 of 4 and 4 of 4 ground-truthing presence
points respectively). Bathymetry and TS Interaction (8 variable
ensemble only) were the most influential predictors for
Umbellula spp.

Correlations between all taxa ensemble predictions and
the fishing intensity data (Table 2 and map available in
Supplementary Material) suggest that F. quadrangularis may
have the greatest overlap with fishing areas of all taxa, but
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FIGURE 4 | Fourteen and eight variable prediction maps from ensemble SDMs for each taxon, together with inset maps displaying training and ground-truthing
Presence/pseudoAbsence locations.

the correlation was still low at max | 0.245| (8 variable
ensemble prediction).

DISCUSSION

The study aimed to develop environmental profiles and predicted
distribution maps for six sea pen taxa in Norway and
consider three management-relevant issues on an international
level. Namely: do any of these sea pen taxa have differing
environmental profiles between regions that might impact how
they are managed? Is it appropriate to consider these taxa as
a group i.e., as “sea pens” rather than at a species level? And
what are the consequences of needing to identify taxa at higher
taxonomic levels (as is often necessary)? Note that the models
created in this study were generally overfitted i.e. model results
should be interpreted with caution, placing trust only where there

is consensus between fourteen and eight variable models/where
spatial uncertainty is lowest. However, once the limitations of this
study are understood, it is still possible to tentatively draw some
conclusions that may be useful to management.

Limitations of This Study
While environmental profiles and predicted distribution
maps were generated, it is important to understand the
limitations of this study to interpret the results appropriately.
Broadly the limitations fall into the categories of: coarse
and indirect underlying predictors with their own associated
uncertainties; some small training datasets; small, spatially
biased and inconsistently sampled ground-truthing datasets;
and poor taxonomic resolution (the latter is discussed further
in section “What Are the Management Impacts of Taxonomic
Identification Issues?”).
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TABLE 2 | Pearson correlation coefficients between all prediction rasters (14 variable and 8 variable predictions per taxa: F, Funiculina quadrangularis; H, Halipteris spp.;
K, Kophobelemnon stelliferum; P, Pennatulidae spp.; U, Umbellula spp., V - Virgulariidae) and the fishing raster.

F-14 H-14 K-14 P-14 U-14 V-14 F-8 H-8 K-8 P-8 U-8 V-8 Fishing

– 0.149 0.589 0.434 –0.130 0.082 0.904 –0.030 0.661 0.015 –0.255 –0.003 0.229 F-14

– –0.002 0.279 0.109 0.172 0.133 0.510 –0.038 –0.004 0.059 0.155 0.146 H-14

– 0.249 –0.059 0.149 0.605 –0.067 0.793 0.029 –0.185 0.120 0.126 K-14

– –0.076 0.064 0.408 0.114 0.272 0.270 –0.126 –0.040 0.050 P-14

– 0.300 –0.157 0.175 –0.034 –0.218 0.822 0.412 –0.056 U-14

– 0.049 0.112 –0.011 –0.172 0.154 0.817 0.025 V-14

– –0.052 0.724 0.067 –0.285 –0.003 0.245 F-8

– –0.108 0.054 0.189 0.139 0.086 H-8

– 0.097 –0.109 –0.060 0.160 K-8

– –0.175 –0.194 –0.100 P-8

– 0.316 –0.106 U-8

– –0.006 V-8

– Fishing

Values > | 0.2| are highlighted in italics with a pale background (weak correlation), values > | 0.5| are highlighted in bold with a dark background (moderate correlation),
values > | 0.8| are highlighted in red (strong correlation).

Both environmental profiles and model predictions are mainly
limited by the resolution and availability of the underlying
environmental predictors. All of these predictors come from
models or interpolations in order to obtain enough data
coverage, while variables such as “distance from shore” and
terrain derivatives are proxies for more specific variables
that might otherwise be uncaptured (e.g., the influence
of freshwater/pollution, or hydrographic parameters/food
availability respectively, Wilson et al., 2007). These are problems
faced by all modellers and improving the explicitness of
uncertainties, together with the availability and resolution of
predictors is greatly needed to improve predictive performance
(Bowden et al., 2021).

Training/ground-truthing dataset size and spatial bias are
also very common problems amongst modellers. This training
dataset was based on extensive survey data using standardised
methods and wide spatial coverage. However, it still omits
many areas that were predicted into (i.e., is spatially biased)
and two taxa had low prevalence resulting in small training
datasets (Halipteris spp. and Pennatulidae spp., with 16 and
32 presence points respectively). The consequence of small and
spatially biased datasets is an incomplete characterisation of
the taxon’s environmental niche resulting in models that may
be unstable and overfitted (Hernandez et al., 2006; Liu et al.,
2019). These issues are insurmountable without additional data
to better characterise the niche. Consequently, the models for
Halipteris spp. and Pennatulidae spp. in particular should be
interpreted with caution, although spatial uncertainty maps can
help to isolate areas of consistent prediction which may be
more trustworthy.

The ground-truthing datasets suffered from further issues.
Diverse sources, sampling methods, and dates of sampling
introduce errors of spatial, temporal, and taxonomic uncertainty
that are hard to quantify. Together with the size and spatial
bias issues mentioned above, these external evaluations were
not ideal. All of the ground-truthing data used in this study
suffers from spatial biases (particularly with absences distant

from presences) and Umbellula spp. and Halipteris spp. had
very small prevalence in their external validation sets (4 and 10
presence points respectively). Arguably these two taxa should not
have been externally validated until more data became available,
but it is useful to recognise whether there is consistency in the
prediction of these presence/absence locations while accepting
that the evaluations are partial at best. Ideally a ground-truthing
dataset would be collected explicitly for that purpose, aim to
span the environmental niche as much as the geography, would
have similar prevalence and size to the training dataset, and
would have no spatial/environmental biases (Araújo and Guisan,
2006; Bowden et al., 2021). These data should be used to
test models built on similarly acquired training data, and then
incorporated into them, with iterative testing and training used
to continually improve models while observations continue to
be made (Bowden et al., 2021). More efforts need to be made to
undertake this process and impress upon management the need
to fund such a process in order to best support their needs.

Given these limitations of the training and ground-truthing
datasets, model evaluation scores should be interpreted with
caution. The high internal evaluation scores are typical when
using internal cross validation as the model is testing itself on
data that suffers from the same biases as the training data (Hao
et al., 2020). The external evaluation scores likely suffer from
the opposite effect, giving overly critical or at least unstable
assessments of the predictions. A true evaluation is therefore
likely to be somewhere between the internal and external scores.

While these limitations may not be encouraging, these
outcomes are both not unusual and may still be useful to
management. Bowden et al. (2021) recently re-assessed 47 habitat
suitability models for benthic epifaunal invertebrate taxa in
New Zealand against external data and also found reduced
evaluation scores, with no trend of improvement with modern
modelling techniques. Model results, when interpreted honestly
and with explicit measures of spatial uncertainty can still offer
some insight especially in areas where multiple models agree
(Dolan et al., 2021). These are still an improvement on having no

Frontiers in Marine Science | www.frontiersin.org 12 November 2021 | Volume 8 | Article 652540

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-652540 November 19, 2021 Time: 16:35 # 13

Ross et al. Sea Pen Ecology and Management

TABLE 3 | Summarised model evaluation scores for the internal and external ensemble model predictions.

Internal CV External

Mean 14 var Mean 8 var Mean 14 var Mean 8 var

Metric Score Thresh. Sens. Spec. Score Thresh. Sens. Spec. Score Thresh. Sens. Spec. Score Thresh. Sens. Spec.

Funiculina quadrangularis TSS 0.97 0.39 100.0 97.4 0.86 0.44 89.4 93.8 0.58 0.39 60.6 97.0 0.52 0.44 66.7 84.8

ROC 1.00 0.43 99.1 98.5 0.98 0.40 93.3 92.8 0.91 0.29 84.8 83.3 0.85 0.33 90.9 71.2

KAPPA 0.97 0.42 99.1 98.2 0.88 0.50 88.5 97.6 0.63 0.42 60.6 97.0 0.50 0.50 57.6 87.9

BIAS 1.00 0.45 97.3 98.6 1.00 0.46 89.4 94.7 0.61 0.45 54.5 97.0 0.88 0.46 63.6 87.9

Halipteris spp. TSS 0.97 0.45 100.0 97.3 0.87 0.46 86.7 100.0 0.05 0.45 10.0 95.0 0.85 0.33 90.9 71.2

ROC 1.00 0.45 100.0 97.3 0.97 0.46 86.7 100.0 0.44 0.03 100.0 25.0 0.54 0.12 90.0 35.0

KAPPA 0.96 0.45 100.0 97.3 0.90 0.46 86.7 100.0 0.06 0.45 10.0 95.0 0.05 0.46 30.0 75.0

BIAS 0.99 0.47 93.8 97.3 1.00 0.40 86.7 93.3 0.20 0.47 10.0 95.0 0.80 0.40 30.0 75.0

Kophobelemnon stelliferum TSS 0.98 0.43 100.0 97.9 0.86 0.39 94.8 91.2 0.24 0.43 32.1 94.0 0.32 0.39 63.3 68.3

ROC 1.00 0.43 100.0 97.9 0.98 0.40 94.8 91.5 0.74 0.29 54.1 86.2 0.76 0.52 53.2 89.4

KAPPA 0.98 0.51 97.5 99.7 0.85 0.57 85.1 97.7 0.21 0.51 19.3 97.7 0.39 0.57 45.0 91.3

BIAS 1.00 0.46 98.0 99.2 1.00 0.48 89.7 94.8 0.35 0.46 25.7 95.0 0.87 0.48 56.0 71.6

Pennatulidae spp. TSS 1.00 0.49 100.0 99.8 0.97 0.39 100.0 97.2 0.03 0.49 5.5 97.5 -0.02 0.39 16.0 82.4

ROC 1.00 0.49 100.0 99.8 1.00 0.39 100.0 97.2 0.43 0.03 83.6 26.2 0.40 0.37 32.8 80.9

KAPPA 1.00 0.49 100.0 99.8 0.96 0.39 100.0 97.2 0.04 0.49 5.5 97.5 -0.02 0.39 16.0 82.4

BIAS 1.00 0.49 100.0 99.8 1.00 0.42 94.4 97.2 0.11 0.49 5.5 97.5 0.46 0.42 15.2 84.6

Umbellula spp. TSS 0.97 0.52 98.9 98.4 0.94 0.51 96.6 97.7 0.25 0.52 25.0 100.0 0.25 0.51 25.0 100.0

ROC 1.00 0.52 98.9 98.6 0.99 0.51 96.6 97.7 0.94 0.02 100.0 87.5 0.97 0.06 100.0 87.5

KAPPA 0.97 0.52 98.9 98.4 0.94 0.51 96.6 97.7 0.31 0.52 25.0 100.0 0.31 0.51 25.0 100.0

BIAS 0.99 0.53 96.6 98.7 1.00 0.52 95.4 97.7 0.25 0.53 25.0 100.0 0.25 0.52 25.0 100.0

Virgulariidae TSS 0.97 0.41 100.0 96.5 0.88 0.31 97.1 90.9 0.04 0.41 9.2 94.9 -0.02 0.31 9.2 88.5

ROC 1.00 0.41 100.0 96.8 0.98 0.35 95.4 93.1 0.66 0.16 64.3 79.3 0.34 0.05 96.5 14.4

KAPPA 0.96 0.46 97.8 98.0 0.86 0.35 93.7 93.4 0.06 0.46 8.9 95.5 -0.02 0.35 7.4 90.3

BIAS 0.99 0.47 95.2 98.3 0.99 0.40 89.1 94.9 0.17 0.47 8.4 95.9 0.22 0.40 6.9 92.7

Highlighted cells have poor values [ROC < 0.6, TSS/KAPPA < 0.2, BIAS < 0.8/ > 1.2, Sensitivity (Sens.)/Specificity (Spec.) < 50]. Threshold values are likelihood values
used to threshold predicted presence (>threshold) and absence (>threshold) and have been optimised to give the best score/sens./spec. balance per metric.

TABLE 4 | Average permuted variable importance from ensemble models per taxon for both the 14 variable and 8 variable ensemble models.

14 variable averages 8 variable averages

F H K P U V F H K P U V

Bathy 0.021 0.145 0.064 0.026 0.710 0.117 0.043 0.059 0.073 0.142 0.635 0.081

C/phytoplankton (Av.) 0.066 0.002 0.036 0.003 0.013 0.233 0.052 0.033 0.035 0.005 0.059 0.412

Current speed (Max.) 0.048 0.001 0.080 0.165 0.021 0.025 0.040 0.014 0.084 0.330 0.004 0.040

Distance to shore 0.070 0.001 0.058 0.023 0.009 0.045 0.054 0.005 0.044 0.016 0.012 0.051

Ice Cover (Av.) 0.001 0.000 0.001 0.000 0.003 0.080

Salinity (Range) 0.010 0.002 0.036 0.004 0.024 0.020

Sediment% Gravel 0.035 0.029 0.085 0.009 0.003 0.005 0.080 0.091 0.232 0.022 0.008 0.009

Sediment% Mud 0.088 0.009 0.075 0.001 0.030 0.031 0.069 0.010 0.046 0.006 0.010 0.041

Sediment% Sand 0.032 0.007 0.026 0.004 0.012 0.013

Slope 0.012 0.148 0.008 0.062 0.014 0.010 0.010 0.458 0.005 0.035 0.003 0.018

Temp. (Range) 0.004 0.022 0.037 0.033 0.008 0.022

TPI (finescale) 0.013 0.031 0.013 0.000 0.005 0.012

TxSav 0.286 0.002 0.216 0.058 0.019 0.032 0.485 0.002 0.408 0.114 0.110 0.046

Valleyness 0.005 0.000 0.003 0.077 0.000 0.002

Highlighted cells show the values > 0.1 (i.e., the most important variables, contributing more than 10% to the model). Taxa are abbreviated to first initials: F, Funiculina
quadrangularis; H, Halipteris spp.; K, Kophobelemnon stelliferum; P, Pennatulidae spp.; U, Umbellula spp.; V, Virgulariidae spp. Average variable importance values of
constituent models can be found in Supplementary Material.
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FIGURE 5 | Maps representing spatial uncertainty in predictions for both the fourteen and eight variable predictions. Committee averaged (CA) predictions combine
prediction and uncertainty by averaging the likelihood of presence after conversion to a binary presence/absence prediction (here using the TSS score thresholds
shown in Table 2), consequently these predictions include some measure of uncertainty as scores closer to 0 or 1 have greater consensus, while 0.5 shows
disagreement. Coefficient of variation (CoV) displays the S.D./mean of all probabilities across models and therefore higher values show locations with greater
variation in predictions.

information about species or habitat distribution. This sentiment
is echoed by the UN Decade of Ocean Science (2021–2030) which
officially recognises the benefits of models for filling in data gaps
and highlights the global need to direct research resources toward
improving ocean predictions as one of the seven targeted “decade
outcomes” (UN/IOC, 2020).

Also worth noting are that predictions into the Barents sea
region, beyond an assumed biogeographic boundary around the
polar front (Lacharité et al., 2016; Buhl-Mortensen et al., 2020)
may not have adequately captured variables that map this polar
front and the stark change from Atlantic to Arctic water that
occurs there. While more efforts could go into capturing this
boundary, there is evidence that the front is weakening and that
the Barents Sea is becoming less stratified, warmer, and more
saline in response to climate change (Barton et al., 2018; Lind
et al., 2018). Consequently, it is possible that predictions that
span the polar front (see Figure 1 for an approximate position)
may highlight areas where the northern range of some of these
taxa may expand into given continued warming. More work is
required to investigate this further, but if it is true then such

projections may be useful to marine managers planning for
a warmer future.

Similarities and Disparities Between
Environmental Profiles Highlight the
Vulnerability of Funiculina
quadrangularis
Despite some environmental profiles being less coherent than
others, generally this study’s environmental profiles are fairly
consistent with international literature. Even Halipteris spp.,
which gave the least coherent environmental profile and was
based on the smallest dataset, displayed an affinity for canyons
and sometimes gravelly sediments that is supported by Baker
et al. (2012), and a depth range similar to those found in Atlantic
Canada (Wareham and Edinger, 2007; Baker et al., 2012). Studies
of optimal growth rates in H. finmarchica also showed a similar
temperature profile to our records (3.5–6◦C, aligning with our
dominant histogram peak at 5.5◦C), but highlighted a preference
for a higher Chlorophyll a concentration than is typically found
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in Norwegian waters (0.6–1 mg/m3, max in study area 0.6 mg/m3;
De Moura Neves et al., 2015). If Chlorophyll a really is important
to Halipteris spp., this could explain the relative rarity of this
taxon in Norwegian waters. Perhaps new presence records as
the MAREANO programme continues, will help to refine these
predictions in the future.

However, there were some notable disparities as compared
to the international literature. Virgularia mirabilis being found
considerably shallower than our Virgulariidae records in
both Scotland and West Africa (López-González et al., 2001;
Greathead et al., 2014), and F. quadrangularis being found to
favour shallower waters and softer sediments in Scotland as
compared to this study (Hughes, 1998; Connor et al., 2004;
Greathead et al., 2007, 2014).

There are likely to be different reasons for these disparities.
Virgulariidae spp. in particular were grouped at the family
level due to bimodal histograms and records of multiple
taxa from this family recorded in Norway that are hard or
impossible to tell apart from video records alone. Assuming
that V. mirabilis may be the dominant taxon from this family
in Norway (Buhl-Mortensen et al., 2020) may have in fact
been incorrect. V. tuberculata, in particular, is known to both
co-occur with V. mirabilis in Norway (Directorate for Nature
Management, 2001), and to have a more extended depth range
than V. mirabilis (López-González et al., 2001). Therefore, it
is possible that a greater prevalence of V. tuberculata than
originally assumed could be masking the V. mirabilis signal in
the histograms. However, other taxa could also be part of this
confusion: V. glacialis and Stylatula elongata are also recorded
from the study region (Directorate for Nature Management,
2001). It is therefore unsurprising that profiles did not match
with those from other regions which may have fewer taxa from
this Family present.

Funiculina quadrangularis, with both a depth and a sediment
disparity, is unlikely to have similar taxonomic issues. Lozano
et al. (Submitted) found F. quadrangularis in similar 50:50
sediments in the Gulf of Cadiz, but the Marine Habitat
Classification for Britain and Ireland, for example, explicitly
associate F. quadrangularis (Fun) with circalittoral fine mud
(CFiMu) (biotope code “SS.SMu.CFiMu.SpnMeg.Fun”; Connor
et al., 2004). The depth disparity (deeper in Norway than in
Scotland) is also contrary to expectations when equivalent cool
water temperatures should be found shallower the further north
you travel. There are known anomalies in the North Sea which
could potentially explain this depth difference (Knijn et al., 1993;
Perry et al., 2005) but with inconsistencies in both depth and
sediment preferences there may be another cause.

One theory for both depth and sediment differences is that
there could be different “realised niches” (sensu Hutchinson,
1957) in different regions. The Norwegian F. quadrangularis
model, although showing the most overlap with the fishing
intensity data of all taxa modelled here, had only a low spatial
correlation with fishing areas (max 0.245). It is possible that
Norwegian F. quadrangularis are therefore less impacted than in
other nations. Downie et al. (2021) showed that models built on
the west or east coast of Scotland for F. quadrangularis suggest
different niches, and attribute this to extensive bottom trawling

in the UK North Sea modifying the east coast realised niche.
Lozano et al. (Submitted) and Lauria et al. (2017) have found
bottom trawling to be an important correlate when predicting
the distribution of F. quadrangularis in southern Spain and Sicily,
respectively, suggesting that the distribution of this species may
be particularly impacted internationally. It is thought that the tall
and brittle nature of this non-retractable sea pen species, may
make F. quadrangularis particularly vulnerable to anthropogenic
impact, e.g., from bottom trawling (Hughes, 1998; Greathead
et al., 2007). If this is the case, then the collective findings of this
study and the recent work of Lozano et al. (Submitted), Lauria
et al. (2017), and Downie et al. (2021) add much stronger weight
to the claims of Greathead et al. (2007): that F. quadrangularis
warrants particular management focus (amongst sea pen taxa),
with anthropogenic impact clearly shaping their distributions in
multiple countries.

Should Norwegian F. quadrangularis be less impacted, it may
be that this model better represents the “fundamental niche”
of this species (sensu Hutchinson, 1957) when compared with
the Scottish data. Both fundamental and realised niche maps
are useful to management. Realised niche maps are useful when
searching for the current distribution of a species, while the
fundamental niche map, when compared to a realised niche
map, may highlight additional areas that could be recolonised
and recover from impact in the future. Future work will explore
the case of F. quadrangularis in Norway further, and if found
to be closer to the fundamental niche, then the environmental
profile could be used to develop such maps in other more
impacted nations using model transfer techniques (Yates et al.,
2018). However, this study’s model may just represent another
“realised niche” with modern day absences where habitat is
actually suitable due to on-going impact (perhaps closer to the
patterns seen in the Gulf of Cadiz (Lozano et al., Submitted),
than those seen in Scotland). Given the lack of bimodalities
in environmental profiles, the abundance of records, high
performance of both internal and external evaluations, and low
spatial uncertainties, the predictions for F. quadrangularis in this
study are the most trustworthy, so we can at least be reasonably
confident that we are capturing one or the other.

Sea Pens: Should They Be Considered as
a Group in Analysis for Management?
As the order Pennatulacea is cited as a Vulnerable Marine
Ecosystem (VME) indicator taxon in many regions6 and “Sea
Pens and Burrowing Megafauna” is listed as an OSPAR habitat
(OSPAR, 2010), there is a temptation to profile and model
higher level taxa as a group to save time and effort and
plan management decisions. While there are many genera
within Pennatulacea (Williams, 2011) records of common co-
occurrence may support regional decisions to group taxa in
analyses to support management.

However, this study suggests that while sea pen taxa may
co-occur in some parts of the study area, no two taxa were
found to co-occur in more than 50% of locations, and some

6http://www.fao.org/in-action/vulnerable-marine-ecosystems/vme-indicators/es/
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were inversely associated (see Figure 3). The lack of co-
occurrence of V. mirabilis and P. phosphorea, in particular,
may be surprising, as these taxa are listed in various habitat
classifications as a common co-occurrence, especially in the
United Kingdom [e.g., Jones et al., 2000, several EUNIS habitat
classifications (EUNIS, 2019)7, and SS.SMu.CFiMu.SpnMeg in
the Marine Habitat Classification (MHC) for Britain and Ireland
JNCC (2015)]. Our limited Virgulariidae and Pennatulidae
spp. co-occurrence observations may be symptomatic of our
taxonomic resolution issue, with unknown proportions of our
family level observations ascribed to those V. mirabilis and
P. phosphorea specifically, and potentially again supporting the
concept that V. mirabilis in particular is not the dominant
species of Virgulariidae in Norway. Differing impact patterns
in Norway may also be a possible reason for differing co-
occurrence patterns, with V. mirabilis being brittle but retractile,
and P. phosphorea being both retractile and flexible – these
taxa therefore may have different chances of survival when
encountering disturbance.

Regardless, both the EUNIS and MHC systems agree with
our observations that there is not one habitat/biotope that
captures all sea pen taxa, and while co-occurrences do happen,
no two taxa are found to only co-occur with each other. We
therefore advise that data grouped for analysis by scientists
and consultants to support management planning should be
based on ecological niche concepts at the taxon-specific, biotope-
specific, or management-target species archetype (sensu Dunstan
et al., 2011) level, with any further grouping only applied at the
management level.

However, the “sea pens and burrowing megafauna”
grouping my also be problematic at the management level.
As F. quadrangularis seems to be the most provably vulnerable
to anthropogenic impact of the sea pen taxa so far (Greathead
et al., 2007; Lauria et al., 2017; Downie et al., 2021; Lozano et al.,
Submitted), it may be appropriate to take differing conservation
actions for F. quadrangularis habitats as compared with other
sea pen habitats. The “burrowing megafauna” requirement
is also often overlooked, and remains vague as to whether
it necessitates: the co-occurrence of a commercially valuable
burrowing crustacean [e.g., Nephrops norvegica, as mentioned
in OSPAR (2010)] as indicative of a higher potential for
fishery impact, the presence of multiple soft sediment species
(e.g., burrowing anemones or polychaetes) indicative of a
high diversity habitat, or whether the presence of burrowing
megafauna may be used to highlight areas of sea pen suitable
habitat which are currently not colonised. Therefore the type of
“burrowing megafauna” present may impact what management
actions may need to be taken.

The “sea pens and burrowing megafauna” classification should
therefore be thought of as a vague higher-level guide for both
analysis and management actions, but at all times, in practice,
should be divided into more appropriate smaller groupings for
re-combination as conservation actions require. Indeed, it may
be advisable to review the classification in the future to provide
better management guidance and help define where priorities

7https://eunis.eea.europa.eu/index.jsp

may lie. It is likely that similar analysis and management-
action care should be taken with assumptions about other listed
conservation habitats (e.g., “deep sea sponge aggregations,” “coral
gardens,” etc.).

What Are the Management Impacts of
Taxonomic Identification Issues?
Sometimes it is necessary to group taxa within, e.g., a genus,
family or morphotype due to identification issues that were
unavoidable during analysis. This study focussed on six sea
pen taxa, of which two were assumed to be safe to identify at
species-level (F. quadrangularis and K. stelliferum), while four,
based on histogram bimodalities and literature cross-checks,
were raised to genus-level (Halipteris spp. and Umbellula spp.),
or family level (Virgulariidae spp. and Pennatulidae spp.). These
were issues symptomatic of video analysis, where issues such
as unclear imagery, distant observations, and lack of extreme
close-ups or dissections affect the certainty of an identification
(Howell et al., 2019).

Model results showed a clear difference between species-
level and higher-level taxa predictions, with the higher-level
taxa ensembles performing the worst. The Virgulariidae spp.
models are the main example of this. While small training
datasets could also be blamed for poor evaluations for two
of the higher-level taxa (Halipteris spp., Pennatulidae spp.),
the Virgulariidae spp. models, with the second largest training
dataset (186 presence points, only K. stelliferum had more)
also produced predictions with poor performance (Table 3). If
this taxon had a Family specific niche, then with that much
data we would expect stable environmental profiles, better
evaluation scores, and predictions that do not cross a known
biogeographic boundary around the polar front (Lacharité
et al., 2016; Buhl-Mortensen et al., 2020). It is possible that
some grouped taxa may be more viable to use in distribution
models than others. SDMs (also known as ecological niche
models) are only suited for characterising a single environmental
niche (Smith et al., 2018). Allopatric divergence is thought to
be the most common reason for speciation (i.e., caused by
geographical isolation and resulting in clear environmental niche
differences), although there are growing numbers of records
suggesting that sympatric speciation does occur (driven by
a local competition for resources which could translate into
similar environmental niches; Dieckmann and Doebeli, 1999).
Grouped taxon modelling would therefore be most suited to
Genera/Families etc which have speciated sympatrically (Smith
et al., 2018), or taxa grouped by a shared niche (i.e., biotope
modelling or species archetype modelling, sensu Dunstan et al.,
2011).

It therefore seems likely that the taxon observations grouped
within the Virgulariidae spp. family in this study (see section
“Similarities and Disparities Between Environmental Profiles
Highlight the Vulnerability of Funiculina quadrangularis”) have
sufficiently different niches to disadvantage grouped distribution
modelling. These findings align with those of Bowden et al. (2021)
who also noticed that taxonomic resolution impacted model
performance, with the species-level models performing the best.
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It should be noted that while taxonomic issues were assumed
to be the cause of bimodalities in histograms, it is possible there
were other reasons for the bimodalities. Sundahl et al. (2020)
found similar bimodalities in reef histograms which are unlikely
to be due to misidentification, instead attributing these to e.g., an
uneven distribution of records in environmental space or a low
importance of the variable in question. For this study, this may be
the case for Umbellula spp. especially (i.e., perhaps these records
do only represent Umbellula encrinus records), but without
further investigations we cannot be sure and have chosen to be
cautious and treat this taxon as potentially representative of more
than one species. Known shallower Umbellula encrinus (Lindal
Jørgensen et al., 2016) occurrences in the northern Barents Sea of
may be useful in future models with wider predictor coverage to
help expand the niche characterisation and discern differences in
for example, depth and temperature requirements (which appear
correlated in this dataset as occurrences did not span the polar
front-related biogeographic boundary).

A precautionary approach to taxonomy is advisable as other
studies have suffered from such issues before. Ross and Howell
(2013) modelled the distribution of Lophelia pertusa reefs in
the United Kingdom, but later found out that some deeper
observations were likely to be Solenosmilia variabilis reef, making
it more correct to define the model as predicting “Scleractinian
reef” presence (Howell et al., 2014). This adjustment improved
the performance of the models against ground-truthing data,
and models were found to be adequate to characterise a
common niche for the two reef types with depth bimodalities
alone (as a proxy for water mass structure) helping to
define where each species might be dominant (Howell et al.,
Submitted).

It is clear therefore that some taxonomic groupings or
errors can impact management decisions, whether that be
by providing erroneous or vague distribution maps, or by
failing to identify rare/endemic species that should be of
conservation interest. Fukami et al. (2004) found that assumed
lower levels of endemism in the corals of the Atlantic as
compared to the Pacific were false and had been masked by
morphological convergence impacting taxonomic identification.
As video and image observations are particularly prone to
identification issues, it is wise for management decision-
makers to assume that while more rare species could be
identified than from physical sampling, there are some that
would be identified in physical sampling that cannot be
identified in imagery. To resolve this, much greater emphasis
should be placed on ensuring best practices in taxonomic
identification with better links between imagery, morphology
and genetics to ensure consistency across sampling methods
(Glover et al., 2016). In the meantime more efforts should be
made to highlight where taxonomic uncertainties are present
and unavoidable.

CONCLUSION

This study provides environmental profiles and distribution
predictions for six sea pen taxa in Norway based on imagery

analysis, data explorations and predictive modelling. Beyond this
it finds that:

(a) External validation is important to understand the
limitations of model predictions which may have
deceptively high internal evaluation scores. But even poor
models have some use when spatial uncertainty metrics
can highlight areas of stable predictions.

(b) Disparities between the environmental profiles found
in Norway and other parts of the world demonstrate
that F. quadrangularis has different realised niches
confirming that this taxon is likely to be particularly
vulnerable to impact.

(c) Inconsistent co-occurrence of taxa suggests that sea
pens should not be grouped in analyses to support
management. Instead a taxon-specific/community-based
analysis is advisable with any further consolidations being
based on commonalities in management measures.

(d) Grouped taxa caused by identification issues may impact
management decision-making as this can produce poorer
environmental profiles and distribution maps. Predictive
distribution models are based on environmental niches
and require that the target taxon occupy a single
environmental niche which is unlikely when taxa are
grouped phylogenetically. Community/biotope groupings
could provide one solution, while greater value should
be placed on resolving taxonomy and quantifying the
uncertainties that taxonomic issues present.
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