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The Gulf of Guinea belongs to the most scarcely sampled marine basins in the

oceans of the world. We have analyzed diversity and distribution patterns of cumacean

communities on the shelf and slope, along the coast of Ghana. Thematerial was collected

in October and November of 2012 using a van Veen grab (0.1 m2) on nine transects. Six

stations were located at each transect (25, 50, 100, 250, 500, and 1,000m). Sixty-three

species of Cumacea were recorded with Leucon and Eocuma as the most speciose

genera, with 12 and eight species, respectively. Comparisons of species richness with

literature data pointed that the Ghanaian coast hosts very diverse communities. About

95% of species were new to science, and the number of cumacean species known

from the West Africa increased by over 100%. Nevertheless, most of the species had

extremely low abundance, 13 singletons and 15 doubletons were found. Mean density

of cumaceans was estimated at only 1.5 ind./0.1 m2. Species accumulation curve

did not reach the asymptotic level, suggesting undersampling, despite the fact that

sampling effort was high (250 samples). The highest species richness was recorded

in the inner shelf (25–50m) and on the slope (1,000m). Cluster analysis separated

shallow water communities from deeper regions on the shelf and upper slope. The

most unique species composition was found at 1,000m. Principal component analysis

showed the importance of oxygen, sediments, and human-related disturbance for

distribution of cumacean communities. In the shallows, oxygen content and presence

of gravel were the most important factors structuring communities. In the deeper bottom

areas (250–1,000m), cumacean fauna was affected by local pollution, mainly by higher

concentration of barium, other heavy metals, and THC.

Keywords: Cumacea, depth gradient, diversity, pollution, Gulf of Guinea

INTRODUCTION

Continental margins constitute about 11% of the oceans of the world and are shaped by a
complex set of environmental factors that are dynamically changing along a depth gradient (Levin
and Sibuet, 2012). They are characterized by high habitat heterogeneity and belong to the most
important marine biodiversity hot spots (Danovaro et al., 2009; Menot et al., 2010; Levin and
Sibuet, 2012). At the same time, continental margins belong to areas of special economic interests,
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such as fishery and oil industry (Menot et al., 2010). This makes
them one of the most interesting natural laboratories for studies
of biodiversity, ecosystem services, and environmental gradients
as well as influence of human activities and climate change
on marine biota (Levin and Sibuet, 2012; Birchenough et al.,
2015). On the other hand, recent analysis based on over 10
million records obtained mostly from the Ocean Biogeographic
Information System (OBIS), revealed a strong sampling bias in
the marine biodiversity assessment. There is a large gap in the
knowledge about marine fauna associated with tropical areas,
and it is visible not only in the deep sea (bathyal and abyssal)
but also on the shelf, with average number of sampling events
an order of magnitude lower than in northern and southern
mid latitudes (Menegotto and Rangel, 2018). The authors of
this research pointed out a lack of scientific infrastructure and
funding for marine research in developing tropical countries as
the main reason of this situation. It is highly visible in the case of
African marine fauna.

The West African continental margin belongs to the most
scarcely sampled regions. Most of the available studies were
focused on the shallows and based on low sampling effort
(Buchanan, 1957; Longhurst, 1958, 1959; Bassindale, 1961; Le
Loeuff and Intés, 1999; Bamikole et al., 2009). There is a particular
lack of ecological research based on quantitative sampling and
lack of detailed biodiversity inventories based on species level
identification. The deep sea communities of the Gulf of Guinea
are almost completely neglected in earlier research, with the
exception of the areas affected by organic discharge from the
Congo River (e.g., Gaever et al., 2009; Galéron et al., 2009; Menot
et al., 2009) and most recent studies from Gabon (Friedlander
et al., 2014) and Ghana (Pabis et al., 2020; Sobczyk et al., 2021).
At the same time, the Gulf of Guinea is facing serious problems
associated with various types of anthropogenic impacts, such as
pollution events associated with the oil industry (Scheren et al.,
2002; Ayamdoo, 2016), but those problems are only scarcely
studied and need further research based on the analysis of various
taxonomic groups (Pabis et al., 2020; Sobczyk et al., 2021).
Influence of heavy metals, hydrocarbons, and other pollutants
might have a substantial influence on the composition, diversity,
and abundance of benthic communities (Olsgard and Gray, 1995;
Gomez-Gesteira et al., 2003; Stark et al., 2020). However, there
are no studies demonstrating the influence of anthropogenic
disturbance on Cumacea.

Based on literature data, Le Loeuff and Cosel (1998)
listed only 1,440 benthic species from the large part of the
West African coast, starting from the Mauretania and ending
in the Namibia (up to 200m depth), although the study
was focused mostly on megafauna (corals, echinoderms, and
decapod crustaceans) as well as polychaetes and bivalves.
Analysis of the same set of samples as in the cumacean study
of the authors revealed 253 species of Polychaeta (Sobczyk
et al., 2021), only from the small fragment of the Ghanaian
coast, placing this area amongst the important biodiversity
hot spots for those marine annelids. We can expect that
similar hidden biodiversity can be encountered for many
other taxonomic groups, especially so important like small
peracarid crustaceans.

Cumacea are classified as one of the orders of Peracarida.
With about 1,400 recognized species (Gerken, 2018), this order
is on the third place in terms of species richness within
Peracarida, after Ampipoda (9,500 species) and Isopoda (about
6,000 species), and together with Tanaidacea (about 1,400
species). Their true diversity is vastly underestimated, mostly
because of taxonomic expertise bias (Appeltans et al., 2012). As
all peracarids Cumacea are small brooders with no planktonic
larvae, they borrow in the surface layer of the sediment (Pilar-
Cornejol et al., 2004). They are often found in the first few
centimeters of sediments and occur from the intertidal, down
to abyssal depths (Watling and Gerken, 2021). Cumacea are
significant element of benthic communities, that in particular
regions or depth zones (e.g., deep sea and tropical areas) might
be one of the most diverse groups of crustaceans (Jones and
Sanders, 1972; Cartes et al., 2003; Doti et al., 2020). For example,
at the upper slope off Portugal, Cumacea together with Isopoda
reached the highest number of the species (Cunha et al., 1997);
while in the Angola Basin off Namibia, they were the third most
abundant group of Peracarida, after Isopoda and Tanaidacea
(Brandt, 2005). Moreover, some species might reach locally high
abundance, even up to 500 individuals per square meter, both on
the shelf, and in the deep sea (Bishop, 1982; Swaileh and Adelung,
1995). Cumacea also play an important role in the trophic webs,
especially as food source for fish and some macroinvertebrates,
such as decapods (Cartes, 1993; Watling and Gerken, 2021). For
example, Diastylis rathkei might constitute even 35% of the diet
of flounder (Swaileh and Adelung, 1995).

Available studies demonstrated that cumaceans display
preferences to particular grain size, which makes them a good
indicator of sediment type (Dixon, 1944; Wieser, 1956; Jones,
1976). Some species are known to be sensitive to environmental
stress. Two dominant species in Algeciras Bay (Cumella limicola
and Nannastacus unguiculatus) were strongly influenced by
hydrodynamism, sedimentation, and water turbidity (Alfonso
et al., 1998). Some species of Cumacea are also good indicators
of eutrophication, and have been proposed as organisms
appropriate for biomonitoring (Corbera and Cardell, 1995; Ateş
et al., 2014). Nevertheless, studies on biology and ecology
of particular species or distribution patterns and structure of
cumacean communities are still scarce, especially in the deep sea
(e.g., Gage et al., 2004; Pabis and Błazewicz-Paszkowycz, 2011;
Corbera and Sorbe, 2020 and references therein).

The knowledge about cumacean fauna of the Ghanian coast
is highly scattered and based mostly on taxonomic publications
(e.g., Băcescu, 1961, 1972; Day, 1975, 1978, 1980; Mühlenhardt-
Siegel, 1996, 2000; Petrescu, 1998). So far, only 154 species of
Cumacea are known from the whole African coast (Watling and
Gerken, 2021), which makes 11% of the world fauna (Gerken,
2018). From West Africa, 59 species have been recorded, mostly
from the continental shelf (Watling and Gerken, 2021), and
only three were found on the Ghanaian coast (Jones, 1956;
Petrescu, 2018). There are no quantitative studies on cumacean
communities conducted on the African coast. Most earlier
studies were focused on taxonomy.

Biodiversity assessments of the tropical continental margins
are among the most important priorities of the current
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marine science (Menegotto and Rangel, 2018). Therefore, the
main aim of this study was to assess cumacean diversity
on the continental shelf and slope of the Gulf of Guinea
(25–1,000m depth, Ghanaian coast) and compare it with
literature data. We hypothesize that the Ghanaian continental
margin hosts speciose cumacean communities with many
species new to science. We wanted also to analyse the
influence of various natural (e.g., oxygen, sediment type,
salinity, and temperature) and anthropogenic (heavy metals and
hydrocarbons) factors on the diversity and distribution patterns
of those crustaceans. We hypothesize that local pollution might
lower the abundance and diversity of those small crustaceans
with limited dispersal abilities.

MATERIALS AND METHODS

Study Area
The Gulf of Guinea is a large open basin located in West
Africa, influenced by a complex set of currents (Guinea Current,
Benguela Current, South Equatorial Counter Current; Ukwe
et al., 2003, 2006) and upwelling events (Nieto and Mélin, 2017).
The north part of the Gulf of Guinea is influenced by seasonal
upwelling, bringing nutrient-richmid-depth waters to the surface
and increasing the primary production (Binet and Marchal,
1993). The southern part depends rather on nutrient input from
land drainage and river flood, mostly the Volta River, which is
the only larger river system located along the almost 600-km long
Ghanaian coast (Buchanan, 1957; Ukwe et al., 2003). The Gulf of
Guinea is classified as a province in the Tropical Atlantic Realm,
with rich fishery resources as well as large oil and gas reserves,
and its sectors (e.g., north, central, and south) are considered a
separate ecoregion (Spalding et al., 2007). The heterogeneity of
habitats on continental margins has influence on high diversity of
habitats for benthic fauna. At the same time, industrialization and
the oil industry create numerous sources of disturbance that can
potentially affect marine communities (Germain and Armengol,
1999; Owusu-Boadi and Kuitunen, 2002).

Sampling
The material was collected in October and November of 2012
from the board of RV Fridtjof Nansen. Nine transects were
distributed along the whole coast of Ghana (Figure 1). Six
stations were designated at each transect (25, 50, 100, 250, 500,
and 1,000m). Five replicate samples were collected at each station
using a van Veen grab (0.1m2) supported with the Video Assisted
Multi Sampler (VAMS), allowing for appropriate sediment
penetration. The samples were washed using 0.3mm mesh
size and preserved in 4% formaldehyde solution. The material
was collected in the framework of the Oil for Development
(OfD) program, and supported by the Food and Agriculture
Organization of the United Nations (FAO).

Environmental Factors
Physical and chemical properties of the sediment and water
were also analyzed at each station. Temperature, conductivity,
and oxygen level were measured using a Seabird 911 CTD
Plus and SBE 21 Seacat thermosalinograph. Sediment structure

(percentage content of gravel, sand, and silt) was also analyzed.
Diameter of particles was calculated using the equations of
Buchanan (1984), and Folk and Ward (1957). Level of total
hydrocarbons (THC), toxic metals: arsenic (As), barium (Ba),
cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead
(Pb), zinc (Zn), and content of total organic matter (TOM) were
also measured. Total hydrocarbon content was analyzed using a
gas chromatograph with a flame ionization detector (GC/FID), as
outlined in the Intergovernmental Oceanographic Commission,
Manuals and Guides No. 11, UNESCO Intergovernmental
Oceanographic Commission (1982) while toxic metals contents
were analyzed via inductively coupled plasma-atomic emission
spectrometry (ICP-AES) (Jarvis and Jarvis, 1992; Elezz et al.,
2018). Total organic matter was determined as the weight loss
in a 2–3-g dried sample (dried at 105◦C for 20 h) after 2 h of
combustion at 480◦C.

Analysis of Diversity and Abundance
Specimens were identified at the morphospecies level (Wägele,
2005).We have calculated species richness (S—number of species
per sample), diversity (Shannon Index) and evenness (Pielou
Index) (Magurran, 2012) as well as abundance [ind./0.1 m2] for
each sample. Mean values with standard deviations (SD) of those
indices were calculated for each depth zone and for the whole
material. Statistical differences between the depth zones were
assessed by non-parametric Kruskal–Wallis test. Post-hoc testing
was done by Dunn’s test. This part of the analysis was performed
using a STATISTICA 13 package (StatSoft, 2006).

Species accumulation curves averaging over 999 permutations
were created using the PRIMER package. The curve plotted the
cumulative number of different species observed as each new
sample was added (Clarke and Warwick, 2001).

We have also assessed the number of rare species recorded
in the material. The number of singletons (species represented
by only one individual in the whole material, in all collected
samples) and doubletons (represented by two individuals), and
the number of unique species (species found in one sample
only) and duplicates (species found in two samples only) were
also calculated. Additionally, we have calculated the number of
species recorded only in a given depth zone or given transect as
well as the number of species common to given depth zones and
transects. Frequency of occurrence (F—percentage of samples
where a species was found in total number of samples) was
calculated for each species.

Multivariate Analysis
Hierarchical agglomerative clustering analysis, based on the
Bray–Curtis formula, was performed to check for faunistic
similarity among the stations. For the analysis, mean values
of abundance of each species calculated for each station were
used. Data were square root-transformed, and the group average
method was used. A SIMPROF test with 1% significance level
was performed to check the multivariate structure within groups.
This part of the analysis was performed using a Primer package
(Clarke and Warwick, 2001).

The R software was used for all analyses of environmental
factors influence on cumacean communities (R Core Team,
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FIGURE 1 | Correlation matrices with Pearson‘s r correlation coefficients calculated for: (A) all predictors and (B) the least correlated predictors. For full list of

environmental variables please see Supplementary Table 1.

2020).We used the Pearson correlationmatrix (corrplot::corrplot;
Wei and Simko, 2017) to assess pair-wise cross-correlation
between each environmental variable. Based on strong
correlation (r > 0.6), we included six variables from the
initial set of 19 variables into further analysis, assuming they
have an ecologically important role in explaining the richness
of cumaceans.

Finally, six variables: Ba, Cd, THC, oxygen, gravel, and
salinity were added into further analysis (Figure 2). For full list
of environmental variables, please see Supplementary Table 1.
Salinity was used in principal component analysis (PCA) only.
Yeo-Johnson power transformation [caret::preProcess(); Kuhn,
2020] was used for reducing deviations linked with unequal
ranges off selected factors (e.g., Ba). Next, PCA was performed to
show dissimilarities in species composition among transects and
stations [vegan::rda(); Oksanen et al., 2019]. Additionally, ranges
of salinity were added to the PCA [vegan::ordisurf (); Oksanen
et al., 2019] to demonstrate salt content relations in arrangement
of stations in ordination space.

Species richness and PCA axis were used to fit generalized
linear models (glm; for species richness) or linear models (lm;
for PCA axis 1 and axis 2) with five environmental variables
(Ba, Cd, THC, oxygen, and gravel) as fixed effects using the
stats4 package [stats4::lm(), stats4::glm(); R Core Team, 2020].
Poisson distribution was used for species richness. To choose
the best fitted models based on corrected Akaike Information
Criterion (AICc), the dredge function was used (MuMIn::dredge;

Bartoń, 2018). To calculate estimates of function slopes for
the models with 1AICc < 2, model averaging was employed
[MuMIn package model.avg(), confset95p(), and avgmod.95p()].
The RSquareAdj function (vegan::RSquareAdj; Oksanen et al.,
2019) was computed to reveal how much variance was explained
by averaged models for PCA axes 1 and 2.

Hierarchical partitioning function (hier.part::hier.part();
Walsh and Mac Nally, 2013) for species richness as well as PCA
axes 1 and axis 2 was used for checking the independent effect
(%) of each environmental variable and its joint contribution to
all other predictors. To compute it, goodness-of-fit measures for
all model combinations with all predictors, with Gaussian (for
PCA axes 1 and 2) or Poisson distribution (for species richness)
were used. Statistical significance of the relative contribution
of each predictor were determined by randomization test
[hier.part::rand.hp()] with implementing P-values and z-scores
(confidence limit < 0.95).

RESULTS

Diversity and Abundance
Altogether, 63 species (391 individuals) of Cumacea were
identified. They represented 13 genera and six families (Table 1).
It is assumed that 95% of species (60 species) are new
to science. The most speciose genera were: Leucon (12
species), Eocuma (8), Iphinoe, and Diastaylis (both genera
with seven species). The most abundant genera were: Eocuma
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FIGURE 2 | Distribution of sampling stations in the Gulf of Guinea.

(95 individuals), Bodotria (60 individuals), and Leucon (50
individuals). Together, they constituted over half of the material.
The most speciose and abundant families were: Bodotridae (23
species, 235 individuals), Leuconidae (15 species, 66 individuals),
Nannastacidea (10 species, 67 individuals), and Diastylidae (10
species, 20 individuals). A large number of rare species were also
recorded. In the whole material, 13 singletons and 15 doubletons
were found. Seventeen species were found only in one sample,
and 14 in two samples only. Frequency of occurrence of species
in the whole material was extremely low. Only five species
had frequency higher than 4%. The species with the highest
frequency of occurrence in the whole material was Eocuma sp.
7 that was found only in 7% of the samples (Table 1). The
species accumulation curve did not reach the asymptotic level,
suggesting undersampling of the studied area (Figure 3).

The mean density of cumaceans calculated for all collected
samples equalled to only 1.5 ind./0.1 m2. General species richness
and abundance decreased along a depth gradient. The highest
number of species was found at 25 and 50m with 17 and 28
species recorded, respectively (Table 2). Moreover, 15 species
were common in those two depth zones (Table 3). On the outer
shelf and upper slope, the number of species was lower and
increased again to 19 species at 1,000m stations (Table 2). It is
also the depth zone with the most unique fauna, as 14 out of 19
species were recorded only here (Table 2). The general number of
species was similar in most of the transects (Table 2). The highest
number of species was found in a transect G6 (29 species), while
the lowest species richness was recorded in transects G8 and G9
with seven and 10 species, respectively (Table 2). The highest
number of species common with other transects was recorded in
transect G6, but generally there was no clear pattern observed
(Table 4).

Mean species richness and diversity per sample were the
highest on the shallows (25m – number of species per sample

1.04 ± 1; Shannon Index 0.2 ± 0.3, 50m – number of species
per sample 1.4 ± 1.2, Shannon Index 0.4 ± 0.4) and at 250m
(number of species per sample 1.1 ± 1, Shannon Index 0.3 ±

0.3) (Figure 4). Evenness was the highest at 1,000m [0.9 ± 0.03
(Figure 4)]. Mean abundance changed along the depth gradient,
and the highest values were observed at 50 (2.2± 2.2 ind./0.1 m2)
and 250m (1.8± 1.8 ind./0.1 m2). Below 250m, it decreases with
increasing depth (Figure 4).

Cluster Analysis
Four groups were distinguished in the cluster analysis
although at low similarity level (20% or less), but all were
significantly differentiated by the SIMPROF (Figure 5).
Inner shelf areas were clearly separated from the outer
shelf and slope showing strong depth zonation of cumacean
communities. Two clusters (B and C) of grouped samples
were collected at depth 25–50m. The next two clusters
consist of samples collected at depth 100−500 (cluster A)
and 500–1,000m (cluster D). The clusters differ in family
and genera composition, number of species, and frequency of
the species.

In the samples grouped in cluster A, 22 species were
found, and eight of them belong to family Bodotridae,
and six to family Diastylidae. Genus Diastylis was
represented by six species and genus Iphione and Eocuma
by three species each. The highest frequency of occurrence
(56%) was observed for Campylapsis sp 2 and Eocuma
sp 7.

Eleven species were found in samples forming cluster B, and
nine of them represent family Bodotridae. The most speciose
genera were Bodotria with five species and Iphinoe with two
species. Vaunthampsonia sp 1 was present in 80% of the samples,
and Bodotria sp 2 and Eudorellopsis sp 1 were present in 60% of
the samples.
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TABLE 1 | List of species with total abundance, frequency of occurrence in samples, and depth range.

Family Genus Number of specimens Frequency [%] Depth range [m]

Bodotriidae Eocuma sp. 1 10 2.0 25–50

Bodotriidae Eocuma sp. 2 14 2.8 50

Bodotriidae Eocuma sp. 3 13 2.8 25–50

Bodotriidae Eocuma sp. 4 5 1.6 25–50

Bodotriidae Eocuma sp. 5 4 1.6 25–150

Bodotriidae Eocuma sp. 6 8 2.4 25–50

Bodotriidae Eocuma sp. 7 37 7.2 100

Bodotriidae Eocuma sp. 8 4 1.2 250

Bodotriidae Bodotria sp. 1 16 2.8 25–50

Bodotriidae Bodotria sp. 2 9 3.2 25–50

Bodotriidae Bodotria sp. 3 17 4.0 25–250

Bodotriidae Bodotria sp. 4 14 2.4 25–50

Bodotriidae Bodotria sp. 5 3 0.8 25–50

Bodotriidae Bodotria sp. 6 1 0.4 50

Bodotriidae Cyclaspis sp. 1 1 0.4 1,000

Bodotriidae Iphinoe sp. 1 4 1.6 50–100

Bodotriidae Iphinoe sp. 2 31 4.8 25–100

Bodotriidae Iphinoe sp. 3 2 0.8 25

Bodotriidae Iphinoe sp. 4 1 0.4 50

Bodotriidae Iphinoe sp. 5 2 0.8 50

Bodotriidae Iphinoe sp. 6 1 0.4 50

Bodotriidae Iphinoe sp. 7 2 0.8 250

Bodotriidae Vaunthompsonia sp. 1 14 3.2 25–100

Diastyliade Diastylis sp. 1 1 0.4 250

Diastylidae Diastylis sp. 2 3 0.8 50–100

Diastylidae Diastylis sp. 3 4 1.6 50–250

Diastylidae Diastylis sp. 4 1 0.4 50

Diastylidae Diastylis sp. 5 2 0.8 100

Diastylidae Diastylis sp. 6 1 0.4 250

Diastylidae Diastylis sp. 7 3 1.2 50–1,000

Diastylidae Makrokylindrus sp. 1 1 0.4 1,000

Diastylidae Makrokylindrus sp. 2 2 0.8 1,000

Diastylidae Makrokylindrus sp. 3 2 0.4 1,000

Lampropidae Lampropidae sp. 1 14 2.4 250

Lampropidae Lampropidae sp. 2 7 1.2 250

Leuconidae Eudorella sp. 1 2 0.8 50–100

Leuconidae Eudorella sp. 2 2 0.4 1,000

Leuconidae Eudorellopsis sp. 1 4 1.6 25–50

Leuconidae Leucon (Epileucon) sp. 1 18 2.8 500–1,000

Leuconidae Leucon (Epileucon) sp. 2 1 0.4 1,000-

Leuconidae Leucon (Macrauloleucon) sp. 3 6 2.4 100–500

Leuconidae Leucon (Macrauloleucon) sp. 4 5 1.2 500

Leuconidae Leucon (Macrauloleucon) sp. 5 1 0.4 1,000

Leuconidea Leucon (Crymoleucon) sp. 6 3 0.8 1,000

Leuconidea Leucon (Leucon) sp. 7 2 0.8 500

Leuconidea Leucon (Leucon) sp. 8 7 1.2 500

Leuconidea Leucon (Leucon) sp. 9 2 0.8 1,000

Leuconidea Leucon (Leucon) sp. 10 3 1.2 500–1,000

Nannastacidae Campylaspis sp. 1 7 2.0 25–1,000

Nannastacidae Campylaspis sp. 2 20 5.6 50–250

Nannastacidae Campylaspis sp. 3 15 4.4 25–500

(Continued)
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Stȩpień et al. Cumaceans Diversity From Gulf of Guinea

TABLE 1 | Continued

Family Genus Number of specimens Frequency [%] Depth range [m]

Nannastacidae Campylaspis sp. 4 4 1.2 25

Nannastacidae Campylaspis sp. 5 1 0.4 1,000

Nannastacidae Cumella sp. 1 2 0.4 250

Nannastacidae Cumella sp. 2 2 0.4 1,000

Nannastacidae Cumella sp. 3 2 0.8 500

Nannastacidae Cumella sp. 4 5 1.6 1,000

Nannastacidae Nannastacidae sp. 1 9 2.8 500–1,000

Pseudocumatidae Pseudocumatidae sp. 1 2 0.8 1,000

indet sp. 1 2 0.8 500

indet sp. 1 1 0.4 1,000

FIGURE 3 | Species accumulation curve for cumacean fauna sampled at the Gulf of Guinea.

Within cluster C, 28 species in total were observed, and 16
species belong to family Bodotridae. The most speciose genera
were Eocuma with six species and Bodotria with five species.
Iphinoe sp 2 and Eocuma sp 2 were characterized by the highest
frequency of occurrence, which was 73 and 56%, respectively.

In the samples from cluster D, 25 species were recorded, and
10 belong to family Leuconidae and seven to Nannastacidae.
Leucon was the most speciose genus (10 species), followed
by Cumella (three species) and Campylapsis (three species).
Nannastacidae sp. 1 had the highest frequency of occurrence, and
it was present in 40% of the samples.

Influence of Physical and Chemical
Factors on Cumacean Communities
PCA1 and PCA2 axes explained about 20% of variance. The
first axis (10.7% variance explained) showed high dissimilarity
between stations located at 100m, and all other sites followed
dissolved oxygen and salinity gradient. Three groups were

established in the PCA mostly along the PCA2 axis (9% variance
explained) (Figure 6). The first one (lower part of gradient)
contained shallow water samples (25–50m), characterized by
higher concentration of oxygen and gravel. Here, a sandy type
of substratum with relatively high contribution of gravel (depth
zone 25–50m) was noticed. Content of Ba, Cd, as well as
THCs was significantly lower. The second group (higher part of
gradient) contained samples from 250–1,000m deep; and here,
the samples were characterized by higher concentration of Ba,
Cd, and THC. Lower concentration of oxygen and lower content
of gravel and sand were noted here. Bottom deposits constituted
mostly of silt. Salinity reached low to average values with high
range (34.8–35.6‰). The third group contained samples from
100m depth. The samples were distinguished from the other
groups by high salinity content with low values range (35.7–
35.8‰), and bottom substrate was dominated by sand and silt.

A set of two most parsimonious (with 1AICc < 2) linear
models for PCA axis 1 revealed that high content of gravel
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TABLE 2 | Total number of species in each depth zone/transect and number of species recorded only in a given depth zone/transect.

Depth zone Number of unique species Total number of species Percentage of unique species

25m 2 17 11.7

50m 7 28 25.0

100m 2 11 18.1

250m 7 15 46.6

500m 5 10 50.0

1,000m 14 19 73.6

Transect

G1 1 22 4.5

G2 1 19 5.2

G3 2 19 10.5

G4 8 24 33.3

G5 2 19 10.5

G6 1 29 3.4

G7 4 17 23.5

G8 2 7 28.5

G9 0 10 0

TABLE 3 | Species common between the depth zones.

Depth zone 25 50 100 250 500

25

50 15

100 2 7

250 3 6 4

500 1 1 1 2

1,000 1 2 0 1 3

TABLE 4 | Species common between the transects.

Transect G1 G2 G3 G4 G5 G6 G7 G8

G1

G2 8

G3 7 8

G4 8 10 7

G5 7 10 8 8

G6 15 12 12 11 13

G7 8 2 5 4 4 8

G8 2 4 0 3 2 3 2

G9 4 5 4 3 5 9 3 1

(estimate slope: −0.30, p = 0.05) as well as oxygen (estimate
slope: 0.25, p< 0.001) shaped species composition along the axis.
The influence of gravel was negatively correlated with species
composition along axis 1. However, higher concentration of
oxygen dissolved in water had a positive influence on it (Table 5,
Figure 7A, Supplementary Table 2). The model explained about
31% of total variance. Hierarchical partitioning revealed that
only the influence of oxygen (relative contribution: 64.3%) was
significant for PCA axis 1 (Figure 8).

Form the three models best describing species composition
along PCA axis 2 (containing Ba, THCs, oxygen, and gravel)

we noted statistical significance of oxygen, gravel, and Ba.
The higher content of oxygen (estimate slope: −0.16, p
< 0.001) and gravel (estimate slope: −0.39, p = 0.002)
had a negative influence on species composition along axis
2, while Ba (estimate slope: 0.21, p = 0.01) enhanced
it (Table 5, Figure 7B, Supplementary Table 2). The model
explained about 62% of total variance of cumaceans. The
relative contribution of each factor supports the previous results.
The influence of barium, gravel, and oxygen (independent
effect: 29.3, 29.7, and 19%, respectively) was statistically
significant (Figure 8).
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FIGURE 4 | Mean value of species richness, diversity, evenness, and abundance calculated for cumacean fauna in each depth zone.

A set of four most parsimonious models with 1AICc < 2
best explained richness of cumaceans species. Ba, gravel, and
oxygen were included into best averaged model; however, only
the adverse effect of Ba (estimate slope: −0.37, p = 0.04) was
statistically significant and caused decrease in species richness
(Table 5, Figure 9, Supplementary Table 2). Based on the results
of hierarchical partitioning, we found that the influence of Ba and
oxygen (relative contribution: 24 and 32.1%, respectively) was
significantly correlated with species richness (Figure 8).

DISCUSSION

Species Richness
Despite very low total abundance, the cumacean species
richness on the Ghanaian coast was very high, and the species
accumulation curves still showed substantial undersampling
(Figure 3). Taking into account generally high sampling effort
(much larger than in most of other cumacean studies, see
Table 6) and large number of sampled stations, it can be
assumed that great species rarity was the main reason behind
this result. Large number of singletons and doubletons as well

as large number of species recorded in a very low number
of samples was typical feature of cumacean communities
along the Ghanaian coast (Table 1). Moreover, the primary
analysis indicates that 95% of collected species are new to the
science. The results demonstrated the highly underestimated
diversity of those crustaceans in the Gulf of Guinea, even
compared with the global diversity of Cumacea, which was
estimated at about 1,400 species (Gerken, 2018). After this
study, the list of known cumacea from the coast of Guinea
increased from 3 to 66 species (Watling and Gerken, 2021),
which is a significant result for about 500-km long part of
the coastline.

Comparisons with other studies of cumacean species richness
are difficult because of large discrepancies in type of gear used,
scale of the sampling area, sampling effort, and studied depth
range, not to mention the differences in local environmental
conditions or geological history of various regions (Table 6).
Nevertheless, the number of 63 species is comparable even with
much larger areas that were sampled extensively for a very long
time. For example, in the whole Antarctic waters, 86 species of
cumacea were recorded (De Broyer and Danis, 2011). Extensive
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FIGURE 5 | Dendrogram of samples, for Bray Curtis similarity, square root transformed data, and group average grouping method. (Spotted lines indicate the

samples that cannot be significantly differentiated by SIMPROF).

analysis of literature data resulted in the list of 172 species
recorded from Iberian waters (Atlantic and Mediterranean)
including 142 species found in bathyal (200–3,000m) (Corbera,
1995). The current list of all Mediterranean cumaceans (such as
Tyrrhenian, Adriatic, Aegena, and Levantine Seas) includes 99
species (Coll et al., 2010). Analysis of large set of 122 epibenthic
sledge samples collected in the deepAtlantic (500–4,000mdepth)
revealed the presence of 225 species, although from a large
number of almost 56,000 individuals (Gage et al., 2004). On
the other hand, only 29 species were recorded from a whole
region of tropical Eastern Pacific (Jarquin-Gonzalez and Garcia-
MadrigalMdel, 2013) and only 34 species from the whole Chilean
coast (Thiel et al., 2003). Even in the intensively sampled, large
open system of the Bay of Biscay, the number of recorded
cumacean species was lower than in this study. In the subtidal
zone (up 63m depth) 18 species were recorded in over 100
samples collected using the van Veen grab (Cacabelos et al., 2010;
Corbera et al., 2013; Corbera and Galil, 2016). At the deeper
areas of the bay in Kostarrenkala area, 42 species in total were
collected (13 species were found at 170m, six species at 300m,
nine species at 400m, 18 species at 724m, and 24 species at
1,000m) (Frutos and Sorbe, 2014). We have analyzed sampling
effort and cumacean species richness from 39 different sampling
campaigns (Table 6). In majority of the studies, the number of
species was lower than 35, even if the sampling effort was high,
and even if an epibenthic sledge or other gears collecting large
number of individuals and species were used. Nevertheless, it is
worth mentioning that this study was conducted in a relatively
wide depth range. Cumaceans have low dispersal potential (Jones
and Sanders, 1972; Pilar-Cornejol et al., 2004), therefore, large
depth range sample (25–1,000m), together with large diversity
of microhabitats and differences in environmental conditions,
could result in recognition of a larger number of species. It is
clearly visible in the analysis of species common in different

depth zones (Table 3) and in the results of the cluster analysis
(Figure 5).

Based on current data, we cannot postulate that the Gulf
of Guinea is a hot spot of cumacean diversity, although that
kind of assumptions is likely possible. There were previous
suggestions that this region might be an important center of
cumacean diversity. In the deeper parts of the Angola Bay (5,125–
5,415m), 45 species were recorded in just seven epibenthic
sledge samples (Brandt, 2005; Mühlenhardt-Siegel, 2005), while
Bochert and Zettler (2011) described 16 additional species
from the shelf of the Angolan and Namibian waters. High
diversity of Cumacea on the equator was already mentioned
by Jones and Sanders (1972) and later supported by large scale
latitudinal analysis of the deep Atlantic cumacean richness,
although authors declare that it is difficult to say if this pattern
is related to geological and evolutionary history (e.g., glaciation
in the northern hemisphere) or differences in more recent
changes in local ecological conditions (e.g., high productivity
in tropical areas; Gage et al., 2004). Confrontation of those
observed patterns with the knowledge about large sampling
bias in the tropical marine waters (Menegotto and Rangel,
2018) demonstrates that many important questions regarding
the distribution patterns and diversity are still open and need
further comprehensive studies. Based on the current data, it is
impossible to discuss about the dependencies between local (e.g.,
Ghanaian coast) and regional (e.g., whole Atlantic African coast,
West Africa, and Gulf of Guinea) species pools (Witman et al.,
2004) or provide any generalizations about factors influencing
diversity on a larger scale. At the same time, we did not observe
large differences in species composition on intermediate scale
(between investigated transects). There were some transects with
very low (G8 – 7 species) or very high (G6 – 29 species)
total number of species, but at the same time the number
of species unique to a given transect was very low (Table 2),
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FIGURE 6 | Principal component analysis showing species composition differences in each sampling site according to environmental factors with sampling sites

(points) and ranges of salinity (blue isolines).

and there was no clear spatial pattern in species common to
different transects, even from opposite parts of the Ghanaian
coast (Table 4). Those differences are rather not related to
distance between the transects but are most probably due to
the influence of local environmental conditions as shown in the
PCA analysis.

Distribution Patterns and Diversity on a
Background of Environmental Conditions
Oxygen content and sediment type (especially content of gravel)
drive species composition and diversity especially in the 25–
50m stations. Well-oxygenated water and elevated primary
production may increase species richness (Levin and Sibuet,
2012; McCallum et al., 2015). On the other hand, in previous
studies, Pabis et al. (2020) reported low oxygen concentration at
250–500m depth on the coast of Ghana, and those factors might
also cause decrease in cumacean abundance and species richness
in this depth zone, although the pattern is not clear, and visible
only at 500m. Lower oxygen concentrations might be caused by

sinking organic matters resulting from seasonal upwelling at the
Ghanaian coast (Nieto and Mélin, 2017).

There is no evidence that increased salinity may reduce
the abundance and species richness of cumacea. We suspect
that higher salinity values at 100m were a result of seasonal
and oceanographic factors such as upwelling events, bottom
currents, temperature, or rainy seasons (Ukwe et al., 2003;
Djagoua et al., 2011; Nieto and Mélin, 2017). Martin et al. (2010)
showed that decrease in salinity may increase the activity of
cumaceans in water column, although we have observed only
slight differences in salinity along the coast of Ghana. Therefore,
based on available data, we cannot speculate about its influence
on cumacean communities.

Earlier studies support our result, pointing substrate grain size
and organic matter content as the most important drivers of
cumacean assemblages (Corbera and Cardell, 1995; Dos Santos
and Pires-Vanin, 1999; Cristales and Pires-Vanin, 2014; Corbera
and Sorbe, 2020). In the study of the shallow water communities
of the Persian Gulf, the presence of gravel also had a positive
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TABLE 5 | Most supported (1AIC < 2) models testing for impacts of environmental factors on species composition (site scores along PCA ordination axes 1 and 2, linear

regression) and richness of cumaceans (generalized linear model with Poisson distribution).

Response variable Model df logLik AICc 1AICc Weight

Site scores along PCA ordination axis 1 Gravel + Oxygen 4 −10.68 30.3 0.00 0.310

Ba + Gravel + Oxygen 5 −10.30 32.0 1.73 0.131

Site scores along PCA ordination axis 2 Ba + Gravel + Oxygen 5 4.87 1.7 0.00 0.409

Ba + Gravel + Oxygen + THC 6 5.66 2.7 1.02 0.245

Ba + Cd + Gravel + Oxygen 6 5.34 3.3 1.66 0.178

Richness of cumaceans Ba + Oxygen 3 −90.00 186.6 0.00 0.155

Ba + Gravel + Oxygen 4 −88.87 186.8 0.16 0.143

Ba 2 −91.76 187.8 1.20 0.085

Ba + Gravel 3 −90.84 188.3 1.67 0.067

influence on cumacean fauna (Martin et al., 2010). The positive
effect of gravel on the shallow water communities was also
confirmed in the study of polychaete functional diversity in
the Ghanaian waters (Sobczyk et al., 2021). The presence of
coarser sediment fractions might increase habitat complexity and
heterogeneity for small infaunal invertebrates such as cumaceans
or various groups of polychaetes, resulting in higher number of
microhabitats and/or ecological niches and increased diversity
(Sebens, 1991; Carvalho et al., 2017). We also have to take into
account interactions with other benthic organisms occurring in
the shallows. Generally, the abundance and diversity of benthic
fauna of the Ghanaian coast were highest in the 25–50m depth
range (Pabis et al., 2020). This fact might increase the diversity
of mutual interactions between various organisms, for example,
because of higher level of sediment bioturbation, which could
influence oxygenation of the sediment and food availability (Aller
and Cochran, 2019). Such conclusions are supported by high
abundance and diversity of burrowing polychaetes recorded in
this depth zone along the Ghanaian coast (Sobczyk et al., 2021).

Sediment character might be crucial for cumacean survival, as
it can be strictly related to the feeding strategy and respiratory
mechanism (Dixon, 1944 in Dos Santos and Pires-Vanin,
1999). Cumacea feed on microorganism (especially diatoms)
and/or detritus (Błazewicz-Paszkowycz and Ligowski, 2002). It is
assumed that mud-dwellers filter small particles of suspension,
while sand dwellers scrub food from sand grains. However,
studies onCumella vaulgaris demonstrated that the attractiveness
of a particular substratum depends on the amount and type
of food (Wieser, 1956). The type of substrate is also suggested
to have some impact on filter apparatus appearance in some
cumaceans. Species that live in muddy sediment have the filter
apparatus equipped with finely feathered bristles that allow easier
water flow. For example, members of the Diastylis are known
to have filter apparatus adapted to catching small particles of
food from water (Dixon, 1944). Nevertheless, the knowledge
on diet, habitat preferences, and other aspects of the cumacean
biology is extremely scarce. We know nothing about the ecology
and biology of majority of genera, and it is impossible to link
the results with any data about the biology of particular species
recorded in West Africa.

Slope communities were also affected by disturbance
associated with the influence of barium, other heavy metals,
and hydrocarbons that are associated mainly with increasing

activities of petroleum companies. The oil industry (e.g., Jubilee
Oil Field) combined with pollution from other sources such as
the dyeing industry, leaks from crude oil storage, and inputs of
polluted fresh water have an important influence on the Gulf
of Guinea (Acquah, 1995; Owusu-Boadi and Kuitunen, 2002;
Scheren et al., 2002; Ayamdoo, 2016; Hanson and Kwarteng,
2019). For example, between 2009 and 2011, there was a spill of
oil-based mud in Ghanaian waters, and the control of pollution
in this region remains poor and not well-documented, although
it is considered to continuously increase (Ayamdoo, 2016).
Moreover, Ghana is importing barite for the dyeing industry
(Sobczyk et al., 2021). Larger concentration of Ba on the slope
is also not surprising because of the influence of pressure on
the solubility of barite (Neff, 2002). At the same time, elevated
levels of barium were not visible in all slope stations, but only
on part of the transects (Pabis et al., 2020), confirming that
pollution has local anthropogenic origin. Despite the fact that
cumacean abundance and species richness per sample were
generally low along the whole depth range, we have noticed
decreased values in the slope samples, where muddy sediments
are characterized by higher content of barium, other toxic
metals, and hydrocarbons (Pabis et al., 2020). Those factors
might influence benthic communities (e.g., Olsgard and Gray,
1995; Gomez-Gesteira et al., 2003; Stark et al., 2020), and it
is known that heavy metals might accumulate in cumacean
bodies (Swaileh and Adelung, 1995). Ba and other heavy metals
may affect development and cause decrease in abundance of
benthic invertebrates (Lira et al., 2011), or influence embryos
of crustaceans and bivalves (Macdonald et al., 1988). Similar
effects were described for hydrocarbons (Main et al., 2015;
Honda and Suzuki, 2020). Nevertheless, there are only scarce
data about exact doses of various pollutants that could influence
particular species or taxonomic groups of benthic organisms
(Lira et al., 2011). We already noticed in the earlier study (Pabis
et al., 2020) that levels of Ba and other toxic metals in the Gulf
of Guinea were close to background levels according to OSPAR
and KLIF (Norwegian Pollution Authority) guidelines (OSPAR,
2017), although literature data from other regions demonstrated
that even low concentrations of Ba and other pollutants might
influence benthic communities (Olsgard and Gray, 1995). The
influence of local pollution associated with oil exploration in
Ghanaian waters and dying industry was also visible in the study
on polychaete functional diversity that was based on the same set
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FIGURE 7 | Visualization of linear models testing for effects of selected environmental factors on species composition of cumaceans, expressed as site scores along

PCA ordination axis 1 (A) and axis 2 (B). Phrase “n.a.” means that environmental factor was not included in a set of the most parsimonious models. Phrase “n.s.”

means its explanatory power was not significant despite the fact that means environmental factor was included in a set of the most parsimonious models.

of samples (Sobczyk et al., 2021). Patterns observed in cumacean
study are very similar, although not that obvious and strong as
in the case of polychaetes, which is most probably caused by
generally very low abundance of those crustaceans. Moreover,
polychaetes are considered perfect model organisms for various
studies on ecosystem response to natural or anthropogenic
changes and disturbances (Olsgard et al., 2003; Giangrande et al.,

2005), and it is not surprising that they are good indicators
of disturbance.

Cumaceans are small benthic brooders with limited dispersal
potential. Therefore, they are considered to be sensitive to
changes in environmental factors (Corbera and Cardell, 1995;
Alfonso et al., 1998), although there are no data on influence
of pollution on their communities, except those of one study
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FIGURE 8 | Relative contribution of each environmental factor to shared variability of full models testing for effects of environmental factors on species composition

(expressed as site scores along PCA ordination axes (1 and 2) and richness of cumaceans. Predictors that had significant effect on response variables are given in

white. Plus (+) signs express positive impact of predictors on response variables, and minus (-) signs express negative influences. For full predictor names, see

Supplementary Table 1.

FIGURE 9 | Visualization of generalized linear model testing for effects of environmental factors on species richness of cumaceans. Phrase “n.a.” means that

environmental factor was not included in a set of the most parsimonious models. Phrase “n.s.” means its explanatory power was not significant despite the fact that

means environmental factor was included in a set of the most parsimonious models.

showing decrease in abundance in the polluted site (de-la-
Ossa-Carretero et al., 2012). However, studies on similar small
peracarid crustaceans such as Tanaidacea demonstrated that they
might be good indicators of disturbance processes (Guerra-
García and García-Gómez, 2004). The influence of local pollution
on the Ghanaian coast was visible even in the case of higher taxa,
although the taxonomic level of phyla and orders is normally not
sufficient for meaningful assessments of ecosystem health (Pabis
et al., 2020). Moreover, we have to remember that despite the fact
that Ba was a significant factor in the analysis, other variables
such as hydrocarbons and other heavy metals such as Cd, Cu, and
Ni could also be responsible for combined influence on cumacean

communities (Sobczyk et al., 2021). In such cases, it is difficult to
unequivocally assess the influence of one out of multiple stressors
on benthic communities (Borja et al., 2011; Lenihan et al., 2018),
even by advanced multivariate analysis and especially when we
analyse communities of less abundant taxa-like cumaceans. The
results of the PCA are not strong, since first PC axis explained
only 10% of variance, which is due to very low abundance, large
number of singletons, and highly patchy distribution of majority
of species. Nevertheless, the results are supported by analysis
based on the abundance of macrozoobenthic higher taxa and
polychaete communities (Pabis et al., 2020; Sobczyk et al., 2021).
Moreover, similar results of the PCA are sometimes sufficient for
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TABLE 6 | Sampling effort, species richness, and total abundance of Cumacea from various studies.

Area Gear Total number

of samples

Depth [m] Number of

individuals

Number of

species

Abundance References

off Santos, SE Brazil Box corer (0.1 m2) 21 10–100 919 24 nd Cristales and Pires-Vanin,

2014

E Mediterranean Sea Box corer, epibentic

sledge, beam trawl

161 45–4,398 nd 29 nd Mühlenhardt-Siegel, 2009

W Mediterranean

Sea,coast of Barcelona

Dredge (0.1 m2 ) 40 5–70 nd 22 0–613 indv/m2 Corbera and Cardell, 1995

Ross Sea Dredge 19 84–515 5,287 28 nd Rehm et al., 2007

Tropical Eastern Pacific Grabbing 13 Max 10 378 29 nd Jarquin-Gonzalez and

Garcia-Madrigal Mdel,

2013

Algeciras Bay, Giblartar

Strait

Scuba diving 25 Shallow 2,058 3 nd Alfonso et al., 1998

Bermuda Scuba diving 23 1–6 825 7 nd Petrescu and Sterrer,

2001

California coast (Dillon

Beach)

Scuba diving 20 1–21.5 952 12 1–209 indv/0.04

m2

Gladfelter, 1975

Puerto Morelos Reef

National Park Mexico

Scuba diving nd 3–12 177 30 nd Monroy-Velázquez et al.,

2017

W Mediterranean Sea,

Creixell beach

Sledge 1,800 0.5–3 Nd 6 nd San Vicente and Sorbe,

1999

Bay of Seine, English

Channel

Sledge 38 8–13 Nd 5 352.6–15.5 indv/

100 m3

Wang and Dauvin, 1994

Hendaya and Creixell

beaches, Bay of Biskay

Sledge 132 Up to 10 Nd 5 0.1–96.9 indv/ 5

m2

San Vicente and Sorbe,

2001

Portuguese coast Sledge 5 21–299 24 nd 14–61 indv/100

m2

Cunha et al., 1997

Beagle Channel,

Argentinian coast

Sledge, dredge 18 25–665 15,662 25 nd Mühlenhardt-Siegel, 1999

South Shetland Island,

Trinity Islands

Sledge 24 45–649 1,236 25 1–289 Corbera, 2000

Bellingshausen Sea,

Antarctic Peninsula

Sledge 26 85–1,870 557 35 4.2–652.2

indv/1,000 m2

Corbera et al., 2008; San

Vicente et al., 2009

Mediterranaean Sea Sledge 27 100–4,000 1,505 33 nd Reyss, 1973

Falcland Island Sledge 3 103–202 8,074 13 Doti et al., 2020

Kostarrenkala area, Bay of

Biscay

Sledge 10 175–1,000 1,476 37 nd Frutos and Sorbe, 2014

NE Greenland Sledge 8 197–2,681 7,868 24 nd Brandt, 1997

E Meditteranean Sea, SW

Balearic Island, Algerian

Basin,

Sledge and bottom

trawl

6 sledges, 12

trawls

249–1,620 Nd 24 nd Cartes et al., 2003

Cap Ferret Canyon, Bay

of Biscay

Sledge 13 346–1,099 1,885 42 2.8–55.8 indv/100

m2

Corbera and Sorbe, 2020

Cap Ferret Canyon, Bay

of Biscay

Sledge 12 386–420 472 9 2.1–32.2 indv/100

m2

Sorbe and Elizalde, 2014

E Meditteranean Sea,

Catalan Sea

Sledge 21 389–1,859 2,747 32 nd Cartes and Sorbe, 1997

Capbreton area, Bay of

Biscay

Sledge nd 500–797 Nd 03.gru nd Frutos and Sorbe, 2017

Capbreton canyon (site A

and B), Bay of Biscay

Sledge and box

corer

17 box corer

and 17 slegdes

A: 923–1,002,

B: 971–1,027

Nd A: sledges: 8

species, box

corer - 2 species

B: sledges: 18

species, box: 4

species

nd Marquiegui and Sorbe,

1999

(Continued)
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TABLE 6 | Continued

Area Gear Total number

of samples

logic

Depth [m] Number of

individuals

Number of

species

Abundance References

Angola Basin Sledge 7 5,125–5,415 479 45 nd Brandt, 2005

E MeditteraneanSea,

Catalan Sea

Trawl with net and

sledge

35 398–1,808 3,159 Upper slope - 5

the most

abundant

species; middle

slope−6 most

abundant, lower

slope−7

nd Cartes and Sorbe, 1997

W MeditteraneanSea,

coast of Israel

Trawl nd 1,241–1,557 575 12 nd Corbera and Galil, 2016

Ría de Pontevedra, Galicia

coast

van Veen grab

(0.056 m2)

135 Subtidial 473 (2.7% of

collected

peracarids)

14 nd Lourido et al., 2008

Ria de Vigo, Galicia coast van Veen grab

(0.056 m2)

145 0–28.2 Nd 4 nd Cacabelos et al., 2010

W MeditteraneanSea,

coast of Israel

van Veen grab

(0.08m2)

443 1.9–63 31,508 18 nd Corbera and Galil, 2016

SE Brazilian continental

shelf

van Veen grab (0.1

m2), dredge and

beam-trawl

108 samples 10–124 1,587 19 nd Dos Santos and

Pires-Vanin, 1999

Mexico, Bay of All Saints van Veen grab (0.1

m2)

60 <15 Nd 12 1–124 indv/0.1m2 Donath-Hernández, 1987

E MeditteraneanSea,Bay

of Blanes

van Veen grab (600

cm2 = 0.06 m2 )

nd 15 Nd 10 Max 333 indv/m2 Corbera et al., 2013

Persian Gulf, Iranian coast van Veen grab (0.1

m2)

15 up to 30 232 8 nd Martin et al., 2010

Admiralty Bay, Antarctic van-Veen grab (0.1

m2)

105 20–500 685 11 nd Pabis and

Błazewicz-Paszkowycz,

2011

Mobile Bay, Alabama, Gulf

of Mexico

nd 3,150 2.5–6 nd 5 Up to: 69 indv/m2

for

Oxvurostylissmithi,

11 indv/m2 for

Leucon

americanus, 6

indv/m2 for

Cyclaspisvarians

and for Eudorella

monodon

Modlin and Dardeau,

1987

description of ecological patterns (Sarthou et al., 2010), although
they have to be treated cautiously.

Nevertheless, it is, to some point, surprising that we have
noticed two peaks in the general number of species, one
in the shallows and one in the 1,000m (Table 2), where
the influence of Ba and hydrocarbons was the highest.
Moreover, the cumacean fauna recorded at 1,000m stations
was also the most unique. Those facts might be associated
with the general pattern showing that bathyal is the main
biodiversity hot spot for benthic fauna due to higher
habitat diversity (Danovaro et al., 2009; Rex and Etter,
2010). High diversity of bathyal cumacean communities
was already demonstrated in many previous studies (e.g.,
Corbera, 1995; Gage et al., 2004; Corbera and Sorbe, 2020 and
citations therein).

Distribution of genera and/or families along a depth gradient
might also be at least partially explained by earlier studies on
cumacean evolution and phylogeny, although we also know
very little about those important problems (Gerken, 2018 and
references therein). There are only scarce data about the possible
origin of various families or genera and their affinities to given
depth zones or regions. For example, Bodotriidae are classified
as typical shallow water crustaceans (Day, 1978; Mühlenhardt-
Siegel, 1996; Petrescu, 1998), while members of Leuconidae are
more often recorded in the deep sea (Mühlenhardt-Siegel, 2005,
2011; Gerken, 2016). Diastylis, on the other hand, is considered
to have relatively wide bathymetric distribution, from shallows
to bathyal depths (Băcescu and Petrescu, 1991; Mühlenhardt-
Siegel, 2005). On the other hand, those general patterns might be
affected by some local conditions. For example, the presence of
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preferred sediment type might extend the bathymetric range of
cumaceans, recognized as shallow water, even to upper bathyal
depths (Corbera and Sorbe, 2020), demonstrating that similar
generalizations are still far from being conclusive. Brandt et al.
(2012) summarized the information about widely distributed
peracarid crustaceans. According to this analysis, there are at
least 48 eurybathic cumacean species in the deep sea, and at that
least 25 have a very wide geographic distribution (two or more
oceans), althoughwe have to remember that those numbers could
substantially change after detailed molecular studies.

The results suggest high level of undescribed cumacean
diversity in West African waters. Future biodiversity studies
should be focused on bathyal communities, especially in areas
not affected by human related disturbance processes, and explore
a wider depth range. The use of dredges or epibenthic sledge
could also allow to collect a larger number of individuals than
point scale samplers such as the van Veen grab. Probably,
the most appropriate sampling strategy should include the use
of both quantitative and semiquantitative methods, as it was
already demonstrated in case of tanaidaceans (Józwiak et al.,
2020). The hypothesis of the high diversity of cumacean fauna
in tropical African waters still cannot be verified because of
strong sampling bias. The great rarity, small population densities,
and high level of patchiness in the distribution of particular
species suggest the necessity of sampling at larger number of
stations, allowing for more comprehensive biodiversity inventory
of those small crustaceans. The high diversity of Cumacea
observed in this study showed that small peracarids should
be included in future research, especially since the pressure of
human activities in large marine ecosystems such as the Gulf
of Guinea could lead to substantial loss in marine diversity
yet unknown. There is also a great need for further taxonomic
studies on the region. They could help to accelerate the further
analysis of ecological interactions occurring in West African
seabed ecosystems, because they constitute an important base of
any ecological research and biodiversity inventories.
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