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A B S T R A C T   

We consider the challenge in estimating the natural mortality, M, in a standard statistical fish stock assessment 
model based on time series of catch- and abundance-at-age data. Though anecdotal evidence and empirical 
experience lend support to the fact that this parameter may be difficult to estimate, the current literature lacks a 
theoretical justification. We first discuss the estimatability of a time-invariant M theoretically and present 
necessary conditions for a constant M to be identifiable. We then investigate the practical usefulness of this by 
estimating M from simulated data based on models fitted to 19 fish stocks. Using the same data sets, we next 
explore several model formulations of time varying M, with a pre-specified mean value. Cross validation is used 
to assess the prediction performance of the candidate models. Our results show that a time-invariant M can be 
estimated with reasonable precision for a few stocks with long time series and typically high values of the true M. 
For most stocks, however, the estimation uncertainty of M is very large. For time-varying M, we find that ac-
counting for variability across age and time using a simple model significantly improves the performance 
compared to a time-invariant M. No significant improvement is obtained by using complex models, such as, those 
with time dependencies in variability around mean values of M.   

1. Introduction 

Time series of catch at age and abundance at age indices are critical 
input for assessing commercially important fish stocks. For this type of 
data, the assessment models in use for management advice are typically 
variants of statistical catch at age models, where processes for the fishing 
mortality rate F, the natural mortality rate M and possibly recruitment 
are modelled as stochastic processes (e.g. Gudmundsson, 1994; Cook, 
2004; Aanes et al., 2007; Nielsen and Berg, 2014). For such models, the 
natural mortality rate M is considered difficult to estimate precisely 
when the fishing mortality rate F and the catchability q are to be 
simultaneously estimated with M, in the absence of additional data, such 
as capture-recapture data and stomach content data (e.g. Quinn and 
Deriso, 1999; Bogstad et al., 2000; Cook, 2004; Aanes et al., 2007; Punt 
et al., 2021). Additional data is often lacking, and M is therefore often 
fixed at a pre-specified value, as for example in the following stocks 
managed by ICES (ICES, 2020b,a): Norwegian Spring Spawning Herring 
(M = 0.9 for age two or less, M = 0.15 for higher ages), Western Horse 
Mackerel (M = 0.15), Cod in Norwegian Coastal Waters (M = 0.2), 
Beaked Redïfish (M = 0.05) and Greenland Halibut (M = 0.1). 

However, Cook (2004) estimated M based on abundance indices for 
scientific survey data during a period where fishery was closed and 
found age specific evidence for variation across age, but not over time 
for a data set on Shetland sandeel. In a simulation experiment based on 
models fitted to 12 Pacific Coast groundfish stocks, applying the 
assessment model Stock Synthesis, Lee et al. (2011) concluded that M 
could be estimated with reasonable precision in most such cases when 
the model was true. The authors further asserted that unrealistic esti-
mates of M, based on real data, were often due to severe model 
mis-specification. Both these conclusions were supported by Punt et al. 
(2021). It should be noted that they had 50 years of data in their 
simulation study, and that many important fish stocks have considerably 
less historical data than this. Magnusson and Hilborn (2007) also per-
formed a simulation experiment, but with a less optimistic conclusion. 
They varied, among others, the exploitation history, and concluded that 
M was estimatable with some reliability when age composition data 
were available from before major catches were removedoved but found 
M to be less estimatable under other fisheries scenarios. Aanes et al. 
(2007) fitted a model to both real and simulated data for Northeast 
Arctic cod and found it difficult to estimate the mean value of M. Instead, 
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they estimated the temporal dynamics in the natural mortality rate 
around a mean value, using an informative prior for the mean. Other 
authors have used similar models, but with a fixed, pre-specified value 
for the mean, and examples of such models are found in Cadigan (2016), 
Aldrin et al. (2020) and Stock et al. (2021). 

To summarize, to our knowledge all studies conclude that the esti-
mation of M is at best difficult without additional data sources or with 
substantial historical data. The conclusions appear to be based on 
established practices or empirical findings of model performance, 
without a theoretical justification. 

In this paper, we investigate the estimatability of M further based on 
time series of catch at age data and abundance at age indices. After 
introducing a basic assessment model, we investigate necessary condi-
tions for M to be theoretical identifiable, using the framework of Cole 
and McCrea (2016). Next, we test if it is possible to estimate the level of 
M in practice, when the model is true, and M is constant over time, by 
simulating from models fitted to 19 fish stocks. Finally, we compare the 
prediction performance of models with (i) pre-specified M, (ii) estimated 
M and (iii) time-varying M around a pre-specified level, by fitting them 
to real data for the same 19 fish stocks in a cross validation experiment. 

2. Models 

Here, we present a general stock assessment model consisting of two 
sub models; a population model for the fish stock and a data model, 
which links the observed catch at age and abundance at age data to the 
population model. Ages are indexed by a = 1,…,A, where a = 1 is the 
first age we consider in the model and not necessarily the biological age, 
and a = A is a plus group. Likewise, years are indexed by y = 1,…,Y, 
where y = 1 and y = Y are the first and last years we consider. 

Table 1 gives an overview of relevant variables. 

2.1. Data 

We consider two types of data, estimates of yearly age specific 
catches and observed age specific survey index data. Let Ĉa,y denote an 
estimate of the true, but unknown, number of fish Ca,y of age a caught 
during year y. Let ̂Ia,y(d) denote an observed survey index for fish of age 
a for a survey conducted at the end of day d of year y. 

2.2. A general stock assessment model 

We divide the stock assessment model into a population model of 
true, unknown quantities and a data model which defines how the ob-
servations are related to the quantities in the population model. 

2.2.1. The population model 
We first consider general age and year specific fishing and natural 

mortalities rates Fa,y and Ma,y, and a general year specific recruitment 
N1,y for the lowest age. In Sections 2.3, 3 and 4, we will consider specific 
models for these and other quantities. 

We assume that the highest age group A defines a plus group of fish 
aged A or older. The population model is, for 1 <= y <= Y 

Na+1,y+1 = exp(− (Fa,y + Ma,y))Na,y = exp(− Za,y)Na,y (1)  

for 1 <= a <= A − 2 and 

NA,y+1 = exp(− (FA− 1,y + MA− 1,y))NA− 1,y + exp(− (FA,y + MA,y))NA,y
= exp(− ZA− 1,y)NA− 1,y + exp(− ZA,y)NA,y

(2)  

for the the plus group. 
We assume that the number of fish within an age group decay 

exponentially during a year, and at day d this number is given by 

Na,y(d) = exp(− (d
/

365)Za,y)Na,y. (3) 

The relationship between the fishing mortality rate and the number 
of fish caught during a year is uniquely given by Baranov’s catch 
equation (e.g. Quinn and Deriso, 1999) 

Ca,y = (Fa,y
/

Za,y)(1 − exp(− Za,y))Na,y. (4) 

Note that even if we use the term “natural mortality rate” for Ma,y, the 
model above is well defined also when Ma,y includes migration. If the 
immigration is large enough, then Ma,y, and even Za,y, may become 
negative. 

2.2.2. The data model 
The data model relates observations to the true, unknown, quantities 

in the population model. We assume that the data are observed for all 
ages from years 1 to Y. We further assume that the catch at age data Ĉa,y 

are (mean-)unbiased estimates of the true catch and log-normally 
distributed, i.e. 

Ĉa,y = Ca,yexp(εC
a,y), (5)  

εC
a,y ∼ N(− 1

/
2σ2

C,a, σ2
C,a). (6) 

The corresponding data model for the age specific survey index can 
be written as 

Î a,y(d) = Ia,y(d)exp(εI
a,y) = QaNa,y(d)exp(εI

a,y), (7)  

εI
a,y ∼ N(− 1

/
2σ2

I,a, σ2
I,a). (8)  

Here, ̂Ia,y(d) is the noisy observation of an ideal, noise-free survey index 
Ia,y(d) = QaNa,y(d), and Qa an age specific proportionality constant, 
called catchability. 

2.2.3. Estimation 
We use the TMB software (Kristensen et al., 2016) to estimate un-

known quantities in the model by maximum likelihood. The maximum 
likelihood estimates are marked with a ~ (e.g. C̃a,y), to distinguish them 
from true quantities (e.g. Ca,y) or observations (e.g Ĉa,y). 

Table 1 
Overview of notations. The term “of age a” is dropped from the interpretation 
text, except for the first line, in order to avoid repetition.  

Non-observable, true quantities 
Notation Interpretation 

Na,y  True number of fish of age a at the start of year y  
Ca,y  True number of fish caught during year y (i.e. fishing mortality)  
Fa,y  Instantaneous fishing mortality rate during year y corresponding 

to Ca,y  

Ma,y  Instantaneous natural mortality rate during year y  
Za,y = Fa,y +

Ma,y  

Instantaneous total mortality rate during year y  

Na,y(d) True number of fish at the end of day d of year y  
Qa  Catchability, assumed to be constant over years 
Ia,y(d) “True” survey index proportional to Na,y(d), Ia,y(d) = QaNa,y(d)

Ia,y define the expectations from a perfect survey with full 
coverage   

Data, observations or “preliminary” estimates, to be updated when the assessment 
model is estimated 
Notation Interpretation 

Ĉa,y  “Preliminary” estimate of Ca,y  

Îa,y(d) Observed survey index, “preliminary” estimate of Ia,y(d)

M∗
a,y  Estimate or best guess of Ma,y   
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2.3. Identifiability 

In a model, such as an assessment model for a fish stock, it may be 
that some of the parameters cannot be estimated from observed data. 
Such parameters are said to be non-identifiable, the remaining param-
eters being identifiable. A parameter that is non-identifiable with the 
current observed data may become identifiable if other types of data are 
added, for instance capture-recapture data. However, even if a param-
eter is theoretically identifiable, it may be practically non-identifiable 
because there are too few observations to estimate the parameter with 
a reasonable precision. A comprehensive overview is given in Cole 
(2020). Examples investigating parameter identifiability in fisheries 
models, but with different types of data, are found in Allen et al. (2017), 
Cole and Morgan (2010), Jiang et al. (2007), Nater et al. (2020) and 
Polansky et al. (2021). 

In this section, we focus on theoretical identifiability, using the 
methodology described in Cole and McCrea (2016). They developed a 
method for investigating theoretical parameter identifiability in linear 
state space models. This method consists of constructing a so-called 
exhaustive summary vector, and then differentiating it with respect to 
the parameters. If the resulting matrix is of full rank then all the pa-
rameters are identifiable. If not, the structure of the matrix identifies 
which parameter that cannot be estimated. A linear state space model 
can be written as 

xt = Gtxt− 1 + ωt− 1, yt = Btxt + ηt, (9)  

Here, xt is a vector with the states at time t, which in our case are the 
stock sizes, and yt is a vector of observations, in our case the catch and 
index data. Furthermore, Gt and Bt are matrices and ωt− 1 and ηt are 
vectors of random errors. One exhaustive summary for this linear state 
space model is given in the Supplementary Material in Cole and McCrea 
(2016): 

κ(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E(y1)

vec(Var(y1))

E(y2)

vec(Var(y2))

⋮
E(yT)

vec(Var(yT))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

Here, T is the the final time point considered, E(yt) is the expected value 
of yt and vec(Var(yt)) is the vectorised version of the covariance matrix of 
yt. 

Cole and McCrea (2016) also showed how the method could be used 
in non-linear state space models, but this is more complicated. We 
specified the assessment model in Section 2.2 on the original scale, but 
on the logarithmic scale it is a linear state space model, except for the 

age plus group A. Here, we simplify this, and instead assume age A to be 
a specific age following Eq. (1), and ignore older fish. Furthermore, we 
choose a specific model for the recruitment, a random walk on the 
logarithmic scale, given by 

N1,y+1 = N1,yexp(εR
y ) (11)  

εR
y ∼ N(0, σ2

R), (12)  

but the results presented below holds also for the recruitment model 
N1,y+1 = αexp(εR

y ), where α is a parameter to be estimated. We can then 
use the methodology of Cole and McCrea (2016) to investigate which 
parameters or unknown quantities can be estimated from the data. More 
details on the methodology, and the exact formulation of the assessment 
model in into this framework is given in the Supplementary Material. 

We will consider models with six different restrictions on Ma,y, but 
where the Qa’s and the Fa,y’s are unrestricted, given that both the catch 
data and the survey index is observed for all years and ages, and that the 
number of observations (2⋅A⋅Y) is at least equal to the total number of 
parameters, see Table 2. 

If Ma,y =M, i.e. constant over years and ages, then all parameters can 
be estimated. The same holds for a slightly extended version of this, with 
Ma,y being proportional to a pre-specified M∗

a,y as 

Ma,y = θ⋅M∗
a,y, (13)  

where θ is a positive parameter to be estimated. 
In a model with more parameters, where the natural mortality rate 

varies by age (Ma,y = Ma), all parameters except MA and the fishing and 
natural mortality rates for the highest age (FA,y and MA,y = MA) can be 
estimated. It is intuitive that MA cannot be estimated since since we have 
no information on how many fish that survive the upper age A. One way 
to solve this is to introduce the constraint MA = MA− 1. 

In a more flexible model, we let the natural mortality rate vary by 
both age and year by the separable structure Ma,y = Mage

a + Myear
y , with 

constraint Myear
0 = 0, where Mage

a , a = 1,…,A is a set of parameters that 
depend on age a and Myear

y , y = 1,…,Y is another set of parameters that 
depend on year y. In this model, the parameters Mage

A and Myear
Y cannot be 

estimated. Also the the fishing and natural mortality rates are non- 
estimable both for the highest age and for the last year. Again, this is 
quite intuitive, since we have no information on how many fish that 
survive the upper age and the last year. 

If Ma,y is unrestricted, then no parameters can be estimated. 
In light of these results, we consider a medium flexible model, where 

Ma,y varies around a pre-specified level M∗
a,y, and are equal for ages A − 1 

and A (see Table 2 for an exact definition). Then all parameters can be 
estimated, except for the fishing and natural mortality rates for the last 
year. 

Table 2 
Theoretical identifiability of parameters for different restrictions on Ma,y. The text “All” and “None” means that all or none of the parameters in the corresponding 
category can be estimated, respectively.  

Restriction Na,1  Fa,y  Ma,y  Qa  Variance parameters 

Ma,y = M  All All All All All 
Ma,y = θ⋅M∗

a,y  All All All All All 
Ma,y = Ma  All All, except All, except All All   

FA,y, all y  MA = MA,y , all y    

Ma,y = Mage
a + Myear

y  All All, except All, except All All   

FA,y, all y  MA,y, all y      
Fa,Y, all a  Ma,Y, all a    

Ma,y unrestricted  None None None None None 

Ma,y = M∗
a,y + ma,y and (1/(A − 1))

∑a=A− 1
a=1 ma,y = 0 and mA,y = mA− 1,y  All All, except Fa,Y, all a  All, except Ma,Y, all a  All All  
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3. Investigating practical estimatability in the model Ma,y = θ⋅ 
M∗

a,y when the model is true 

3.1. Set up for a simulation experiment 

In Section 2.3, all parameters are theoretically estimatable when 
Ma,y = M is equal for all years and and ages or when Ma,y = θ⋅M∗

a,y, i.e. 
proportional to the pre-specified values for each age and year. Still, a 
scarcity of data, such as few observed years, can result in large estima-
tion uncertainty, even if the model is true. This is even more so when 
parts of the data, for instance the survey indices, are imprecise. 

Here, we investigate practical estimability by a simulation experi-
ment. For a given data set, estimability may also be investigated by 
studying likelihood profiles (Raue et al., 2009), and we demonstrate this 
method on selected data sets. Other methods for investigating practical 
estimability on specific data sets include examining the eigen values of 
the Hessian matrix (Catchpole et al., 2001) and data cloning (Lele et al., 
2010). 

In the simulation experiment, we first fit an assessment model to 19 
fish stock data sets, giving 19 true operating models. These 19 data sets 
consist of 14 data sets previously analysed in Aldrin et al. (2020), and 
another five data sets from stockassesment.org (2020) with status “final” 
on the 25th of May 2020 (Table 3). We use the catch series and one 
survey index series from each data set and ignore all other data. 

The assessment model we fitted to each data set is a specific version 
of the more general model we introduced in Section 2.2. The natural 
mortality rate is fixed at pre-specified values M∗

a,y, i.e. given by Eq. (13) 
with θ = 1. The values M∗

a,y are taken from the respective data sets, and 
are based on some prior information or best guess of the natural mor-
tality rates. They may vary over ages and years, but are usually the same 
for all ages and years or they only vary by age. 

The fishing mortality rate model is a random walk process on the 
logarithmic scale, as used in e.g. the SAM model (Nielsen and Berg, 
2014): 

Fa,y = Fa,y− 1exp
(

εF
a,y

)
, 1 <= a < A − 1, (14)  

FA,y = FA− 1,y, (15)  

εF
a,y ∼ N(0, σ2

F), (16)  

with equal standard deviation σF for all ages. We further assume that the 
εF

a,y’s are independent between years, but positively correlated between 

ages within the same year, by corr(εF
a,y, εF

a′
,y) = ρ|a− a′

|, where ρ is a 
parameter. 

The logarithms of the standard deviations σC,a and σI,a and the 
catchability parameters Qa are allowed to vary smoothly over ages by 
quadratic functions of age, using three instead of A parameters to 
describe each of these (see Supplementary Material for details). 

As previously stated, this full-specified assessment model is fitted to 
each of the 19 data sets and form the basis for our simulation procedure 
afterwards. In the following simulation procedure we do make an 
adjustment to the assumptions regarding Fa,y. The model for Fa,y is non- 
stationary, and can give unrealistic low or high values when simulated 
over many years. Therefore, for the operating model only, we replace 
the random walk process on log scale given by Eq. (14) with a stationary 
AR(1) process on log scale where log(Fa,y) varies around log(0.4), see 
Supplementary Material for details. We term the resulting model an 
operating model, which will serve as the truth in the simulations. 

For each of the 19 fitted operating models, one for each stock, we 
simulate 50 random samples, where the catch and survey data covers the 
same years and ages as in the real data sets. For each simulated stock, we 
fit an assessment model almost equal to the operating model, but with 
Fa,y modelled as a random walk on log scale as in Eqs. (14), (15), (16). To 
restrict θ in Eq. (13) to be positive, we re-parameterise it to the non- 
restricted parameter θ∗ = log(θ) when fitting the model. The true 
value of θ is 1 in the operating model. 

3.2. Results for the simulation experiment 

The mean absolute deviance (MAD) of log(θ̃) − log(1) = log(θ̃)) for 
each stock varied from 0.06, a rather precise estimate, to 2.4. Fig. 1 show 
how MAD(log(θ̃)) tends to decrease by increasing values of the true 
natural mortality rates (panel a) and by the number of observations in 
total over years and ages of C̃a,y and ̃Ia,y (panel b). The improved pre-
cision of θ̃ by increasing number of observations is an obvious and ex-
pected result. A linear regression of MAD to these two explanatory 

Table 3 
Overview of data sets used. Except for the first three data sets, the data sets are downloaded from stockassesment.org (2019) (rows 4–14) and stockassesment.org 
(2020) (rows 15–19). The minimum and plus ages are the ones used in the models. Together, the catch and survey data cover all years and ages, but usually each data 
type covers only a subset of the whole year and age ranges. To save computation time, we have ignored catch data before 1961 for North-East Atlantic cod.  

Data source Area Species Years catch Years index Min. age plus 
age 

Range of M∗a,
y  

Survey index 

(Nielsen and Berg, 2014) North Sea Cod 1963–2011 1983–2012 1–7 0.2–1.31 IBTS Q1 
(ICES, 2017) Coast of Norway Cod 1984–2016 1995–2016 2–10 0.2 Table T26, p. 69 
(ICES, 2017) North-East Atlantic Cod 1961–2016 1981–2017 3–15 0.2–0.788 Table A3, p. 180 
BW_2018 Widely distributed Blue whiting 1981–2018 2004–2018 1–10 0.2 IBWSS 
sole2024_newidx North Sea Sole 1984–2017 2004–2017 1–9 0.1 Fisherman 
sam-tmb-fsaithe-2017-01 Faroe Plateau Saithe 1961–2017 1994–2018 3–15 0.2 Spring 
sam-tmb-fcod-2017-01 Faroe Plateau Cod 1959–2017 1996–2017 1–10 0.2 Summer 
NSwhiting_2018 North Sea Whiting 1978–2017 1983–2017 0–8 0.34–2.26 IBTS-Q1 
codEastNWWG2018 Iceland/East Greenland Cod 1973–2017 1982–2017 1–10 0.2–0.5 WH 
sam-tmb-fhaddock-2017-01 Faroe Plateau Haddock 1957–2017 1996–2017 1–10 0.2 Summer 
WBSS_mf_004_CB_corrCF Baltic Sea Herring 1991–2016 1991–2016 0–8 0.2–0.5 HERAS 
PLE2123_WGBFAS2017_Final_run Baltic Sea Plaice 1999–2016 1999–2017 1–10 0.10–0.20 IQ IBTS+BITS 
WGWIDE2017.V2 Widely distributed Mackerel 1980–2016 2010–2017 0–12 0.15 Swept-idx 
WBcod_2017 Baltic Sea Cod 1994–2016 2001–2016 0–7 0.2–0.8 SD2224w_4Q 
ARU.27.5b6a_WGDEEP_2020_ Faroe Plateau Greater 

silversmelt 
1995–2019 1998–2019 5–21 0.15 Faroese Summer survey 

wit.27.3a47d_2020 North Sea Whitch 2009–2019 2009–2019 1–10 0.2 Q1 
Nea_haddock_2019 North-East Atlantic Haddock 1950–2018 1991–2017 3–13 0.2 RU-BTr-Q4 
HAD7bk_2020_Benchmark_II Celtic Sea + West of 

Scotland 
Haddock 1993–2018 2003–2018 0–8 0.36–1.09 FRA_IRL_WIBTS_VAST 

whg.7b-ce-k_FRA_Tun_longretro Celtic Sea + West of 
Scotland 

Whiting 1999–2018 2003–2018 0–7 0.36–1.22 IFGS VAST No/Km2  
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variables explained 63% (R2 = 0.63) of the variance of MAD, and both 
effects were highly significant (p < 0.001). None of the other charac-
teristics of the data were significantly related to the precision of θ̃. 

We have a closer look at two data sets, the Northeast Atlantic Cod 

(NEAC) and the Baltic Sea Cod (BSC). The average true mortality rate is 
similar for the two data sets (0.21 for NEAC and 0.28 for BSC), but NEAC 
has 1005 observations and BSC only 241. We therefore expect that θ and 
other quantities will be more precisely estimated for NEAC than for BSC. 

Fig. 1. Scatter plot of MAD(log(θ̃)) vs. the average (over all years and ages) true mortality rates (panel a) and the number of observations (panel b).  

Fig. 2. Estimated vs. true values and negative log-likelihood profiles for a simulation experiment based on the Northeast Atlantic Cod stock, with true Ma,y = M∗
a,y. 

(a) stock size, (b) catch, (c) survey index, (d) fishing mortality rate, (e) natural mortality rate, (f) negative log-likelihood profiles for five simulations. The solid black 
lines in panels a)-e) indicate the 1-1 relationships. Each negative log-likelihood profile in panel f) is subtracted by the minimum value of the corresponding negative 
log-likelihood, so all curves have minimum value 0. The vertical grey line in panel e) indicates the true value θ = 1 and the horizontal grey line is set at 1.92. 
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It turns out that for NEAC, MAD(log(θ̃)) becomes 0.12, and for BSC it 
becomes 1.02. As a consequence, also other quantities are more pre-
cisely estimated for NEAC than for BSC (panels a)-e) in Figs. 2 and 3). 

The negative log-likelihood profile for θ is a function of θ, where all 
the parameters are optimised for the given value of θ. For a given data 
set, here given by each simulation, one can use the negative log- 
likelihood profile to validate whether θ can be estimated with suffi-
cient precision or not. Panels f) in Figs. 2 and 3 show the negative log- 
likelihood profiles for θ for five different simulations for NEAC and 
BSC. The maximum likelihood estimates of θ are given at the bottom of 
each curve. The difference in -2 log-likelihood between a model where θ 
is estimated and a model where θ is fixed to 1 is asymptotically chi 
square distributed with 1 degree of freedom. Therefore, if the negative 
log-likelihood curve is above 1.92 (the horizontal grey line) for θ = 1 
(the vertical grey line), the corresponding estimate of θ is significantly 
different from 1 at 5% level. For NEAC (Fig. 2) each of the five curves are 
quite narrow and below 1.92 for θ = 1, i.e. none of the fives estimates 
are significantly different from the true value. On the other hand, for 
BSC (Fig. 3) the curves are much wider, all estimates of θ are larger than 
1 and three out of five estimates are significantly different from the true 
value. 

Based on the theoretical results in Section 2.3 and the simulation 
study, we conclude that it is in principle possible to estimate a fixed Ma,y 

common for all years and ages, or to estimate θ in the model Ma,y = θ⋅ 
M∗

a,y, based on catch at age and abundance at age data only, but to get a 
reasonable precision, one needs many observations. For many ICES 
stocks today, there are probably not enough observations to estimate M 
precisely, but this may change in the future. 

4. Empirical study based on 19 fish stocks 

4.1. Empirical study for six models for Ma,y 

We perform an empirical study for selected sub models for Ma,y, to 
investigate the practical consequences of the theoretical findings in 
Section 2.3 and the simulation experiment in Section 3. We use data 
from the same 19 fish stocks as in Section 3. The model is the same as the 
one used in Section 2.3, except that we specify six different sub models 
for the natural mortality rate Ma,y:  

• Model M0: Ma,y = M∗
a,y, where M∗

a,y is fixed and based on external 
information or “best guess”, separate for each fish stock. 

• Model M1: Ma,y = θM∗
a,y, where θ is a positive parameter to be esti-

mated. This is the same model as were used in the simulation 
experiment in Section 3, defined by Eq. (13).  

• Model M2: Ma,y = M∗
a,y + εM

a,y, where εM
a,y ∼ N(0,σ2

M,a), but where εM
a,y 

is truncated at ±M∗
a,y to ensure that the natural mortality rate is non- 

negative. An alternative would be to use a multiplicative model with 
lognormal errors, but we have previously experienced that this can 
give severe convergence problems (Aldrin et al., 2020).  

• Model M3: As model M2, but where εM
a,y follow an AR(1) process in 

time, i.e. εM
a,y = ρεM

a,y− 1 + ωa,y, where ωa,y ∼ N(0, σ2
o,a) and ωa,y is 

correlated over ages in the same way as εF
a,y.  

• Model M4: As model M2, but with unrestricted Ma,y, i.e. Ma,y may be 
negative, and thus account for possible immigration.  

• Model M5: As model M4, but where εM
a,y is correlated in time and 

between ages as in model M3. 

We compare the performance of these sub models by investigating 
their prediction performance based on cross validation, and by studying 

Fig. 3. Estimated vs. true values and negative log-likelihood profiles for a simulation experiment based on the Baltic Sea Cod stock, with true Ma,y = M∗
a,y. See Fig. 2 

for explanation of the various panels. 
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how their estimated stock sizes differ. 

4.2. Cross validation 

We perform cross validation for each of the 19 data sets. We omit 
data for one year at a time, giving a training data set. We estimate the 
model on this training data and predict the catches and indexes for the 
year omitted. Data for each year are left out once, except for the first 
year, which are always included in the training data. We calculate two 
root-mean-square error measures of prediction performance for catch, 
one per age and year (RMSECay), and another for total catch in a year 
(RMSECy): 

RMSECay =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1

/

nCay)
∑

y

∑

a
(Ĉa,y − C̃a,y,(− y))

2

√
√
√
√ , (17)  

RMSECy =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1

/

nCy)
∑

y

(
∑

a
Ĉa,y −

∑

a
C̃a,y,(− y)

)2
√
√
√
√ , (18)  

where n is the number of elements in each sum, and the subscript (− y)
means that catch and index data for year y was omitted for estimation. 
We also compute two corresponding measures for the indices. 

4.3. Results for the empirical study 

Fig. 4 shows the relative changes in the cross validated root-mean- 
square errors RMSECay and RMSECy for catch, when changing from 

model model M0 (Ma,y = M∗
a,y) to each of the others. Estimating the level 

of the natural mortality rate by multiplying M∗
a,y by a factor (model M1), 

does not systematically improve the predictions. On the other hand, to 
allow for independent random variations around a fixed expected value 
equal to M∗

a,y (model M2 for non-negative Ma,y and model M4 for un-
restricted Ma,y) tend to improve the predictions, and in one case RMSE is 
reduced by 60% (cod by Iceland and East Greenland). Extending the 
model for the random variations by including correlations between 
years and between ages (models M3 and M5) may improve the pre-
dictions further in some cases but make them more imprecise in other 
cases. The results for predicting the survey indices are similar (Fig. 1 in 
Supplementary Material). 

The estimated total stock size can be changed significantly in both 
directions using model M1 instead of M0 (Fig. 5). This is consistent with 
the results from the simulation experiment in Section 3, where the 
estimated natural mortality rate could be very low or very high. For 
instance, an overestimated natural mortality can appear together with 
an underestimated fishing mortality rate and an overestimated stock size 
(e.g. panels a), d) and e) in Fig. 3). However, both the natural mortality 
rates and the stock sizes are in reality unknown, so we can not from this 
alone claim that the estimates from model M1 are wrong. But estimates 
of the natural mortality rates that are very far from the pre-guessed 
values M∗

a,y may be considered implausible. Using models M2-M5 tend 
to give slightly lower estimates of stock size than model M0, but the 
results are more variable for the two most complex models M3 and M5. 

5. Conclusions 

We present a general stock assessment model that is to be estimated 
on catch and survey index data only. We investigate whether one should 
try to estimate the year and age specific natural mortality rates Ma,y or 
fix them at pre-specified values M∗

a,y. 
It is theoretically possible to estimate a common natural mortality 

rate for all years and ages using only catch-at-age data and abundance 
indices at age. However, a common Ma,y = M for all years and ages is not 
a realistic assumption for many fish stocks, and may fail to detect 
changes in stock sizes if its contribution to the total mortality varies, i.e. 
Ma,y ∕= M. It is also theoretically possible to estimate the natural mor-
tality rate in models where the pre-specified M∗

a,y is scaled by an esti-
mated factor. However, for both models a large number of observations 
is required to achieve a reliable estimate of M or θ. We think that for 
many of the fish stocks presently available one should avoid to estimate 
the level of the natural mortality rate. Instead, without other data- 
sources, we believe it is more useful to treat the pre-specified M∗

a,y’s as 
fixed, expected, values of the natural mortality rates, and allow inde-
pendent, random variations around these. This gives improved pre-
dictions, which indicates that such models also will give more precise 

Fig. 4. Box plots with percentage changes in cross-validated prediction errors for catch by changing from model M0 to models M1-M5, for age-and-year specific 
errors RMSECay (panel a) and for year specific errors RMSECy (panel b). 

Fig. 5. Experiment 1: Percentage change in estimated average total stock size 
by changing from model M0 to models M1-M5. 
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estimates of the unobservable quantities we are interested in, such as 
abundance at age or spawning stock biomass. We believe it is often not 
worthwhile to build more complex models for these random variations 
in the natural mortality rates, unless the data contains a large amount of 
observations or additional data is available for use. However, as the 
times goes by, more data will be collected, so the value of more complex 
models will increase in the future. 
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