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Abstract
As global warming makes the Arctic Ocean more accessible, concerns have been raised about the
environmental consequences of a possible expansion of commercial fisheries into pristine marine
ecosystems. Using a recently released global dataset, we quantify for the first time how fishing
activities are responding to diminishing sea ice and a warmer Arctic Ocean. We show that trawling
dominates Arctic fisheries and that this activity penetrates rapidly into Arctic shelf areas previously
protected by extensive ice-cover as a response to interannual sea ice loss. We model the
development of trawling activity under a climate change scenario and use the model to identify
areas with high risk of increased trawling activity and estimate the amount of trawling avoided in
recently established fishery protection zones. Stronger responsibility must be undertaken by Arctic
coastal states to regulate increased fishing pressure and protect vulnerable Arctic shelf ecosystems.

1. Introduction

Some of the world’s major fisheries are found in
the Subarctic shelf areas bordering the Arctic Ocean
(Hollowed and Sundby 2014, Hoel 2018). The Sub-
arctic fisheries are sustained by large and productive
fish stocks including Alaska pollock, Atlantic and
Pacific cod, Atlantic and Pacific herring, Pacific sal-
mon and capelin. Currently, most of these fisheries
are managed sustainably in terms of securing the
long-term yield from large and productive stocks
(Worm et al 2009, Gullestad et al 2014, 2020, Kjesbu
et al 2014, Costello et al 2016), and several meas-
ures have been introduced to limit fishery discards
and detrimental fishing practices (Gullestad et al
2017, Jørgensen et al 2020, Long and Jones 2020,
Snyder and Erbaugh 2020). North of the rich fish-
ing grounds, sea ice limits ecosystem productivity
as well as accessibility, rendering the High Arctic
shelf ecosystems more or less untouched by fishing
and other human activities (figure 1). While the

Subarctic ecosystems are dominated by high pela-
gic production that supports large fish stocks, the
strong pelagic-benthic coupling in the seasonally ice-
covered High Arctic marine shelf ecosystems sup-
ports highly diverse and productive benthic com-
munities (Carmack andWassmann 2006, 2006, Greb-
meier et al 2015, Frainer et al 2017, Jørgensen et al
2019, Huntington et al 2020). For example, extens-
ive surveys in the northern Barents Sea revealed a
rich and diverse seabed community including high
abundance of sessile organisms that are suscept-
ible to be damaged by demersal trawling, including
sponges, sea pens, cauliflower corals, and sea lilies
(Jørgensen et al 2019). Similarly, the seasonally ice-
covered Northern Bering and Chukchi Seas hold a
rich benthic dominated food web, supporting abund-
ant benthic feeding eiders and marine mammals
important for indigenous subsistence (Grebmeier
et al 2006, 2015). Rapidly diminishing sea ice (Stro-
eve et al 2007, Carmack et al 2015) and a poleward
shift in the distribution of the productive Subarctic
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Figure 1. Study area, physical environment and fishing activity in the Arctic. (A), study area. Blue areas are marine protected areas
(data from (UNEP-WCMC 2019)). Hatched areas are fishery management areas: Arctic Alaska (blue hatched), Central Arctic
Ocean (CAO) (red hatched) and area around Svalbard northern Barents Sea (green hatched). (B), placement of the sea ice border,
here defined as the distribution of 45%–55% annual sea ice cover during the reference period (1982–2011), recent period
(2013–2018) and the future climate scenario (2040–2060). (C), LMEs, LME number and total fishery catch from 2014
(see table S2 for LME names, and catch specifications) (D), hours of trawling per km2 in 2018.

commercial fish stocks (Fossheim et al 2015, Andrews
et al 2019) can provide new grounds for commercial
fisheries in previously ice-covered marine ecosystems
(Kjesbu et al 2014, Misund et al 2016). Accordingly,
Jørgensen et al (2019) suggested that these previ-
ously unexploited ecosystems are facing the cumu-
lative impacts from three major pressures: (a) amp-
lification of global warming in the Arctic is rapidly
changing the physical environment (Carmack et al
2015, Polyakov et al 2017, Lind et al 2018, Huntington
et al 2020), and reductions in sea ice extent are

expected to weaken the pelagic-benthic coupling
causing benthic production to decrease (Wassmann
and Reigstad 2011, Grebmeier 2012). (b) Invasive
species from the south are altering the ecological
communities by introducing new predators, compet-
itors and pathogens (Fossheim et al 2015, Kortsch et al
2015, Jørgensen et al 2019). (c) Finally, an expanding
fishing industry might disturb the seabed habitat
and impact endemic Arctic species (Christiansen
et al 2014, Christiansen 2017, Jørgensen et al
2019).
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The fisheries on the continental shelves of theArc-
tic Ocean are mainly managed within the exclusive
economic zones (EEZs) of the coastal states. The Sub-
arctic fisheries are typically regulated by quotas set by
rigorous stock assessments (e.g. Gullestad et al 2014).
However, the protection of High Arctic benthic eco-
systems from expanding demersal trawling would
require a spatial approach. In 2009, several regulatory
measures were implemented in Alaska waters to pre-
vent adverse ecosystem effects from expanding fish-
eries (Stram and Evans 2009). Most notably, all com-
mercial fishing was prohibited in Arctic federal waters
north of the Bering Strait. More recently, a fishery
protection zone around the Svalbard archipelago in
the northern Barents Sea was established in 2019 to
protect vulnerable sea bed communities (Jørgensen
et al 2020). In October 2018, the five Arctic Ocean
coastal states together with China, the European
Union (EU), Iceland, Japan and South Korea signed
the Agreement to Prevent Unregulated High Seas
Fisheries in the CAO Agreement. The agreement
imposed a temporary moratorium on unregulated
commercial fishing in the CAO until the effects of cli-
mate change on fisheries are better understood and
science-basedmanagement is in place (Rayfuse 2019).
Most studies on climate and fisheries in the Arctic
have concentrated on the effects of Arctic warming
on marine ecosystems (Haug et al 2017, Holsman
et al 2018) or resource stocks (Cheung et al 2010,
Hollowed et al 2013, Barbeaux and Hollowed 2018,
Gullestad et al 2020, Holsman et al 2020), but few
studies have analyzed the changes in fishing activ-
ity per se. The recent release of a high-resolution
global database of fishing activity based on the auto-
matic identification system (AIS) mounted on indi-
vidual fishing vessels (Kroodsma et al 2018) provides
a unique dataset for analyzing how global warming
and fishery regulations could change the behavior of
fishing vessels and thereby the spatial distribution of
pressures on marine ecosystems worldwide.

Here, we utilize the Global Fishing Watch (GFW)
database to investigate how fisheries expand pole-
ward as previously ice-covered areas become access-
ible. Our objective is to quantify the ongoing response
of Subarctic fisheries to sea ice losses and project cli-
mate driven scenarios for expansion into High Arctic
ecosystems. Our study area is the Arctic and Subarc-
tic seas, limited by the 7 ◦C isotherm. We first show
how fishing activity covaries with sea surface temper-
ature (SST) and sea ice concentration and identify the
dominant type of fishing gear. Secondly, we analyze
how fishing activity responds to interannual changes
in sea ice concentration. Thirdly, we combine SST,
sea ice and bathymetry observations to build a stat-
istical model of the recent observed distribution of
fishing activity. We apply this statistical model to
develop climate driven scenarios of fishing activity

during a period with a warmer, less ice-covered and
more accessible Arctic Ocean from a reference period
(1982–2011) to a future climate scenario (2040–
2060). Finally, we use the model to estimate the
expected amount of avoided current and future trawl-
ing activity in three recently established fishery man-
agement areas.

2. Methods

2.1. Time periods and study area
Fishing activity data from GFW were available for
the period 2013–2018. We used environmental vari-
ables to hindcast the fishing activity to a reference
period (1982–2011) and climate predictions from
12 Coupled Model Intercomparison Project Phase 6
(CMIP6) models to predict the fishing activity under
a future climate scenario (2040–2060). All data were
aggregated to a common 25 × 25 km2 polar stereo-
graphic grid (NSIDC grid, see https://nsidc.org/data/
polar-stereo/ps_grids.html). The study area was lim-
ited to the area where the annual average SST during
the reference period was less than 7 ◦C.

2.2. Fishing activity
Fishing activity data are from GFW (https://
globalfishingwatch.org). The methods for deriving
the hours of fishing activity for each category of gear
type from AIS data are described in Kroodsma et al
(2018). The data were daily records from 2013–2018
and are indicated by hours of fishing on a 0.1 × 0.1
degree grid for the following fishing gears: trawling,
purse seines, fixed gears (pots and traps, set gillnets
and set longlines), drifting longline, squid and other
fishing (pole and line, trollers and other fishing).

2.3. Catch data
To support the GFW dataset and to identify the
most important target species and fishing methods,
we compiled the catch data published by the Sea
AroundUs project (Zeller and Pauly 2015). Data from
the 17 large marine ecosystems (LMEs) in the study
area were downloaded from www.seaaroundus.org.
Catch data from the most recent year (2014) are
summarized in figure 1(C) and supplementary table
S2 (available online at stacks.iop.org/ERL/16/074057/
mmedia).

2.4. Environmental variables
Fishing activity is likely to be dependent on a series
of environmental variables constraining the fishing
activity and affecting the distribution and abundance
of the target stocks (Kroodsma et al 2018). Temperat-
ure and bottom depth are for example variables that
are likely to impact the spatial distribution of the fish,
while sea ice and bottom depth is likely to impact
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the fishing operationsmore directly.We compiled the
following variables for the study area:

2.4.1. Sea surface temperature (SST)
Data are from the NOAA OI SST V2 High Res-
olution Dataset (Reynolds et al 2007). Daily data
from 1982 to 2018 with a 0.25 × 0.25 degree resol-
ution were obtained from NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, and downloaded from
their website at www.esrl.noaa.gov/psd/data/gridded/
data.noaa.oisst.v2.highres.html.

2.4.2. Sea ice
Data are from Nimbus-7 SMMR and DMSP
SSM/I-SSMIS Passive Microwave Data, Version 1
(Cavalieri et al 1996). Daily data of sea ice con-
centration (percent) on a 25 × 25 km2 stereo-
graphic grid were obtained for the period 1982–
2018 from the National Snow and Ice Data Cen-
ter from their website at https://nsidc.org/data/
NSIDC-0051/versions/1.

2.4.3. Bottom depth
Data are depth in meters from 2 min gridded global
relief data; ETOPO2v2. Data with a resolution of
2× 2min were obtained from the National Geophys-
ical Data Center, NESDIS, NOAA, and downloaded
from their web site at www.ngdc.noaa.gov/mgg/fliers/
06mgg01.html. Depthwas log10 transformed prior to
the analyses.

2.4.4. Depth gradient
The gradient in bottom depth was calculated as the
smoothed local standard deviation in bottom depth
in the 5× 5matrix of grid cells around each focal cell.

2.5. Seasonality and temporal aggregation
The Arctic is characterized by strong seasonality,
especially with respect to sea ice cover. We were
primarily interested in the annual variation, and we
therefore decided to average out the seasonal vari-
ation. Accordingly, for each grid cell, fishing activity
was summed, and SST and sea ice were averaged over
each year, yielding measures of annual fishing effort,
SST and ice cover.

2.6. Climate scenario
To represent climate change, we used the Scenari-
oMIP SSP585 (O’Neill et al 2016) emission scen-
ario as simulated in the CMIP6 model intercom-
parison project (Eyring et al 2016). One realization
of the historic and SSP585 runs was taken from 12
CMIP6 models to form a multimodel ensemble. Spe-
cification of the 12 models is given in supplement-
ary table S5. The change due to global warming is
defined for each model as the difference between the
averages from the years 2040–2060 and 2005–2025.
The 21 year average was used to minimize uncertain-
ties due to multiannual variability in the projected

changes. The changes in the ensemble multimodel
mean represent the global climate change for SST and
sea ice concentration.

2.7. Analyses of the response of trawling activity
to changes in ice concentration
For each grid cell, we calculated the changes in SST,
sea ice cover and trawling activity for each pair of
successive years (year 1, year 2) from 2013 to 2018
(e.g. (2013, 2014), (2014, 2015), …). The dataset
was restricted to observations where trawling activ-
ity was zero in year 1, and the absence (0) or pres-
ence (1) of trawling in the subsequent year (year
2) was used as a response variable in a generalized
additive model (GAM) (Hastie and Tibshirani 1990,
Wood 2017). The probability of trawling in year 2
given that trawling was absent in year 1 was modeled
as a response to the initial environmental condi-
tions (SST, sea ice, bottom depth and depth gradient)
in year 1 and changes in environmental conditions
(∆SST and∆sea ice) from year 1 to year 2. Themodel
specifications and results are shown in supplementary
material table S3. The model showed impacts from
the initial sea ice concentration and changes in sea
ice concentration (supplementary table S3 and figure
S1). To quantify the effect of changes in sea ice, we
used the model to predict the probability of trawl-
ing in the subsequent year for a range of changes
in sea ice concentrations for three different levels of
initial sea ice concentrations. The bottom depth for
the predictions was set equal to 300 m, and the depth
gradient was set equal to the average gradient in the
dataset (4.79).

2.8. Model for hind- and forecasting Arctic
trawling activity
The presence (1) or absence (0) of trawling activity in
a grid cell in the study area for each year from 2013
to 2018 was used as a response variable in a GAM
(Hastie and Tibshirani 1990,Wood 2017) with depth,
depth gradient, annual sea ice and SST as explanat-
ory variables. Themodel specifications and results are
shown in supplementary material table S4. To assess
the predictive accuracy of themodel within simulated
time period, we excluded one year at a time from
the analysis and used the resulting model to predict
the excluded year. The predictive accuracy was calcu-
lated using the area under the receiver operating curve
(AUC). We used the model to predict the distribu-
tion of trawling activity during the reference period
(1982–2011), the recent period (2013–2018) and dur-
ing the future climate scenario (2040–2060). Median
annual SST and sea ice, in addition to bathymetry,
were used as inputs for the models of the reference
and recent periods, while the ensemble averaged SST
and sea ice from CMIP6 models were used to project
the trawling in the future climate scenario. To estim-
ate avoided trawling activity (i.e. avoided land-use,
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Figure 2. Fishing activities in the Arctic as a function of sea ice concentration and SST. Mean annual fishing intensity±1 standard
deviation in the period 2013–2018 in areas with (A), different annual sea ice concentrations and (B), SSTs. The study area is
shown in figure 1(A). Fishing intensity is defined as hours of fishing per km2, and is shown for trawling (red), fixed gear (green)
and other fishing gear (yellow).

sensu Dos Ribas et al (2020)) in recently established
fishery protection zones, model predictions for the
recent period and the future climate scenario were
extracted and plotted for three fishery management
areas; Arctic Alaska, CAO and northern Barents Sea
(figure 1(A)).

3. Results

3.1. Commercial fishing in the Arctic
Trawling dominates the fishing activity in the Arc-
tic (figure 2, supplementary tables S1 and S2), rep-
resenting 66% of the fishing activity registered in the
GFW dataset and 58% of the catch in the Sea Around
Us dataset. Both datasets suggest that commercial
fishing activity is negligible in the High Arctic but
widespread in the adjacent Subarctic shelf ecosystems
(see figures 1(C), (D) and supplementary table S2).
The most important species targeted by the demersal

fisheries are Alaska pollock, Atlantic cod, Pacific cod
and haddock. Important species taken by the pelagic
fisheries include Pacific herring, Atlantic herring,
Atlantic mackerel and capelin. In addition, Northern
prawns are important in the Western Atlantic and
Pink and Chum salmon are important in the Pacific
(supplementary table S2). Except for the Alaska pol-
lock fisheries, bottom trawls and long lines domin-
ate the gears used in the demersal fisheries. However,
Alaska pollock, which is the largest fishery in the Arc-
tic, is mainly taken by pelagic trawl, and the pelagic
fishes are caught by purse seines and pelagic trawls.
With respect to trawling, there is a mix between pela-
gic and bottom trawling, with pelagic trawling dom-
inating in the pacific due to the dominance of the
Alaska pollock fisheries, while bottom trawling is
more common in the Atlantic.

Compared to the other fishing activities, trawling
penetrates further into ice-covered and cold waters

5



Environ. Res. Lett. 16 (2021) 074057 P Fauchald et al

Figure 3. Trawling response to Arctic sea ice loss. Estimated probability of next year trawling in a non-trawled grid cell as a
function of changes in sea ice concentration for three different levels of initial sea ice concentrations. The probabilities are
predictions from an observational GAMmodel relating interannual changes in trawling activity to changes in environmental
variables (see section 2 for specifications), and are shown as 95% confidence bands for 25%, 50% and 75% initial sea ice
concentrations (red, green and yellow curves).

(figure 2). The fishing activity was highest in areas
with low annual sea ice concentrations, decreased
with increasing concentrations, and was near zero
for sea ice concentrations above 50% (trawling) and
25% (other fishing gears) (figure 2(A)). For trawl-
ing, fishing effort was close to zero for SSTs close to
the freezing point (−1.8 ◦C), increased to a max-
imum intensity at 4 ◦C–5 ◦Cand decreased thereafter.
Other fishing activities increased with increasing SSTs
throughout the temperature range in the study area
(figure 2(B)).

3.2. Response of trawling to changes in sea ice
Our statistical model (see section 2, supplement-
ary table S3 and figure S1 for details) showed that
trawling activity responded to interannual changes in
environmental conditions, revealing a strong posit-
ive response of trawling to reduced sea ice concen-
trations (figure 3). The probability of trawling in the
subsequent year was also dependent on the initial sea
ice concentration, with the probability being higher
under light than dense initial ice cover (figure 3).
Thus, Arctic trawling activity increases more rapidly
in the margins of the ice-covered Arctic Ocean, i.e.
where the seasonal sea ice zone prevails, compared
with the less accessible waters in the interior where
perennial and denser sea ice cover dominates.

3.3. Hind- and forecast scenarios of trawling in the
Arctic
Based on a model of the current trawling activ-
ity (2014–2018), we simulated the trawling activity
in a hindcast scenario using the median sea tem-
perature and ice concentration during a reference

period (1982–2011) and in a forecast by projecting
the trawling activity given the sea temperature and ice
concentration under a future warmer climate scen-
ario (2040–2060) (see section 2, supplementary table
S4 and figure S2 for details). The model explained
39% of the deviance (adjusted R2 = 0.41) in cur-
rent trawling activity. The predictive accuracy of the
model was assessed by removing one year at a time
from the analyses and then predicting the excluded
year. The resulting AUC ranged from 0.972 to 0.978,
suggesting a very high predictive accuracy (cf also
figures 1(B) and 4(B)). The model predictions for
the hindcast scenario, current situation and future
scenario are shown in figures 4(A)–(C). Based on the
model, we predicted an increase in trawling activ-
ity on the High Arctic shelves where diminishing sea
ice cover is evident and where trawling is not lim-
ited by depth (figure 4). Most notably, the model
shows that trawling expanded to the northern Bar-
ents Sea, Northern Bering Sea and Sea of Okhotsk,
where trawling was previously limited by extens-
ive sea ice (figure 4(D)) but is currently widespread
(figure 1(C)). With further projected Arctic warm-
ing and sea ice loss, the climate scenario forecast
increased trawling activity in major parts of the Arc-
tic Ocean, including the Chukchi Sea, the Canadian
Archipelago, Hudson Bay, Ungava Bay, the coastal
areas of Newfoundland and Labrador, the Greenland
coast and the Kara Sea (figure 4(E)). No increase was
predicted in the central, deep Arctic Ocean. Trawl-
ing activity was forecasted to remain relatively stable
in the current key fishing areas in the North Atlantic
(Grand Banks, Iceland and Barents Seas) and in
the Alaska–Bering sea region (figure 4(E)). Extracted
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Figure 4. Projected climate-impacted development of trawling activity in the Arctic. Predicted trawling activity during (A), the
reference period 1982–2011, (B), the recent period 2013–2018, and (C), a future climate scenario 2040–2060. Trawling activity is
given as the annual probability of trawling within a 25× 25 km2 grid cell. The predictions are based on an observational GAM
model using data from the recent time period (see section 2 for details). The difference in predicted probability between the
recent and reference period is shown in (D), and the difference between the future climate scenario and the reference period is
shown in (E).

distribution of model predictions for the three fish-
ery management areas (figure 1(A)) are shown in
figure 5. For Arctic Alaska, the predicted avoided
trawling activity was moderate for the recent period
but increased for the 2040–2060 climate scenario. In
CAO, the avoided trawling activity was minimal in
both time periods. For the Barents Sea the avoided
trawling activity was relatively variable and large but
did not differ between the two time periods.

4. Discussion and conclusion

We quantify how commercial fishing activities have
increased in High Arctic marine ecosystems that
have remained unexploited until now. Our results
show that trawling, the dominant fishing activity, has
increased substantially in areas previously covered
by ice. Trawling expands as a rapid response to

interannual sea ice loss, most notably in the regions
less covered by sea ice (figure 3). Trawling activity was
also limited by depth so that our model suggests that
trawling is currently expanding into the High Arctic
shelf areas (figure 4).

The spatial distribution of fishing activity is likely
to be dependent on a range of environmental, reg-
ulatory and socioeconomic factors, including fish-
ery regulations, government subsidies, infrastructure
(e.g. fishery ports), development in the fish stocks
and changes in the fish market and technology (see
e.g. Kroodsma et al (2018)). The predictions from the
statistical models (figure 4) represent climate driven
hindcast and forecast scenarios in fishing effort.
Accordingly, they demonstrate the possible effects of
climate change on fishing activity when other vari-
ables are kept constant and equal to the average of
recent conditions. Though simple, the model had a

7
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Figure 5. Avoided trawling activity in three fishery management areas in the Arctic. Avoided trawling is given as the predicted
probabilities of trawling (median, interquartile (50%) range and 90% range) during the recent time period (2013–2018) and for a
future climate scenario (2040–2060) within the fishery management areas in Arctic Alaska, CAO and the fishery management
area around the Svalbard archipelago in northern Barents Sea (see figure 1(A)).

high predictive accuracy (AUC > 0.95) and explained
a relatively large proportion of the spatial variance in
trawling activity (39% of deviance explained). It is
however important to note that the hind- and fore-
casts produced by the model (figure 4) do not take
into account factors such as the fluctuations or range
expansions of major fish stocks (e.g. Fossheim et al
(2015)), or changes in regulatory frameworks such
as the 2009 closing of commercial fisheries north of
the Bering Strait in Alaska EEZ (Stram and Evans
2009), the 2018 CAO Agreement (Rayfuse 2019), or
the 2019 spatial fisheries restrictions implemented in
the northern Barents Sea (Jørgensen et al 2020). The
difference between the hindcast and current trawling
intensity (figure 4(D)), can be used to identify areas
where the current trawling activity would have been
limited by previous sea-ice conditions. Moreover, the
difference between the forecast and current trawling
activity (figure 4(E)), can be used to identify areas
where the current trawling activity could expand due
to future climate warming. In other words, the model
can be used to identify areas where fishery manage-
ment actions could be effective in avoiding future cli-
mate induced increase in trawling activity (figure 5).
For example, the model suggests that a climate driven
increase in trawling activity in Arctic Alaska can be
prevented by a continuation of the present manage-
ment regime. Furthermore, according to the model,
the 2018 CAO Agreement will have little effect with
respect to avoided trawling impact, while the recent
fisheries restrictions in the northern Barents Sea will
have large but spatially variable impact.

The GFW dataset does not separate pelagic (mid-
water) trawling from trawling near or on the seabed
(bottom trawling). This distinction is important
because bottom trawling, in contrast to pelagic trawl-
ing, is expected to disturb the seabed habitat. Except
for the Alaska pollock fishery, the catch data com-
piled by the Sea Around Us project (Zeller and Pauly
2015) suggest that bottom trawling dominates in the
fishery of demersal fishes. Alaska pollock is caught
by pelagic trawl while the pelagic fishes are caught
by purse seines and pelagic trawls. The trawling sig-
nals in the GFW database do therefore represent
a mix of pelagic and bottom trawling, with pela-
gic trawling dominating in the Bering-Alaska region
due to the dominance of the Alaska pollock fisher-
ies, while bottom trawling is more common in the
North Atlantic. Bottom-contact fishing gears are con-
sidered the most widespread anthropogenic source
of direct disturbance to the seabed and its associ-
ated biota (Sciberras et al 2018). The impact depends
on the fishing gear and is more severe in previously
untrawled areas with low levels of natural disturb-
ances (van Denderen et al 2015, Hiddink et al 2017).
In general, bottom trawling impacts the seabed hab-
itat by resuspending and disturbing the sediments
(O’Neill and Ivanovíc 2016), reducing the abund-
ance and diversity of macrobenthos (McConnaughey
et al 2000, Buhl-Mortensen et al 2016), selecting com-
munities dominated by small short-lived species (van
Denderen et al 2015, Hiddink et al 2019), and pro-
ducing carrions for scavengers (Kaiser et al 2000). As
the strong pelagic-benthic coupling and high biomass
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and diversity of macrobenthos that characterizes the
High Arctic shelf ecosystems relies on the presence
of sea ice (Wassmann and Reigstad 2011, Grebmeier
2012), this biota is likely to be particularly susceptible
to disturbances fromdemersal fishing gear in awarm-
ing climate with retreating sea ice (Christiansen et al
2014, Jørgensen et al 2019, 2020). The rapidity of the
responses of fisheries to sea ice retreat also suggest that
the challenges to fisheries management caused by cli-
mate induced shifts in fish stock distributions across
EEZ boundaries (Gullestad et al 2020)may occur rap-
idly, underlining the need to build capacity in gov-
ernance structures.

While the net effects of the recent and projec-
ted increase in trawling in pristine Arctic waters on
benthic communities is largely unknown, it must be
assessed in the light of increased pressure from a
rapidly changing climate as well as invading species
(Jørgensen et al 2019). The observed and predicted
increase in trawling activity is taking place within
the EEZs of the Arctic states and is not covered by
the recent CAO Agreement. A recent global analysis
has documented that effective science-basedmanage-
ment is instrumental to achieve sustainable fisheries
(Hilborn et al 2020), underscoring the importance of
Arctic fisheriesmanagement to also be based on ‘area-
appropriate fisheries science recommendations and
management tools’. Given the generally robust gov-
ernance of the Arctic coastal states, achieving a sus-
tainable fisheries management regime under climate
change seems like a realistic aspiration (Hoel 2020).
Accordingly, the responsibility for documenting and
eventually curbing the detrimental effects through
effective management actions lies within the five Arc-
tic coastal states. Such management actions would
include spatial restrictions with respect to demersal
trawling, as recently implemented in the northern
Barents Sea (Jørgensen et al 2020) or the banning of
commercial fishing activity in Arctic waters in Alaska
(Stram and Evans 2009). We conclude that vulner-
able Arctic ecosystems, which are already impacted by
multiple stressors, are rapidly facing another major
threat: trawling, in a warmer, more accessible Arctic.
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