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Abstract
A wide range of applications in marine ecology extensively uses underwater cameras. Still, to efficiently process the vast
amount of data generated, we need to develop tools that can automatically detect and recognize species captured on film.
Classifying fish species from videos and images in natural environments can be challenging because of noise and variation
in illumination and the surrounding habitat. In this paper, we propose a two-step deep learning approach for the detection and
classification of temperate fishes without pre-filtering. The first step is to detect each single fish in an image, independent
of species and sex. For this purpose, we employ the You Only Look Once (YOLO) object detection technique. In the second
step, we adopt a Convolutional Neural Network (CNN) with the Squeeze-and-Excitation (SE) architecture for classifying
each fish in the image without pre-filtering. We apply transfer learning to overcome the limited training samples of temperate
fishes and to improve the accuracy of the classification. This is done by training the object detection model with ImageNet
and the fish classifier via a public dataset (Fish4Knowledge), whereupon both the object detection and classifier are updated
with temperate fishes of interest. The weights obtained from pre-training are applied to post-training as a priori. Our solution
achieves the state-of-the-art accuracy of 99.27% using the pre-training model. The accuracies using the post-training model
are also high; 83.68% and 87.74% with and without image augmentation, respectively. This strongly indicates that the
solution is viable with a more extensive dataset.

Keywords Biometric fish classification · Temperate species · Deep learning · Object detection · CNN · Underwater video

1 Introduction

Coastal marine ecosystems provide habitats for spawning,
nursing, and feeding for a diverse fish community. Due to
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the highly complex and dynamic nature of this environment,
it is challenging to monitor and study ecological processes
[1, 2]. High resolution underwater camera technologies
have recently made it possible to obtain large volumes
of observations from remote areas and allowed for better
capture the species’ cryptic behavior and changes in the
environment [3]. Although comprehensive image and video
data can be collected, the processing of image data in
ecological context is mostly manual and therefore very
labor-intensive [4]. As a result, only a portion of the
available recordings can be analyzed which is greatly
limiting the potential advances that can be made from these
data streams. Furthermore, the accuracy of human-based
visual assessments are highly dependent on conditions of
the underwater environment and taxonomic expertise in
interpreting the data [5]. Therefore, an objective analytical
tool capable of processing image data fast and efficient is
most welcomed by scientists and resource management.

To release the burden of manual processing, and to
improve the classification accuracy, computer vision-based
approaches have increasingly been employed in marine
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ecology analysis [6–8]. For instance, a commercial prod-
uct, CatchMeter [9], composed by a lightbox with a camera,
offers classification of fish and length estimates. Here,
fish are classified by evaluating a threshold based on a
contour detection in the images with a very high classifi-
cation accuracy of 98.8%. The fish are photographed in a
pre-determined and controlled environment, which hinders
applying the approach in the wild. The CatchMeter version
described in [9] does not make use of any AI or machine
learning techniques. In natural underwater environments,
any classification task is challenged by diversity in back-
ground complexity, turbidity and light propagation as the
water deepens.

Deep learning has been used for a myriad of applications
ranging from games to medicine, but its applicability has
only partly been explored for fish classification [10–14]. A
specific Convolutional Neural Network (CNN) called Fast
R-CNN has been applied for object detection to extract
the fish from images taken in natural environment and
actively ignoring background noise [6]. In this approach, an
AlexNet [15] is pre-trained on the ImageNet [16] database
and modified to train on a subset of the Fish4Knowledge
dataset [17]. In the final step, the Fast R-CNN takes the pre-
trained weights and the region proposals made by AlexNet
as inputs, and achieves a mean average precision of 81.4%.
In another approach [8], pre-training is applied to a CNN
similar to AlexNet, which has three fully-connected layers
and five convolutional layers. Pre-training is carried out
using 1000 images from 1000 categories in the ImageNet
dataset and the learned weights are utilized by a CNN after
adapting it to the Fish4Knowledge dataset. Post-training
is then performed with 50 images per category and 10
categories from the Fish4Knowledge. The images from
Fish4Knowledge are pre-processed using image de-noising
and accuracy achieved on 1420 test images is 85.08%.

The highest reported accuracy for Fish4Knowledge in the
literature prior to our work is 98.64%, which was achieved
by firstly utilizing filters to the original images to extract
the shape of the fish and remove the background, and
then employing a CNN with a Support Vector Machine
(SVM) for classification [7]. That approach is named
DeepFish, which has three standard convolution layers
and three fully-connected layers. One common feature
of previous solutions is that they usually adopt a pre-
processing procedure for the images in order to remove
the noise in the targeted image as much as possible,
and particularly to outline the contour of the fish [7, 8].
Although this method can improve the system performance,
the procedure of the pre-process must be carefully tuned, as
it may remove useful information and result in a negative
performance impact. Understandably, different species may

have distinct nature of living environment, reflected in
the background. Intentionally removing the background of
the species in the pre-processing may therefore eliminate
useful information. To make use of information from the
background as much as possible and at the same time to
keep the results not influenced by background noise, we
need to employ a robust approach that can handle noise
adequately and accommodate diversity in classification.

In previous work on fish detection, Liu et al. [18]
have presented an online fish tracking system using YOLO
and parallel correlation filters, and included detection and
categorization in an end-to-end approach. Similar work
is carried out by Xu et al. [19] who trained a YOLO
architecture aimed at detecting a variety of fish species
with three very different datasets, obtaining a mean average
precision score of 0.5392. Pedersen et al. [20] extended
their work to include marine mammals as well as fish and
used the same YOLO techniques. Common for all of these
approaches is that they trained their network end-to-end.

In this paper, we propose a different method, namely a
separate deep learning-based approach for temperate fish
detection and classification. In more detail, we have used
images, and videos taken by underwater cameras in natural
environments, employed YOLOv3 [21] for fish detection,
and explored CNN using the most recent SE architecture
for classification. Because it is common to have multiple
species in the same frame, the YOLO algorithm was
used for fish detection, and once detected, the algorithm
classified the fish to its particular species. Because the
Fish4Knowledge dataset is limited to tropical fish species,
for the training samples in the classification phase, we
collected a new dataset of temperate fish species for this
study. Our approach for classification was to train the
network on the Fish4Knowledge dataset in order to learn
generic features of fish, a step called pre-training. The
learned weights were then used as a starting point for further
training on the newly collected dataset containing images of
temperate fish species, called post-training. This two-step
training process is known as transfer learning [22]. Note
that the proposed approach requires no pre-processing of
images, except re-sizing to the appropriate input size for
the network. To the best of our knowledge, the adopted
techniques have not been applied to temperate fish detection
and classification in previous work.

The remainder of the paper is organized as follows:
Section 2 describes the datasets adopted for the training
process. Section 3 presents a detailed network structure
and configurations. In Section 4, the experimental results
for the deep learning approach is illustrated and discussed,
before the work is concluded in the last section. An abridged
version of this article is published in [23].
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2 Datasets and deep learning approaches

Figure 1 presents the overall architecture of our approach.
First, a video stream is sent into an object detection com-
ponent, which is a YOLOv3 CNN. YOLOv3 is pre-trained
on ImageNet and fine-tuned for detecting temperate fish
species using a custom dataset. This component detects the
presence of fish in a single video frame, and moves the
rectangular subframes with fish to a classification compo-
nent built on a CNN-SENet structure. The latter categorizes
the fish species, and the overall architecture is thus able
to count the number of fish belonging to each species
in each frame. The components are trained individually
– the fish detection training is completely independent
of the fish species classification training. This separation
has two main advantages. First, the training data for cate-
gorization and object detection is allowed to be separate.
It is tedious to outline every single fish in a video stream.
Since object detection of fish requires less data than classi-
fication of fish species, the biologists can spend their time
mostly on specialist work like categorization, rather than
outlining objects. Second, detecting the presence of fish is
a more straightforward problem than categorizing species,
which means that we can prioritize resources accordingly.

Fig. 1 System architecture

2.1 Object detection

The object detection component is responsible for detecting
the presence of fish in a video stream. The video stream
can also be a live, something that limits the applicability of
top level accuracy segmentation algorithms. Consequently,
YOLOv3 [21] was selected as detection algorithm. This
CNN architecture provides a reasonable speed/accuracy
tradeoff, and is suitable for real time implementation. The
object detection takes the (live) video stream as input and
outputs objects of fish without any categorization.

YOLOv3 was initialized with weights trained on Ima-
geNet, and then further specialized by training on a new
dataset. Figure 2 shows examples from this temperate fish
species detection training dataset with 619 images contain-
ing a total of 1943 carefully annotated fish. We deliberately
designed the set up realistically for the shallow-water fish
assemblage found on along the coast in Southern Norway,
including the fish species most frequently observed in this
ecosystem. We collected video data at several different loca-
tions, spanning depths from 1-40 meters. We used images
captured at different seasons, time-at-day (including some
images captured at night) and during various weather con-
ditions. This ensured that the dataset reflects the natural
variability in visibility and light conditions. The variabil-
ity is to ensure a realistic dataset as possible to ensure high
precision when applied in real-life settings.

Further, note that although the detection training dataset
is annotated with species, this information is not used in
this stage. The object detection solely detects the presence
of fish, and the categorization happens in the independent
next step. The species information is used as additional
data in the subsequent step. Only a fraction of Cod images
are used for both detection (YOLO) and classification
(CNN-SENet) training, so the datasets could be considered
to be nearly non-overlapping. However, including all the
temperate species classification training data in annotated
form for detection should not be considered difficult, only
laborious.

2.2 Classification

In the classification-part, two datasets were used in the
test. The Fish4Knowledge dataset [6] and a novel dataset
with temperate species from Southern Norway, combining
images from multiple surveys and field studies. Fish4Knowl-
edge is used in pre-training of the neural network, while
the temperate dataset is used in the post-training. Some dif-
ferences between the datasets are: (1) The Fish4Knowledge
has in addition to the fish images categorized images in tra-
jectories, e.g. a sequence of images taken from the same
video sequence or stream. (2) The temperate dataset has
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Fig. 2 Examples from the temperate species dataset used for object detection

in addition to the other species a separate folder for male
and female Symphodus melops. Some individuals of male
S. melops have also been tracked and captured by camera
multiple times.

2.2.1 Fish4Knowledge

The Fish4Knowledge dataset is a collection of images,
extracted from underwater videos of fish, off the coast of
Taiwan. There is a total of 27230 images cataloged into
23 different species. The top 15 species accounts for 97%
of the images, and the single top species accounts for
around 44% of the images. The number of images for each
species range from 25 to 12112 between the species. This

creates a very imbalanced dataset. Further, the images size
ranges from approximately 30 × 30 pixels to approximately
250 × 250 pixels. Another observation in the dataset, is that
most of the images are taken from a viewpoint along the
anteroposterior axis, or slightly tilted from that axis. In that
subset of images, most of these images are from the left
or right lateral side, exposing the whole dorsoventral body
plan in the image. There are some images from the anterior
view, but few from the posterior end. Among all the images
there were not many images from the true dorsal viewpoint.
Most of the selected species have a compressed body plan,
e.g. dorsoventral elongate. This creates a very distinct shape
when the images are taken from a lateral viewpoint. Hence,
images taken from the dorsal view creates a thin, short

Fig. 3 Example images and distribution of the temperate species dataset used for classification
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Fig. 4 A functional view of the YOLOv3 architecture

shape. The images also have a background that is relatively
light, enhancing the silhouette of the fish.

2.2.2 Temperate fish species

The temperate dataset is a collection of images from some of
the most abundant fish species in coastal areas of Northern
Europe. Video recordings from GoPro cameras (HERO4-
7+Black) were obtained at three different locations from
south to western Norway between 2014 and 2019. In
western Norway, Austevoll, the cameras were deployed
at 2-5 meters of depth around small reef sites used as
breeding sites for many wrasse fishes. The species identified
from these videos were Ctenolabrus rupestris, Centrolabrus
exoletus and S. melops. In S. melops, most males build nests
to care for eggs and are colourful and easily distinguished
from the brown coloured females [24]. However, a minority
of the males are visually indistinguishable from females
and use this camouflage to sneak on other males’ nest
to steal fertilization [25]. Because of the morphological
appearances of the different sexes, nest-building males
are labelled as “males” in the dataset, whereas females
and sneaker males are labelled as “females”. Two of the
wrasse species (C. rupestris and S. melops) have high
commercial importance as they are used as cleaner fish
in the aquaculture industry. In the south-eastern Norway,
county of Agder, and mid-western Norway, county of
Trøndelag, stereo baited remote underwater video (stereo-
BRUV) rigs were deployed at 8-35 meters of depth at
various shallow coastal habitats. From these videos, we
extracted frames showing species from the family Gadidae:
Gadus morhua, Pollachius virens, Pollachius pollachius,
Molva molva, and Melanogrammus aeglefinus, all with
commercial importance. Additionally, some images shows
Squalus acanthias, a shark classified as vulnerable globally

and critically endangered in the Northeast Atlantic by the
IUCN red list of threatened species [26].

The temperate dataset has a higher image noise level
and more variability compared with the Fish4Knowledge
dataset, such as differences in depth, visibility and habitat,
and orientation of the fish and distance between camera
and fish. This secured a high variability in pictures of each
species and a natural representative for observations in wild,
but it is also expected to reduce the classification accuracy.
Furthermore, a single video frame usually contained more
than one fish (e.g., the same species, different species). All
videos were recorded in full HD resolution of 1920 × 1080
pixels with default settings. Figure 3 illustrates samples of
the dataset.

3 Object detection and classification

In contrast to the available literature, we have separated
object detection from classification. This separation allows
for both separate training data for fish detection and
species classification, and different level of validity in the

Fig. 5 Darknet-53 architecture with input size 608 × 608 × 3 (based
on [21])
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training data. It also allows for a much more fine-grained
classification of species independent from detecting the fish.

3.1 Fish detection

Fish are detected independent from species recognition
through object detection using YOLOv3. YOLO is a state-
of-the-art object detector, originally designed for combined
detection and classification. Only the detection part is
used in this work. YOLO is efficient, and provides
relatively high accuracy at the same time as being
moderately computationally expensive [21, 27]. Combined
with the speed and accuracy of CNN-SENet for species
classification, this should enable real time applications even
on embedded devices such as NVIDIA Jetson AGX Xavier
and Intel Movidius Myriad variants. A recent improvement
to YOLO, named YOLOv4 [28], divides the object detector
architecture into four parts where they can swap out each
part with solutions from other earlier research within object
detection. YOLOv4 is to date not thoroughly tested, which
is why we chose fully examined YOLOv3 (Figs. 4 and 5)
for our architecture.

YOLOv3 is configured to detect and classify only one
class (C = 1), namely “fish”, and use an input image of
dimension 608 × 608 with three color channels in RGB
order. Default initial values for the nine object detecion
bounding box priors were used (width×height): 10 × 13,
16 × 30, 33 × 23, 30 × 61, 62 × 45, 59 × 119, 116 × 90,
156 × 198 and 373 × 326. These values are recommended
for the COCO dataset. By inspection, the fish dataset will
contain approximately the same kind of variations in object
sizes and orientations, with both horizontally and vertically
oriented objects. If we intended to use this algorithm in a
structured environment, where for example, all the fish were
expected to swim through an apparatus, it would have been
interesting to explore a prior distribution favoring slender
horizontally oriented rectangular boxes. Note that sizes are
given in pixels, relative to the scaled version of any given
image.

When training the network, a batch size configuration
B of 64 and 8 subdivisions was configured. The number
of subdivisions required was found experimentally and is
dependent on the available training hardware (GPU RAM).
Four NVIDIAV100 GPUs in a DGX-2 computer were used.
Convolutional weights were initialized with weights pre-
trained on ImageNet [29] data. Next, the training process
was started using a single GPU for 4000 iterations as “burn-
in”. As a consequence of the number of GPUs available, and
the relatively small dataset, the default Darknet YOLOv3
learning rate was reduced by a factor of 0.25 to 0.00025
during this training phase. The effect of different learning
rate is visible in Fig. 9 as increased variability from batch
4000. After “burn-in” the training was stopped and then

restarted from saved weights using four GPUs. Training was
configured to run 50000 iterations in total. This is equivalent
to approximately 7000 epochs given a batch size of 64
and 434 training images. The step yielding the best mean
average precision (mAP@50) is selected for detection use.
Both the original “Darknet” framework from the YOLOv3
authors and an extended, forked, version was used for
running the experiments.1

3.2 Species classification

The species of the fish is identified by classification using a
Convolutional Neural Network with an added squeeze and
excitation (SE) – using the CNN-SENet structure. A CNN-
SENet is an architectural element that re-calibrates channel
wise-feature responses adaptively [30]. The architecture of
the CNN-SENet, depicted in Fig. 6, is configured with
the following parameters. Image size in height (H ), width
(W ) and depth channels; the number of learnable filters
(F ); the batch size (B) (default 16), the filter size (S),
and reduction ratio (r) as described in [30]. Lastly, the
number of fish species classifications needs to be added,
as parameter C. The input layer takes an image of size
200 × 200 with a depth of 3 color channels, R, G, and
B. The output is batch normalized before entering the
Squeeze-and-Excitation function, called SE block, depicted
in Fig. 7. The SE block performs a feature re-calibration
through the (1) squeeze operation preventing the network
from becoming channel-dependent. This exploits contextual
information outside the receptive field and is achieved by
doing global average pooling on each input channel before
reshaping, and (2) the excitation operation that utilizes the
output from the squeeze function by fully capture channel-
wise dependencies. This is achieved by the two fully-
connected (FC) layers sandwiching the reduction layer, and
finally, a sigmoid activation layer. Before exiting the SE
block, the output from the excitation function is multiplied
with the original batch normalized output. This multiplied
output is then added to a ReLU layer performing an
element-wise activation function, rendering the dimension
size unchanged. The output is then sent to a Max Pooling
layer, which uses a 2 × 2 filter to reduce and re-size the
height and width spatially, rendering output of 98×98×32.
This core portion of the network is stacked to the size of the
kernel size, in this case, the size of five. The first iteration
has a convolutional layer of 32 filters in 5 × 5. The second
and third have 64 filters in 3×3, the forth 128 filter in 2×2,
and the fifth 256 filters in 2 × 2, with all layers applying a
horizontal and vertical stride of 1.

Furthermore, the network has 3 FC layers. The first, with
256 neurons, takes the output from the last convolutional

1https://github.com/AlexeyAB/darknet

https://github.com/AlexeyAB/darknet
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Fig. 6 CNN-SENet architecture

layer that is first flattened. The output is then batch
normalized before sent to the second FC layer, with 256
neurons. A reduction function is applied after the output
from the FC layer is batch normalized. Before entering
the last FC layer, with C neurons, a dropout layer of 50%
is applied. The final layer, softmax, applies a classifier
function to obtain the probability distribution for each class
per input image, using a categorical cross-entropy with the
Adam optimizer [31].

In CNN-SENet, there are specific parameters that need
to be configured, including dropout percentage, learning
rate, and batch normalization, that are discussed presently.

Fig. 7 Squeeze-and-Excitation block

The parameters are configured based on the trial-and-error
method. For the dropout percentage, clearly, the higher the
dropout, the more the information is lost during training
because forward- and back-propagation are carried out only
on the remaining neurons after dropout is applied. Different
percentages of the dropout are tested, and 50% is configured
in this study due to the better overall performance achieved.
The learning rates when using the Adam optimizer should
be tuned to further optimize the network. After numerous
trials, the learning rate is configured as 0.001 without decay.
For batch normalization, it has been tested, and the results
with batch normalization are slightly better than without it.
In more detail the accuracy of the testing set without batch
normalization is 98.35%, while the accuracy with batch
normalization is 99.27%. With the above parameters, the
model trains faster and has a higher validation accuracy,
which concludes the architecture of CNN-SENet.

To compare CNN-SENet with DeepFish, Table 1 illus-
trates the main differences between the two. Clearly, CNN-
SENet has a more sophisticated structure than DeepFish.

4 Experiments, results and discussion

The proposed approach was verified in a two-step approach
using separate experiments for fish detection and classifica-
tion. First performance of fish detection was assessed, then
the performance of fish classification.

4.1 Fish detection

Localization of individual fish in each video stream image
occurs with the YOLOv3 based object detector described
in Section 3.1. Detection accuracy is measured using
Intersection over Union (IoU) – Jaccard index. This is
a measure of overlap between two sets, and a widely
used measure for verification of object detection and
segmentation algorithms. The approach reaches an average
IoU of 0.6802, and an IoU per class 0.9934. The latter
number means that a tiny percentage of false objects
consisting of mere background was erroneously detected as
fish (Fig. 8d).

Table 1 Differences between CNN-SENet and DeepFish

CNN-SENet DeepFish

Image size 200 × 200 47 × 47

Testing samples 4126 3098

Network architecture Basic with SE blocks Basic

Classifier Softmax SVM

Convolutional layers 5 3
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Fig. 8 Three Sample frames of correct fish detection, and one erroneous case, extracted from underwater video-stream

The dataset for this experiment was randomly split in a
70% for training and 30% for verification. Figure 9 shows
IoU per epoch for the latter. Figures 10 and 11 show the
training loss and mean average precision, respectively. The
precision peaks at 86.96%.

The validity of our approach is further confirmed in a
different setting than the training data. This verification is
part of a live stream from an underwater camera located
near a semi-submerged restaurant in southern Norway,
and which provide highly variable lighting conditions, and
different camera angles not part of our training data.2

Despite the radically different scenarios, the proposed
method is still able to detect fish correctly with very high
accuracy. Figure 8 shows samples from the live stream
recording. Three of the examples show fish which are
correctly detected, and one failed case. The first case in
Fig. 8 shows the standard case during day time, the second
shows fish detected during dark evenings with artificial
light, and the third case shows most of the fish detected
while the fish in the corner are wrongly ignored. In the last
occurrence, seaweed is detected as fish.

4.2 Species classification

Classification of species is done by categorizing fish iden-
tified in the object detection. Accuracy and performance of
the new fish classification CNN-SENet are quantified and
compared with the state-of-the-art networks represented by

2A recording of real-time detection is available at https://www.
youtube.com/watch?v=bZMJEIWo-rQ&t=4298s

Inception-V3, ResNet-50, and Inception-ResNet-V2. Addi-
tionally, a simplified version of the CNN-SENet, without
the Squeeze-and-Excitation blocks, is included to explore
how the spatial relationship between fish image colors and
other feature layers affect results [30].

Three different experiments were performed. Pre-training
with Fish4Knowledge, post-training with the new temperate
Fish Species dataset described in Section 2.2.2 and post-
training with an extended version of the new dataset using
image augmentation techniques. For all three experiments,
the relevant dataset was divided into 70% training images,
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Fig. 9 Training Intersection over Union (IoU) with moving average
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Fig. 10 Total training loss after moving average filter

15% validation images, and 15% testing images. Both train-
ing and validation images are integral parts of the training
process, while the testing images were kept out-of-the-loop
for independent verification of the “end product”.

All benchmarked networks are trained for 50 epochs with
images adapted to their input image size of 200 × 200 RGB
pixels, with the notable exception of the 299 × 299 RGB
pixels required by Inception-ResNet-V2.

4.2.1 Pre-training

Pre-training was performed using a dataset consisting of
19149 Fish4Knowledge images, with an additional 4126
images for verification and 4126 images reserved for

4000 6000 8000 10000 12000 14000
Batch number

0.78

0.8

0.82

0.84

0.86

0.88

0.9

m
A

P
@

0.
5

Validation Mean Average Precision (mAP@0.5)

Peak mAP

Fig. 11 Mean Average Precision (mAP) with peak value 86.97% at
batch 10273

testing. The selected training configuration consists of a
single run with 50 training epochs and a batch size of 16.
Results from pre-training are evaluated using weights from
the epoch with the highest validation accuracy, and not
necessarily the final epoch.

4.2.2 Post-training

Post-training was performed using 712 images of four fish
classes from the temperate fish species dataset described
in Section 2.2.2. An additional 155 images were used for
verification during training, and a subset of 155 images of
the same classes were reserved for testing. Corkwing wrasse
(male), Corkwing wrasse (female), Pollach, and Coalfish
were selected for the experiment as a reasonable number
of images of different individuals under varying conditions
were available for these species.

The post-training process consists of 50 epochs and a
batch size of 8. The batch size was reduced, compared to
pre-training, to compensate for the relatively small number
of available temperate fish images. Weights from the pre-
training step are loaded before initiating post-training, and
post-training accuracy is evaluated using the weights from
the final epoch.

The rationale for this post-training method is to make
use of the more or less generic fish identification features
learned from the large Fish4Knowledge dataset. Post-
training will then start with the network in a “fish-class-
sensitive” state and proceed by learning specific features of
the temperate species on top of this.

Fish4Knowledge consists of images of 23 different
classes. The selected subset of the temperate dataset consists
of 4 classes. To prepare the loaded pre-trained model for
post-training, the last fully connected (FC) layer with 23
output neurons, suitable for 23 fish classes, is replaced with
a similar layer with four output neurons.

4.2.3 Post-training with image augmentation

Data augmentation techniques in machine learning aims
at reducing overfitting problems by expanding a dataset
(base set) by introducing label-preserving transformations.

Table 2 Testing accuracy and time per epoch on pre-training

Network Testing accuracy Time one epoch

Inception-V3 99.18% 923 s

ResNet-50 98.86% 646 s

Inception-ResNet-V2 98.59% 2221 s

CNN-SENet 99.27% 197 s

CNN-SENet without 99.15% 159 s

Squeeze-and-Excitation
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Fig. 12 Confusion matrix for
Fish4Knowledge dataset
pre-training with CNN-SENet
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For an image dataset, this means that transformed copies
of the original images in the base set are produced. These
additional training data enable a network under training
to learn more generic features by reducing sensitivity to
augmentation operations that transform the image but not
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Fig. 13 Confusion matrix for temperate dataset post-training with
CNN-SENet

severely the characterizing visual features of, for example a
fish [32].

The main algorithm flow is the same as for the post-
training version, but the dataset was expanded by using
the following transformation operations. Images are rotated
randomly within a specific range, according to a uniform
distribution. Images are vertically and horizontally shifted
a random fraction of the image size. Scaling and shearing
transformations are applied randomly, and lastly, half of the
images are flipped horizontally.

4.3 Results

4.3.1 Pre-training

Results from pre-training on Fish4Knowledge are presented
in Table 2. The testing accuracy is on par with or exceeds
the level of accuracy achieved with previous state-of-art
solutions described in Section 1.

CNN-SENet with Squeeze-and-Excitation achieves 99.15%
test accuracy, almost identical results as the Inception-V3
algorithm when it comes to accuracy. However, the run time
for each epoch is roughly three times larger for Inception-
V3. The training-runtime is expected to be reflected in
prediction. CNN-SENet without Squeeze-and-Excitation is
faster than the SE-version, but also slightly less accurate
during these tests.
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Table 3 Average testing accuracy over 10 runs and time per epoch on
post-training

Network Testing accuracy Time one epoch

Inception-V3 85.42% 33 s

ResNet-50 82.39% 47 s

Inception-ResNet-V2 78.84% 91 s

CNN-SENet 83.68% 9 s

CNN-SENet without 82.32% 7 s

Squeeze-and-Excitation

Inception-ResNet-V2 achieves the lowest test accuracy
and also the highest time consumed for each epoch during
training. The required input image size is 299 × 299,
compared to 200 × 200 for the other networks under test. As
the required resolution is higher than the resolution of most
Fish4Knowledge images, the necessary upscaling process
may negatively affect accuracy. Additionally, the larger
input size also dramatically increases the computational
complexity and leads to a longer time on each epoch.

A confusion matrix for the CNN-SENet pre-training run
is included, as shown in Fig. 12. Fish 01 seems to attract
more wrong predictions than the other species. The reason
for this is unknown, but the imbalance in the dataset could
explain some of the behavior, as the ability to learn Fish 01
will be more rewarding during training as it occurs more
frequently .

4.3.2 Post-training with and without image augmentation

Results from the post-training experiment indicates that this
is a more challenging image recognition task (Fig. 13).
Without image augmentation, the highest average testing
accuracy achieved was 85.42% using the Inception-
V3 CNN algorithm as, listed in Table 3. CNN-SENet

Fig. 14 Box plot of post-training testing accuracy for 10 runs with
each network. No image augmentation

Table 4 Average testing accuracy over 10 runs on post-training with
image augmentation

Network Testing accuracy

Inception-V3 88.45%

ResNet-50 90.20%

Inception-ResNet-V2 82.39%

CNN-SENet 87.74%

CNN-SENet without 83.55%

Squeeze-and-Excitation

performance is a few percent below, but with a significantly
better training time for each epoch. All bench-marked
algorithms show significantly reduced accuracy compared
to the results from pre-training. Statistical accuracy
variations over the 10 runs without image augmentation
are shown using a box plot in Fig. 14. Mean and
standard deviation would not be sufficient to describe this
distribution, as it is skewed and consequently non-Gaussian.
This could partly be caused by the rather low number of
runs for this experiment, but the real cause is unknown.
The mean values of this box-plot are also presented in
Table 3 and are used as the main classification performance
indicators. The temperate species dataset used for post-
training is challenging, in the sense that it contains few
images overall. The dataset also consists of pictures of fish
under low visibility conditions and situations where the fish
silhouette is not always prominent.

Image augmentation, as described in Section 4.2.3,
improves the results for post-training for all benchmarked
algorithms, as shown in Table 4. The ResNet-50 network
reaches just above 90% testing accuracy. CNN-SENet
accuracy increases approximately four percentage points
compared to post-training without image augmentation.
The training time for each epoch does not change notably

Fig. 15 Box plot of post-training testing accuracy for 10 runs with
each network. With image augmentation
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using image augmentation, so the metric was omitted from
Table 4. A box plot of the accuracy distribution for each
run is shown in Fig. 15. An important observation is that
CNN-SENnet with Squeeze and Excitation blocks achieves
higher accuracy than the network without SE for a majority
of the runs. This is consistent with results from the runs
without image augmentation, and indicates that the SE-
architecture is advantageous when used on the temperate
data set. The results from pre-training in Table 2 is however
not as conclusive, so a next step will be to extend the
temperate data set to more closely match the pre-traning
data set in size.

5 Conclusions

In this study, we implemented an in-depth deep learning-
based approach for temperate fish detection and classi-
fication. YOLOv3 has been used for detection purposes,
and CNN-SENet has been adopted for classification. The
experimental results show that the YOLOv3 technique can
successfully detect an individual fish in different complex
environmental conditions. The object detection approaches
a mean average precision of 86.96%, and the CNN-
SENet architecture achieves the state-of-the-art accuracy
of 99.27% on the Fish4Knowledge dataset without any
data augmentation or image pre-processing. For temperate
fish, the obtained average accuracy is 83.68%. The lower
accuracy can be explained by the comparatively smaller
temperate species dataset combined with high variation in
image data. The detection algorithm was also tested suc-
cessfully in real-time on a live 25 FPS Full HD underwater
video stream. In short, we show that our proposed deep
learning approach is a powerful and useful tool for the auto-
matic analysis of fish species. It has a high potential to
release the burden on scientists working with the study of
videos and pictures from underwater ecosystems.
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